Auto-Ranging Analog-to-Digital Converter with 3-1/2 Digit Display

Features

- Auto-Ranging Analog-to-Digital Converter with 3-1/2 Digit Display
- Annunciator Outputs Permit Customizing of LCD
- Auto-Range Operation for AC and DC Voltage and Resistance Measurements
- Two User Selected AC/DC
- Current Ranges: 20 mA and 200 mA
- 22 Operating Ranges: 9 DC/AC Voltage
- 4 AC/DC Current
- 9 Resistance and Low Power Ohms
- Display Hold Function
- 3-1/2 Digit Resolution in Auto-Range Mode: 1/2000
- Extended Resolution in Manual Range Mode: 1/3000
- Internal AC-to-DC Conversion Op Amp
- Triplex LCD Drive for Decimal Points, Digits,
- Bar Graphs, and Annunciators
- Continuity Detection and Piezoelectric Transducer Driver
- Low Drift Internal Reference: $75 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- 9V Battery Operation: 10mW
- Low Battery Detection and LCD Annunciator

Device Selection Table

Part Number	Package	Operating Temperature Range
TC818ACBU	$64-$ Pin PQFP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

General Description

The TC818A is an integrating analog-to-digital converter (ADC) with a 3-1/2 digit numeric LCD driver, automatic ranging, and single 9 V battery operation. The numeric display provides 0.05% resolution and a full set of annunciators that spell out the TC818A's many operating modes.
Automatic range selection is provided for both voltage (DC and AC) and ohms (high and low power) measurements. Expensive and bulky mechanical range switches are not required. Five full scale ranges are available, with automatic selection of external volt/ohm attenuators over a 1 to 10,000 range. Two current ranges, 20 mA and 200 mA , can be manually selected. The auto-range feature can be bypassed, allowing input attenuator selection through a single line input.
During Manual mode operation, resolution is extended to 3000 counts full scale. Extended resolution is also available during $2000 \mathrm{k} \Omega$ and 2000 V full scale autorange operation. The extended range operation is indicated by a flashing 1 MSD and by the fully extended bar graph.
The TC818A includes an AC-to-DC converter for AC voltage and current measurements. Only external diodes/resistors/capacitors are required. Other features include a Memory mode, low battery detection, display HOLD input, and continuity buzzer driver.
The 3-1/2 digit numeric display includes a full set of annunciators. Decimal points are adjusted as automatic or manual range changes occur, and Voltage, Current, and Ohms Operating modes are displayed. Additional annunciators are activated for manual, auto, memory, HOLD, AC, low power ohms, and low battery conditions.
The TC818A is available in a surface mounted 64-pin flat package. Combining a numeric display driver, single 9V battery operation, internal range switching, and compact surface mounting, the TC818A is ideal for advanced portable instruments.

TC818A

Package Type
64-Pin PQFP

Typical Application

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings*Supply Voltage15V
Analog Input Voltage $V_{C C}$ to $V_{S S}$
Reference Input Voltage $V_{C C}$ to $V_{S S}$Voltage at Pin 43
\qquad Common $\pm 0.7 \mathrm{~V}$Power Dissipation
\qquad .800 mW
Operating Temperature Range.

\qquad
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
\qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

TC818A ELECTRICAL SPECIFICATIONS

Electrical Characteristics: $\mathrm{V}_{\mathrm{A}}=9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.						
Symbol	Parameter	Min	Typ	Max	Unit	Test Conditions
	Zero Input Reading	-0000	0000	+0000	Digital Reading	200 mV Range without $10 \mathrm{M} \Omega$ Resistor
		-0001	-	+0001	Digital Reading	200 mV Range with $10 \mathrm{M} \Omega$ Resistor
		-0000	0000	+0000	Digital Reading	20 mA and 200mA Range
RE	Rollover Error	-	-	± 1	Counts	200 mV Range without $10 \mathrm{M} \Omega$ Resistor
		-	-	± 3		200 mV Range with $10 \mathrm{M} \Omega$ Resistor
		-	-	± 1		20mA and 200mA Range
NL	Linearity Error	-	-	± 1	Count	Best Case Straight Line
I_{N}	Input Leakage Current	-	-	10	pA	
E_{N}	Input Noise	-	20	-	$\mu \mathrm{V}_{\text {P-P }}$	$\mathrm{BW}=0.1$ to 10 Hz
E_{N}	AC Frequency Error	-	± 1	-	\%	40 to 500 Hz
		-	± 5	-	\%	Error 40 to 2000Hz
	Open Circuit Voltage for Ohm Measurements	-	570	660	mV	Excludes 200 2 Range
	Open Circuit Voltage for $\overline{\overline{\mathrm{OO}}} \mathrm{Ohm}$ Measurements	-	285	350	mV	Excludes 200Ω Range
$\mathrm{V}_{\text {COM }}$	Analog Common Voltage	2.8	3	3.3	V	$\left(\mathrm{V}_{\text {CC }}-\mathrm{V}_{\text {COM }}\right)$
$\mathrm{V}_{\text {CTC }}$	Common Voltage Temperature Coefficient	-	-	50	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	
	Display Multiplex Rate	-	100	-	Hz	
V_{IL}	Low Logic Input	-	-	1	$\mu \mathrm{A}$	$\overline{20 \mathrm{~mA}}, \overline{\mathrm{AC}}, \mathrm{I}, \overline{\mathrm{LOW}} \Omega$, $\overline{\mathrm{HOLD}}$ Range, -MEM, OHMs (Relative to DGND, Pin 58)
	Logic 1 Pull-up Current	-	25	-	V	$\overline{20 \mathrm{~mA}}, \overline{\mathrm{AC}}, \mathrm{I}, \overline{\mathrm{LOW}} \Omega, \overline{\mathrm{HOLD}}$ Range, -MEM, OHMs (Relative to DGND, Pin 58)
$\mathrm{V}_{\text {OL }}$	Low Logic Output	-	DGND +0.1	-	V	ANNUNC, DEINT: $\mathrm{I}_{\mathrm{L}}=100 \mu \mathrm{~A}$
V_{OH}	High Logic Output	-	$\mathrm{V}_{\text {CC }}-0.1$	-	V	ANNUNC, DEINT: $\mathrm{I}_{\mathrm{L}}=100 \mu \mathrm{~A}$
	Buzzer Drive Frequency	-	4	-	kHz	
	Low Battery Flag Voltage	6.3	6.6	7	V	$\mathrm{V}_{\text {CC }}$ to $\mathrm{V}_{\text {SSA }}$
	Operating Supply Current	-	0.8	1.5	mA	

2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.
TABLE 2-1: PIN FUNCTION TABLE

Pin Number (64-Pin PQFP)	Symbol	Description
1	NC	No connection.
2	OHM	Logic Input. "0" (Digital Ground) for resistance measurement.
3	$\overline{20 \mathrm{~mA}}$	Logic Input. "0" (Digital Ground) for 20 mA full scale current measurement.
4	BUZ	Buzzer. Audio frequency, 4 kHz , output for continuity indication during resistance measurement. A noncontinuous 4 kHz signal is output to indicate an input over range during voltage or current measurements.
5	XTAL1	32.768 kHz Crystal Connection.
6	XTAL2	32.768 kHz Crystal Connection.
7	$\mathrm{V}_{\text {DISP }}$	Sets peak LCD drive signal: $\mathrm{V}_{\mathrm{P}}-\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {DISP. }} \mathrm{V}_{\text {DISP }}$ may also be used to compensate for temperature variation of LCD crystal threshold voltage.
8	BP1	LCD Backplane \#1.
9	BP2	LCD Backplane \#2.
10	BP3	LCD Backplane \#3.
11	$\overline{\mathrm{LO}}$ / $/ \mathrm{A}$	LCD Annunciator segment drive for low ohms resistance measurement and current measurement.
12	S/V	LCD Annunciator segment drive for resistance measurement and voltage measurement.
13	k/m/HOLD	LCD Annunciator segment drive for k ("kilo-Ohms"), m ("milliamps" and "millivolts") and HOLD mode.
14	$\begin{gathered} \text { BCPO } \\ \text { (One's digit) } \end{gathered}$	LCD segment drive for "b," "c" segments and decimal point of least significant digit (LSD).
15	AGD0	LCD segment drive for "a," "g," "d" segments of LSD.
16	FE0	LCD segment drive for "f" and "e" segments of LSD.
17	NC	No connection.
18	BCP1	LCD segment drive for "b," "c" segments and decimal point of 2nd LSD.
19	AGD1	LCD segment drive for "a," "g," "d" segments of 2nd LSD.
20	FE1	LCD segment drive for "f" and "e" segments of 2nd LSD.
21	BCP2	LCD segment drive for " b," "c" segments and decimal point of 3rd LSD (hundred's digit).
22	AGD2	LCD segment drive for "a," "g," "d" segments of 3rd LSD.
23	FE2	LCD segment drive for "f," "e" segments of 3rd LSD.
24	BCP3	LCD segment drive for "b," "c" segments and decimal point of MSD, (thousand's digit).
25	AC/-/AUTO	LCD annunciator segment drive for AC measurements, polarity, and auto-range operation.
26	-MEM/BATT	LCD annunciator segment drive for AC for low battery indication and memory (relative measurement).
27	ANNUNC	Square wave output at the backplane frequency, synchronized to BP1. ANNUNC can be used to control display annunciators. Connecting an LCD segment to ANNUNC turns it on; connecting it to its backplane turns it off.
28	V_{CC}	Positive battery supply connection.
29	COM	Analog circuit ground reference point. Nominally 3 V below V_{CC}.
30	DEINT	De-integrate output.
31	RM ${ }_{\text {REFL }}$	Ratiometric (resistance measurement) reference low voltage.
32	$\mathrm{C}_{\text {REFL }}$	Reference capacitor negative terminal $\mathrm{C}_{\text {REF }}=0.1 \mu \mathrm{f}$.
33	$\mathrm{C}_{\text {REFH }}$	Reference capacitor positive terminal $\mathrm{C}_{\text {REF }}=0.1 \mu \mathrm{f}$.
34	REFHI	Reference voltage for voltage and current measurement. Nominally 163.85 mV .
35	Ω R1	Standard resistor connection for 200Ω full scale.
36	Ω R2	Standard resistor connection for 2000Ω full scale.

TABLE 2-1: PIN FUNCTION TABLE (CONTINUED)

Pin Number (64-Pin PQFP)	Symbol	Description
37	Ω R3	Standard resistor connection for $20 \mathrm{k} \Omega$ full scale range.
38	Ω R4	Standard resistor connection for $200 \mathrm{k} \Omega$ full scale range.
39	Ω R5	Standard resistor connection for $2000 \mathrm{k} \Omega$ full scale.
40	VR3	Voltage measurement $\div 100$ attenuator.
41	VR2	Voltage measurement $\div 10$ attenuator.
42	VR5	Voltage measurement $\div 10,000$ attenuator.
43	VR4	Voltage measurement $\div 1000$ attenuator.
44	V_{1}	Unknown voltage input \div attenuator.
45	I	Unknown current input.
46	ACVL	Low output of AC-to-DC converter.
47	C_{1}	Integrator capacitor connection. Nominally 0.1μ F. (Must have low dielectric absorption. Polypropylene dielectric suggested.)
48	NC	No connection.
49	$\mathrm{C}_{\text {AZ }}$	Auto-zero capacitor connection. Nominally $0.1 \mu \mathrm{~F}$.
50	R_{X}	Unknown resistance input.
51	CFI	Input filter connection.
52	ADI	Negative input of internal AC-to-DC operational amplifier.
53	ADO	Output of internal AC-to-DC operational amplifier.
54	R Ω BUF	Active buffer output for resistance measurement. Integration resistor connection. Nominally 220k Ω.
55	RVIBUF	Active buffer output for voltage and current measurement. Integration resistor connection. Nominally $15 \mathrm{k} \Omega$.
56	ACVH	Positive output of AC-to-DC converter.
57	$\mathrm{V}_{\text {SS }}$	Negative supply connection. Connect to negative terminal of 9V battery.
58	DGND	Internal logic digital ground. Ground connection for the logic "0" level. Nominally 4.7V below V_{CC}.
59	RANGE	Input to set manual operation and change ranges.
60	$\overline{\text { HOLD }}$	Input to hold display. Connect to DGND to "FREEZE" display.
61	-MEM	Input to enter Memory Measurement mode for relative measurements. The two LSDs are stored and subtracted from future measurements.
62	$\begin{gathered} \mathrm{DC}(\Omega) / \\ \mathrm{AC}(\overline{\mathrm{LO} \Omega)} \end{gathered}$	Input that selects AC or DC option during voltage/current measurements. For resistance measurements, the ohms or low power (voltage) ohms option can be selected.
63	İ	Input to select measurement. Connect to logic "0" (digital ground) for current measurement.
64	NC	No connection.

3.0 DETAILED DESCRIPTION

3.1 Analog-to-Digital Converter (ADC)

The TC818A includes an integrating ADC with autoranging resolution of 2000 counts and manual range resolution of 3000 counts. Figure 3-1 shows a simplified schematic of the analog section. In Auto-Ranging mode, internal logic will adjust the input voltage or ohms attenuators so that measurements will always be made in the appropriate range.

Measurement ranges, logic control inputs, 3-1/2 digit LCD formatting, and other features are identical to the TC818A auto-ranging A/D converter. However, the TC818A is not pin compatible with, and is not a replacement for, the TC818A.
A display annunciator output (ANNUNC) can be used to customize the LCD. ANNUNC is a square wave at the backplane frequency. Connecting an annunciator segment to the ANNUNC driver turns the segment on; connecting the segment to its backplane turns it off.

FIGURE 3-1: TC818A ANALOG SECTION

3.2 Resistance, Voltage, Current Measurement Selection

The TC818A is designed to measure voltage, current, and resistance. Auto-ranging is available for resistance and voltage measurements. The $\overline{\mathrm{OHM}}$ (Pin 2) and $\overline{\mathrm{I}}$ (Pin 63) input controls are normally pulled internally to $V_{C C}$.
By tying these pins to DGND (Pin 58), the TC818A is configured internally to measure resistance, voltage, or current. The required signal combinations are shown in Table 3-1.

TABLE 3-1: TC818A MEASUREMENT SELECTION LOGIC

Function Select Pin $\mathbf{0}=$ Digital Ground $\mathbf{1}=$ Floating or Tied to $\mathbf{V}_{\text {cc }}$		Selected Measurement
$\overline{\text { OHM }}$ (Pin 2)	$\overline{\mathrm{I}}$ (Pin 63)	
0	0	Voltage
0	1	Resistance
1	0	Current
1	1	Voltage

Note 1: $\overline{\mathrm{OHM}}$ and $\overline{\mathrm{I}}$ are normally pulled internally high to V_{CC} (Pin 28). This is considered a logic " 1 ".
2: Logic " 0 " is the potential at digital ground (Pin 58).

3.3 Resistance Measurements (Ohms and Low Power Ohms)

The TC818A can be configured to reliably measure incircuit resistances shunted by semiconductor junctions. The TC818A Low Power Ohms Measurement mode limits the probe open circuit voltage. This prevents semiconductor junctions in the measured system from turning on.
In the Resistance Measurement mode, the $\Omega / \overline{\mathrm{LO}} \Omega$ (Pin 62) input selects the Low Power Ohms Measurement mode. For low power ohms measurements, $\Omega / \overline{\mathrm{LO}} \Omega$ (Pin 62) is momentarily brought LOW to digital ground potential. The TC818A sets up for a low power ohms measurement, with a maximum open circuit probe voltage of 0.35 V above analog common. In the Low Power Ohms mode, an LCD display annunciator, $\overline{\mathrm{LO}} \Omega$, will be activated. On power-up, the Low Power Ohms mode is not active.

If the Manual Operating mode has been selected, toggling $\Omega / \overline{\mathrm{LO}} \Omega$ resets the TC818A back to the AutoRange mode. In Manual mode, the decision to make a normal or low power ohms measurement should be made before selecting the desired range.
The low power ohms measurement is not available on the 200Ω full scale range. Open circuit voltage on this range is below 2.8 V . The standard resistance values are listed in Table 3-2.

R8, a positive temperature coefficient resistor, and the 6.2V zener, $\mathrm{Z1}$, provide input voltage protection during ohms measurements.

TABLE 3-2: OHMS RANGE LADDER NETWORK

Full-Scale Range	Standard Resistance	Low Power Ohms Mode
200Ω	$163.85 \Omega(\mathrm{R} 1)$	NO
2000Ω	$1638.5 \mathrm{k} \Omega(\mathrm{R} 2)$	YES
$20 \mathrm{k} \Omega$	$16,385 \Omega(\mathrm{R} 3)$	YES
$200 \mathrm{k} \Omega$	$163,85 \Omega(\mathrm{R} 4)$	YES
$2,000 \mathrm{k} \Omega$	$1,638,500 \Omega(\mathrm{R} 5)$	YES

3.4 Ratiometric Resistance Measurements

The TC818A measures resistance ratiometrically. Accuracy is set by the external standard resistors connected to Pin 35 through 39. A Low Power Ohms mode may be selected on all but the 200Ω full scale range. The Low Power Ohms mode limits the voltage applied to the measured system. This allows accurate "incircuit" measurements when a resistor is shunted by semiconductor junctions.
Full auto-ranging is provided. External precision standard resistors are automatically switched to provide the proper range.
Figure 3-2 shows a detailed block diagram of the TC818A, configured for ratiometric resistance measurements. During the signal integrate phase, the reference capacitor charges to a voltage inversely proportional to the measured resistance, R_{X}. Figure 3-3 shows that the conversion accuracy relies on the accuracy of the external standard resistors.

Normally, the required accuracy of the standard resistances will be dictated by the accuracy specifications of the users end product. Table 3-3 gives the equivalent ohms per count for various full scale ranges to allow users to judge the required resistor for accuracy.

TABLE 3-3: REFERENCE RESISTORS

Full Scale Range	Reference Resistor	$\Omega /$ Count
200 k	163.85	0.1
2 k	1638.5	1
20 k	16385	10
200 k	163,850	100
2 M	$1,638,500$	1000

FIGURE 3-2: RATIOMETRIC RESISTANCE MEASUREMENT FUNCTIONAL DIAGRAM

FIGURE 3-3: RESISTANCE MEASUREMENT ACCURACY SET BY EXTERNAL STANDARD RESISTOR

3.5 Voltage Measurement

Resistive dividers are automatically changed to provide in range readings for 200 mV to 2000 V full scale readings (Figure 3-1). The input resistance is set by external resistors R14/R13. The divider leg resistors are R9R12. The divider leg resistors give a 200 mV signal V_{I} (Pin 44) for full scale voltages from 200 mV to 2000 V .
For applications which do not require a $10 \mathrm{~m} \Omega$ input impedance, the divider network impedances may be lowered. This will reduce voltage offset errors induced by switch leakage currents.

3.6 Current Measurement

The TC818A measures current only under manual range operation. The two user selectable, full scale ranges are: $\overline{20 \mathrm{~mA}}$ and 200 mA . Select the current Measurement mode by holding the $\overline{1}$ input (Pin 63) LOW at digital ground potential. The $\overline{\mathrm{OHM}}$ input (Pin 2) is left floating or tied to the positive supply.
Two ranges are possible. The $\overline{20 \mathrm{~mA}}$ full scale range is selected by connecting the $\overline{20 \mathrm{~mA}}$ input (Pin 3) to digital ground. If left floating, the 200 mA full scale range is selected.

External current-to-voltage conversion resistors are used at the current input (1 , input, Pin 45). For $\overline{20 \mathrm{~mA}}$ measurements, a 10Ω resistor is used. The 200 mA range requires a 1Ω resistor; full scale is 200 mV .
Printed circuit board trace resistance between analog common and R16 must be minimized. In the 200 mA range, for example, a 0.05 trace resistance will cause a 5% current-to-voltage conversion error at l_{l} (Pin 45).
The extended resolution measurement option operates during current measurements.
To minimize rollover error, the potential difference between analog common (COM, Pin 29) and system common must be minimized.

3.7 AC-to-DC Measurements

In voltage and current measurements, the TC818A can be configured for AC measurements. An on-chip operational amplifier and external rectifier components perform the AC-to-DC conversion.

When power is first applied, the TC818A enters the DC Measurement mode. For AC measurements (current or voltage), AC/DC (Pin 62) is momentarily brought LOW to digital ground potential; the TC818A sets up for AC measurements, and the AC liquid crystal display annunciator activates. Toggling AC/DC LOW again returns the TC818A to DC operation.
If the Manual Operating mode has been selected, toggling AC/DC resets the TC818A back to the AutoRange mode. In Manual mode operation, AC or DC should be selected first, then the desired range.

The minimum AC full scale voltage range is 2 V . The DC full scale minimum voltage is 200 mV .
AC current measurements are available on the 20 mA and 200 mA full scale current ranges.

3.8 Conversion Timing

The TC818A analog-to-digital converter uses the conventional dual slope integrating conversion technique, with an added phase that automatically eliminates zero offset errors. The TC818A gives a zero reading with a 0 volt input.

The TC818A is designed to operate with a low cost, readily available 32.768 kHz crystal. It serves as a timebase oscillator crystal in many digital clocks. (See External Crystal Sources.)
The external clock is divided by two. The internal clock frequency is 16.348 kHz , giving a clock period of $61.04 \mu \mathrm{sec}$. The total conversion - auto-zero phase, signal integrate and reference de-integrate - requires 8000 clock periods or 488.3 msec . There are approximately two complete conversions per second.
The integration time is fixed at 1638.5 clock periods or 100 msec . This gives rejection of $50 / 60 \mathrm{~Hz}$ AC line noise.
The maximum reference de-integrate time, representing a full scale analog input, is 3000 clock periods (183.1 msec) during manual extended resolution operation. The 3000 counts are available in Manual mode, extended resolution operation only. In Auto-Ranging mode, the maximum de-integrate time is 2000 clock periods. The 1000 clock periods are added to the autozero phase. An auto-ranging or manual conversion takes 8000 clock periods. After a zero crossing is detected in the Reference De-integrate mode, the autozero phase is entered. Figure 3-4 shows the basic TC818A timing relationships.

FIGURE 3-4: BASIC TC818A CONVERSION TIMING

*In Auto-Range Operation, Maximum is $2000 \mathrm{t}_{\mathrm{p}}$ and minimum Auto-Zero Time is $4361.5 \mathrm{t}_{\mathrm{p}}$

External Crystal $=32.768 \mathrm{kHz}$
Internal Clock Period $=t_{p}=2 / 32.768=61.04 \mu \mathrm{sec}$

Total Conversion Time $=\mathrm{t}_{\mathrm{CONV}}=8000\left(\mathrm{t}_{\mathrm{p}}\right)$
$=488.3 \mathrm{msec} \approx 2 \mathrm{conv} / \mathrm{sec}$
Integration Time $=T_{1}=1638.5\left(\mathrm{t}_{\mathrm{p}}\right)=100 \mathrm{msec}$

Maximum Reference De-integrate Time
$=t_{D E} 3000\left(t_{p}\right)=183.1 \mathrm{msec}$
(manual extended resolution)
$=2000\left(\mathrm{t}_{\mathrm{p}}\right)=122.1 \mathrm{msec}$ (auto-range)
Maximum Auto-Zero Time
$=(8000-3000-1638.5)$
$\left(\mathrm{t}_{\mathrm{p}}\right)=205.1 \mathrm{msec}$ (manual extended resolution)
$=(8000-3000-1638.5)$
$\left(\mathrm{t}_{\mathrm{p}}\right)=205.1 \mathrm{msec}$ (manual extended resolution)

3.9 Manual Range Selection

The TC818A voltage and resistance auto-ranging feature can be disabled by momentarily bringing $\overline{\text { RANGE }}$ (Pin 59) to digital ground potential (Pin 58). When the change from auto-to-manual ranging occurs, the first manual range selected is the last range in the AutoRanging mode.

The TC818A power-up circuit initially selects autorange operation. Once the manual range option is entered, range changes are made by momentarily grounding the RANGE control input. The TC818A remains in the Manual Range mode until the measurement function (voltage or resistance), or measurement option (AC/DC, $\Omega / \overline{\mathrm{LO}} \Omega$) changes. This causes the TC818A to return to auto-ranging operation.
The "Auto" LCD annunciator driver is active only in the Auto-Range mode.

Figure 3-5 shows typical operation where the manual range selection option is used. Also shown is the extended resolution display format. Also, see Figure 3-6 and Figure 3-7.

FIGURE 3-5: MANUAL RANGE
SELECTION RESISTANCE MEASUREMENTS

FIGURE 3-6:

MANUAL RANGE SELECTION CURRENT MEASUREMENTS

3.10 Extended Resolution Manual Operation

When operated in the Manual Range mode, the TC818A extends resolution by 50% for current, voltage, and resistance measurements. Resolution increases to 3000 counts from 2000 counts. The extended resolution feature operates only in the $2000 \mathrm{k} \Omega$ and 2000 V ranges during auto-range operation.

In the Extended Resolution Operating mode, readings above 1999 are displayed with a blinking " 1 " most significant digit. The blinking " 1 " should be interpreted as the digit 2. The three least significant digits display data normally. The bar graph LCD will be fully extended.
An input over range condition causes the most significant digit (MSD) to blink and sets the three least significant digits (LSDs) to display "000." The buzzer output is enabled for input voltage and current signals with readings greater than 2000 counts in both manual and auto-range operations.
For resistance measurements, the buzzer signal does not indicate an over range condition. The buzzer is used to indicate continuity. Continuity is defined as a resistance reading less than 19 counts.

FIGURE 3-7: MANUAL RANGE SELECTION VOLTAGE MEASUREMENTS

3.11 -MEM Operating Mode

Bringing -MEM (Pin 61) momentarily LOW configures the TC818A "-MEM" Operating mode. The -MEM LCD annunciator becomes active. In this Operating mode, subsequent measurements are made relative to the last two digits (≤ 99) displayed at the time MEM is LOW. This represents 5% of full scale. The last two significant digits are stored and subtracted from all the following input conversions.
The following examples clarify operation:

EXAMPLE 3-1: IN AUTO-RANGING

```
\(\underline{R_{1}(N)}=18.21 \mathrm{k} \Omega(20 \mathrm{k} \Omega\) Range \()=\geq\) Display \(18.21 \mathrm{k} \Omega\)
\(\overline{\mathrm{MEM}}=\geq\) Store \(0.21 \mathrm{k} \Omega\)
\(\mathrm{R}_{\mathrm{l}}(\mathrm{N}+1)=19.87 \mathrm{k} \Omega(20 \mathrm{k} \Omega\) Range)
    \(=\geq\) Display \(19.87-0.21=19.66 \mathrm{k} \Omega\)
\(R_{1}(N+2)=22.65 \mathrm{k} \Omega\) ( \(200 \mathrm{k} \Omega\) Range)
    \(=\geq\) Display \(22.7 \mathrm{k} \Omega\) and \(\overline{\mathrm{MEM}}\) disappears
```


EXAMPLE 3-2: IN FIXED RANGE

 (200 FULL SCALE)$$
\begin{aligned}
\frac{\mathrm{R}_{I}(\mathrm{~N})}{\mathrm{MEM}} & =18.21 \mathrm{k} \Omega=\geq \text { Display } 18.2 \mathrm{k} \Omega \\
& =\geq \text { Store } 8.2 \Omega \\
\mathrm{R}_{\mathrm{I}}(\mathrm{~N}+1) & =36.7 \Omega \\
& =\geq \text { Display } 36.7-8.2=28.5 \Omega \\
\mathrm{R}_{\mathrm{I}}(\mathrm{~N}+2) & =5.8 \Omega \\
& =\geq \text { Display } 5.8-8.2=-2.4 \Omega^{*}
\end{aligned}
$$

*Will display minus resistance if following input is less than offset stored at fixed range.

EXAMPLE 3-3: IN FIXED RANGE 20V FULL SCALE

$$
\begin{aligned}
\mathrm{V}_{1}(\mathrm{~N}) & =0.51 \mathrm{~V}=\geq \text { Display } 0.51 \mathrm{~V} \\
\mathrm{MEM} & =\geq \text { Store } 0.51 \mathrm{~V} \\
\mathrm{~V}_{1}(\mathrm{~N}+1) & =3.68 \mathrm{~V} \\
& =\geq \text { Display } 3.68-0.51=3.17 \mathrm{~V} \\
\mathrm{~V}_{1}(\mathrm{~N}+2) & =0.23 \mathrm{~V} \\
& =\geq \text { Display } 0.23-0.51=-0.28 \mathrm{~V} \\
\mathrm{~V}_{1}(\mathrm{~N}+3) & =-5.21 \mathrm{~V} \\
& =\geq \text { Display }-5.21-0.51=-5.72 \mathrm{~V}
\end{aligned}
$$

On power-up, the "-MEM" mode is not active. Once the "-MEM" is entered, bringing $\overline{M E M}$ LOW again returns the TC818A to normal operation.
The "-MEM" mode is also cancelled whenever the measurement type (resistance, voltage, current $\overline{A C} / D C$, $\Omega / \overline{\mathrm{LO}} \Omega$) or range is changed. The LCD -MEM annunciator will be off in normal operation.
In the auto-range operation, if the following input signal cannot be converted on the same range as the stored value, the "-MEM" mode is cancelled. The LCD annunciator is turned OFF.

The "-MEM" Operating mode can be very useful in resistance measurements when lead length resistance would cause measurement errors.

3.12 Automatic Range Selection Operation

When power is first applied, the TC818A enters the auto-range operating state. The Auto-Range mode may be entered from Manual mode by changing the measurement function (resistance or voltage), or by changing the measurement option ($\overline{\mathrm{AC}} / \mathrm{DC}, \Omega / \overline{\mathrm{LO}} \Omega$).
The automatic voltage range selection begins on the most sensitive scale first: 200 mV for DC or 2 V for AC measurements. The voltage range selection flow chart is shown in Figure 3-8.
Internal input protection diodes to V_{CC} (Pin 28) and V_{SS} (Pin 57) clamp the input voltage. The external $10 \mathrm{M} \Omega$ input resistance (see R14 and R13 of Functional diagram) limits current safely in an over range condition.
The voltage range selection is designed to maximize resolution. For input signals less than 9% of full scale (count reading <180), the next most sensitive range is selected.
An over range voltage input condition is flagged whenever the internal count exceeds 2000, by activating the buzzer output (Pin 4). This 4 kHz signal can directly drive a piezo electric acoustic transducer. An out of range input signal causes the 4 kHz signal to be on for 122 msec , off for 122 msec , on for 122 msec and off for 610 msec (see Figure 3-14).
During voltage auto-range operation, the extended resolution feature operates on the 2000 V range only (see Extended Resolution Operating mode discussion).
The resistance automatic range selection procedure is shown in Figure 3-9. The 200Ω range is the first range selected, unless the LOW ohms resistance measurement option is selected. In LOW ohms operation, the first full scale range tried is $2 \mathrm{k} \Omega$.
The resistance range selected maximizes sensitivity. If the conversion results in a reading less than 180, the next most sensitive full scale range is tried.
If the conversion is less than 19 in auto-range operation, a continuous 4 kHz signal is output at BUZ (Pin 4). An over range input does not activate the buzzer.

Out-of-range input conditions are displayed by a blinking MSD with the three LSDs set to "000."

The extended resolution feature operates only on the $2000 \mathrm{k} \Omega$ and 2000 V full scale range during auto-range operation. A blinking " 1 " most significant digit is interpreted as the digit 2. The three least significant digits display data normally.
$\begin{array}{ll}\text { FIGURE 3-8: } & \begin{array}{l}\text { AUTO-RANGE } \\ \\ \\ \\ \text { OPERATION: VOLTAGE } \\ \text { MEASUREMENT }\end{array}\end{array}$

FIGURE 3-9: AUTO-RANGE OPERATION:RESISTANCE MEASUREMENT

Start: Power-on, Function or Measurement Option Change

3.13 Low Battery Detection Circuit

The TC818A contains a low battery detector. When the 9 V battery supply has been depleted to a 7 V nominal value, the LCD low battery annunciator is activated.
The low battery detector is shown in Figure 3-10. The low battery annunciator remains OFF with the battery supply greater than 0.7 V . The annunciator is ON before the supply battery has reached 6.3 V .

FIGURE 3-10: LOW BATTERY

 DETECTOR

3.14 Triplex Liquid Crystal Display (LCD) Drive

The TC818A directly drives a triplexed liquid crystal display (LCD) using $1 / 3$ bias drive. All numeric data, decimal point, polarity and function annunciator drive signals are developed by the TC818A.

The LCDs must be driven with an AC signal having zero DC component, for long display life. The liquid crystal polarization is a function of the RMS voltage appearing across the backplane and segment driver. The peak drive signal applied to the LCD is:

$$
V_{C C}-V_{D I S P}
$$

For example, if $\mathrm{V}_{\text {DISP }}$ is set at a potential 3 V below $V_{C C}$, the peak drive signal is:

$$
V_{P}=V_{C C}-V_{D I S P}=3 V
$$

An "OFF" LCD segment has an RMS voltage of $V_{P} / 3$ across it, or 1 volt. An "ON" segment has a $0.63 \mathrm{~V}_{\mathrm{P}}$ signal across it or 1.92 V for $\mathrm{V}_{\text {CC }}-\mathrm{V}_{\text {DISP }}=3 \mathrm{~V}$.
Since the $V_{\text {DISP }}$ pin is available, the user may adjust the "ON" and "OFF" LCD levels for various manufacturers' displays, by changing V_{P} signal across it, or 1.92 V for $\mathrm{V}_{\text {DISP }}=3 \mathrm{~V}$.
"OFF" segments may become visible at high LCD operating temperatures. A voltage with a -5 to $-20 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ temperature coefficient can be applied to $\mathrm{V}_{\text {DISP }}$ to accommodate the liquid crystal temperature operating characteristics, if necessary.

The TC818A internally generates two intermediate LCD drive potentials (V_{H} and V_{L}) from a resistive divider (Figure 3-11) between V_{CC} and $\mathrm{V}_{\text {DISP }}$. The latter impedance is approximately $150 \mathrm{k} \Omega$. This drive method is commonly known as $1 / 3$ bias. With $V_{\text {DISP }}$ connected to digital ground, $\mathrm{V}_{\mathrm{P}} \approx 5.0 \mathrm{~V}$.
The intermediate levels are needed so that drive signals giving RMS "ON" and "OFF" levels can be generated. Figure $3-12$ shows a typical drive signal and the resulting waveforms for "ON" and "OFF" RMS voltage levels across a selected LCD element.

FIGURE 3-11: 1/3 BIAS LCD DRIVE

3.15 Liquid Crystal Displays (LCDs)

Most users will design their own custom LCD. However, for prototyping purposes, a standard display is available from Varitronix, Ltd. This prototype display configuration is shown in Figure 3-13 and Table 3-4.
Varitronix Ltd.
9/F Liven House, 61-63, King Yip Street
Kwun Tong, Hong Kong
Tel: (852)3-410286
Fax: (852)34-39555
Part No.: VIM-328-DP
USA Office:
VL Electronics, Inc.
3171 LOs Feliz Blvd, \#303
Los Angeles, CA 90039
Tel: (213) 738-8700

FIGURE 3-12: TRIPLEX LCD DRIVE WAVEFORMS

3.16 External Crystal

The TC818A is designed to operate with a $32,768 \mathrm{~Hz}$ crystal. This frequency is internally divided by two to give a $61.04 \mu \mathrm{sec}$ clock period. One conversion takes 8000 clock periods or 488.3 msec (≈ 2 conversions/ second). Integration time is 1638.5 clock periods or 100 msec .
The 32 kHz quartz crystal is readily available and inexpensive. The 32 kHz crystal is commonly used in digital clocks and counters.
Several crystal sources exist. A partial listing is:

- Statek Corporation

512 N. Main
Orange, CA 92668
(714) 639-7810

TWX: 910-593-1355
TELEX: 67-8394

- Fox Electronics

5570 Enterprise Parkway
Fort Myers, FL 33905
(941) 693-0099

Contact manufacturer for full specifications.

TABLE 3-4: TYPICAL LCD CONFIGURATION

PAD	BP1	BP2	BP3	PAD	BP1	BP2	BP3
1	-	-	SCALE	19	-	-	BP3
2	X0	X1	X2	20	-	BP2	-
3	X5	X4	X3	21	BP1	-	-
4	X6	X7	X8	22	-	LOW	A
5	X11	X10	X9	23	-	W	V
6	X12	X13	X14	24	HOLD	k	m
7	X17	X16	X15	25	4B	4C	-
8	X18	X19	X20	26	4A	4G	4D
9	X23	X22	X21	27	4F	4E	-
10	X24	X25	X26	28	3B	3C	3P
11	X29	X28	X27	29	3A	3G	3D
12	X30	X31	X32	30	3F	3E	-
13	X35	X34	X33	31	2B	2 C	2P
14	X36	X37	X38	32	2A	2G	2D
15	-	X40	X39	33	2 A	2G	2D
16	BPI	-	-	34	1B	1G	1 P
17	-	BP2	-	35	Z	-MEM	-
18	-	-	BP3	36	AC	y	AUTO

3.17 "Buzzer" Drive Signal

The BUZ output (Pin 4) will drive a piezo electric audio transducer. The signal is activated to indicate an input over range condition for current and voltage measurements, or continuity during resistance measurements.

During a resistance measurement, a reading less than 19 on any full scale range causes a continuous 4 kHz signal to be output. This is used as a continuity indication.

A voltage or current input measurement over range is indicated by a noncontinuous 4 kHz signal at the BUZ output. The LCD most significant digit also flashes and the three least significant digits are set to display zero. The buzzer drive signal for over range is shown in

Figure 3-14. The BUZ output is active for any reading over 2000 counts in both manual and auto-range operation. The buzzer is activated during an extended resolution measurement.

The BUZ signal swings from $V_{C C}$ (Pin 28) to DGND (Pin 58). The signal is at V_{CC} when not active.
The BUZ output is also activated for 15 ms whenever a range change is made in auto-range or manual operation. Changing the type of measurement (voltage, current, or resistance), or measurement option (AC/DC, $\Omega / L O \Omega$), also activates the buzzer output for 15 msec . A range change during a current measurement will not activate the buzzer output.

FIGURE 3-14: TC818A TIMING WAVEFORM FOR BUZZER OUTPUT

Vendors for piezo electric audio transducers are:

- Gulton Industries

Piezo Products Division
212 Durham Avenue
Metuchen, New Jersey 08840
(201) 548-2800

Typical P/Ns: 102-95NS, 101-FB-00

- Taiyo Yuden (USA) Inc.

Arlington Center
714 West Algonquin Road
Arlington Heights, Illinois 60005
Typical P/Ns: CB27BB, CB20BB, CB355BB

3.18 Display Decimal Point Selection

The TC818A provides a decimal point LCD drive signal. The decimal point position is a function of the selected full scale range, as shown in Table 3-5.

TABLE 3-5: DECIMAL POINT SELECTION

Full Scale Range	$\mathbf{1}^{*} \boldsymbol{9}$	* 9	${ }^{*} \boldsymbol{9}$
	DP3	DP2	DP1
$2000 \mathrm{~V}, 2000 \mathrm{k} \Omega$	OFF	OFF	OFF
$200 \mathrm{~V}, 200 \mathrm{k} \Omega$	OFF	OFF	ON
$20 \mathrm{~V}, 20 \mathrm{k} \Omega$	OFF	ON	OFF
$2 \mathrm{~V}, 2 \mathrm{k} \Omega$	ON	OFF	OFF
$200 \mathrm{~V}, 200 \Omega$	OFF	OFF	ON
$200 \mathrm{mV}, 200 \Omega$	OFF	OFF	ON
20 mA	OFF	ON	OFF
200 mA	OFF	OFF	ON

3.19 AC-to-DC Converter Operational Amplifier

The TC818A contains an on-chip operational amplifier that may be connected as a rectifier for AC-to-DC voltage and current measurements. Typical operational amplifier characteristics are:

- Slew Rate: $1 \mathrm{~V} / \mu \mathrm{sec}$
- Unity Gain Bandwidth: 0.4 MHz
- Open Loop Gain: 44dB
- Output Voltage Swing $($ Load $=10 \mathrm{k} \Omega) \pm 1.5 \mathrm{~V}$
(Referenced to Analog Common)
When the AC measurement option is selected, the input buffer receives an input signal through switch S14, rather than switch S11 (see Figure 3-1). With external circuits, the AC Operating mode can be used to perform other types of functions within the constraints of the internal operational amplifier. External circuits that perform true RMS conversion, or a peak hold function, are typical examples.

3.20 Component Selection

3.20.1 INTEGRATION RESISTOR SELECTION

The TC818A automatically selects one of two external integration resistors. RVIBUF (Pin 55) is selected for voltage and current measurement. RתBUF (Pin 54) is selected for resistance measurements.

3.20.2 RVIBUF SELECTION (PIN 55)

In auto-range operation, the TC818A operates with a 200 mV maximum full scale potential at V_{I} (Pin 44). Resistive dividers at VR2 (Pin 41), VR3 (Pin 40), VR4 (Pin 43), and VR5 (Pin 42) are automatically switched to maintain the 200V full scale potential.
In Manual mode, the Extended Operating mode is activated, giving a 300 mV full scale potential at V_{1} (Pin 44).
The integrator output swing should be maximized, but saturations must be avoided. The integrator will swing within 0.45 V of V_{CC} (Pin 28) and 0.5 V of V_{SS} (Pin 57) without saturating. $\mathrm{A} \pm 2 \mathrm{~V}$ swing is suggested. The value of RVIBUF is easily calculated, assuming a worst case extended resolution input signal:
Where:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{INT}}=\text { Integrator swing }= \pm 2 \mathrm{~V} \\
& \mathrm{t}_{\mathrm{I}}=\text { Integration time }=100 \mathrm{msec} \\
& \mathrm{C}_{\mathrm{I}}=\text { Integration capacitor }=0.1 \mu \mathrm{~F} \\
& \mathrm{~V}_{\mathrm{MAX}}=\text { Maximum input at } \mathrm{V}_{I}=300 \mathrm{mV}
\end{aligned}
$$

EQUATION 3-1:

$$
\text { RVIBUF }=\frac{\mathrm{V}_{\mathrm{MAX}}\left(\mathrm{~T}_{\mid}\right)}{\mathrm{V}_{\mathrm{INT}}\left(\mathrm{C}_{\mid}\right)}=150 \mathrm{k} \Omega
$$

3.20.3 R RBUF SELECTION (PIN 54)

In ratiometric resistance measurements, the signal at R_{X} (Pin 50) is always positive, with respect to analog common. The integrator swings negative.
The worst case integrator swing is for the 200Ω range with the manual, extended resolution option.
The input voltage, V_{X} (Pin 50) is easily calculated (see Figure 3-15).

FIGURE 3-15: R Ω CALCULATION $(200 \Omega$
MANUAL OPERATION)

Where:

$\mathrm{V}_{\text {ANCOM }}$	$=$ Potential at Analog Common $\approx 2.7 \mathrm{~V}$
R_{S}	$=220 \Omega$
R_{1}	$=163.85 \Omega$
R_{X}	$=300 \Omega$
R_{S}	$=$ Internal switch 33 resistance $\approx 600 \Omega$

EQUATION 3-2:

$$
\text { R } \Omega \text { BUF }=\frac{\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {ANCOM }}\right) \mathrm{R}_{\mathrm{X}}}{\left(\mathrm{R}_{\mathrm{X}}+\mathrm{R}_{\mathrm{S}}+\mathrm{R}_{1}+\mathrm{R}_{8}\right)}=0.63 \mathrm{~V}
$$

For a 3.1 V integrator swing, the value of $\mathrm{R} \Omega B \mathrm{~B}$ 数 easily calculated:
Where:

$\mathrm{V}_{\text {INT }}$	$=$ Integrator swing $=3.1 \mathrm{~V}$
$\mathrm{~T}_{1}$	$=$ Integration time $=100 \mathrm{msec}$
C_{1}	$=$ Integration capacitor $=0.1 \mu \mathrm{~F}$
$\mathrm{R}_{\mathrm{X}_{\text {MAX }}}$	$=300 \Omega$
$\mathrm{~V}_{\text {XMAX }}$	$=700 \mathrm{mV}$

EQUATION 3-3:

$$
\mathrm{R} \Omega \mathrm{BUF}=\frac{\mathrm{V}_{\mathrm{XMAX}}\left(\mathrm{~T}_{1}\right)}{\mathrm{C}_{\mathrm{I}}\left(\mathrm{~V}_{\text {INT }}\right)}=200 \mathrm{k} \Omega
$$

With a low battery voltage of 6.6 V , analog common will be approximately 3.6 V above the negative supply terminal. With the integrator swinging down from analog common toward the negative supply, a 3.1 V swing will set the integrator output to 0.5 V above the negative supply.

3.21 Capacitors - $\mathrm{C}_{\mathrm{INT}}, \mathrm{C}_{\mathrm{AZ}}$ and $\mathrm{C}_{\text {REF }}$

The integration capacitor, $\mathrm{C}_{\mathrm{INT}}$, must have low dielectric absorption. A $0.1 \mu \mathrm{~F}$ polypropylene capacitor is suggested. The auto-zero capacitor, C_{AZ}, and reference capacitor, $\mathrm{C}_{\text {REF }}$, should be selected for low leakage and dielectric absorption. Polystyrene capacitors are good choices.

3.22 Reference Voltage Adjustment

The TC818A contains a low temperature drift internal voltage reference. The analog common potential (Pin 29) is established by this reference. Maximum drift is a low $75 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Analog common is designed to be approximately 2.6 V below V_{CC} (Pin 28). A resistive divider (R18/R19, Functional Diagram) sets the TC818A reference input voltage (REFHI, Pin 34) to approximately 163.85 mV .
With an input voltage near full scale on the 200 mV range, R19 is adjusted for the proper reading.

3.23 Display Hold Feature

The LCD will not be updated when $\overline{\text { HOLD }}$ (Pin 60) is connected to GND (Pin 58). Conversions are made, but the display is not updated. A HOLD mode LCD annunciator is activated when $\overline{\mathrm{HOLD}}$ is low.

The LCD HOLD annunciator is activated through the triplex LCD driver signal at Pin 13.

3.24 Flat Package Socket

Sockets suitable for prototype work are available. A USA source is:

- Nepenthe Distribution

2471 East Bayshore, Suite 520
Palo Alto, CA 94303
(415) 856-9332

TWX: 910-373-2060
"CBQ" Socket, Part No. IC51-064-042

3.25 Resistive Ladder Networks

Resistor attenuator networks for voltage and resistance measurements are available from:

- Caddock Electronics 1717 Chicago Avenue Riverside, CA 92507
Tel: (714) 788-1700
TWX: 910-332-6108
TABLE 3-6: RESISTIVE LADDER NETWORKS

Attenuator Accuracy	Attenuator Type	Caddock Part Number
0.1%	Voltage	$1776-\mathrm{C} 441$
0.25%	Voltage	$1776-\mathrm{C} 44$
0.25%	Resistance	T1794-204-1

4.0 PACKAGING INFORMATION

4.1 Package Marking Information

Package marking data not available at this time.

4.2 Taping Form

Component Taping Orientation for 64-Pin PQFP Devices

Carrier Tape, Number of Components Per Reel and Reel Size

Package	Carrier Width (W)	Pitch (P)	Part Per Full Reel	Reel Size
$64-P i n ~ P Q F P ~$	32 mm	24 mm	250	13 in

Note: Drawing does not represent total number of pins.

4.3 Package Dimensions

TC818A

SALES AND SUPPORT

[^0]Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, Keeloq, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.
© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

[^1]
Worldwide Sales and Service

AMERICAS

Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338

New York

150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335

San Jose

Microchip Technology Inc
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-6766200 Fax: 86-28-6766599

China - Fuzhou

Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521

China - Shanghai

Microchip Technology Consulting (Shanghai
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu
Shenzhen 518001, China
Tel: 86-755-2350361 Fax: 86-755-2366086

Hong Kong

Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431

India

Microchip Technology Inc
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O'Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471-6166 Fax: 81-45-471-6122

Korea

Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore

Microchip Technology Singapore Pte Ltd.
200 Middle Road
\#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan

Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 4544209895 Fax: 4544209910

France

Microchip Technology SARL
Parc d'Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany

Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy

Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom

Arizona Microchip Technology Ltd
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 441189215869 Fax: 44-118 921-5820

[^0]: Data Sheets
 Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

 1. Your local Microchip sales office
 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
 3. The Microchip Worldwide Site (www.microchip.com)

 Please specify which device, revision of silicon and Data Sheet (include Literature \#) you are using.
 New Customer Notification System
 Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

[^1]: Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro ${ }^{\oplus}$ 8-bit MCUs, KEELOQ ${ }^{\oplus}$ code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

