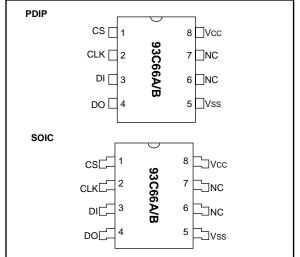
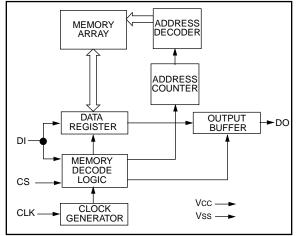


93C66A/B

4K 5.0V Automotive Temperature Microwire[®] Serial EEPROM


FEATURES

- Single supply 5.0V operation
- Low power CMOS technology
 - 1 mA active current (typical)
 - 1 μ A standby current (maximum)
- 512x 8 bit organization (93C66A)
- 256x 16 bit organization (93C66B)
- Self-timed ERASE and WRITE cycles (including auto-erase)
- Automatic ERAL before WRAL
- Power on/off data protection circuitry
- · Industry standard 3-wire serial interface
- Device status signal during ERASE/WRITE cycles
- Sequential READ function
- 1,000,000 E/W cycles guaranteed
- Data retention > 200 years
- 8-pin PDIP and SOIC packages
- Available for the following temperature ranges:
- Automotive (E): -40°C to +125°C


DESCRIPTION

The Microchip Technology Inc. 93C66A/B is a 4K-bit, low-voltage serial Electrically Erasable PROM. The device memory is configured as 512 x 8 bits (93C66A) or 256 x 16 bits (93C66B). Advanced CMOS technology makes this device ideal for low-power, nonvolatile memory applications. The 93C66A/B is available in standard 8-pin DIP and surface mount SOIC packages. This device is only recommended for 5V automotive temperature applications. For all commercial and industrial temperature applications, the 93LC66A/B is recommended.

PACKAGE TYPE

BLOCK DIAGRAM

Microwire is a registered trademark of National Semiconductor.

1.0 ELECTRICAL CHARACTERISTICS

1.1 <u>Maximum Ratings*</u>

Vcc
All inputs and outputs w.r.t. Vss0.6V to Vcc +1.0V
Storage temperature65°C to +150°C
Ambient temp. with power applied65°C to +125°C
Soldering temperature of leads (10 seconds)+300°C
ESD protection on all pins4 kV

*Notice: Stresses above those listed under "Maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 1-1: PIN FUNCTION TABLE

Name	Function								
CS	Chip Select								
CLK	Serial Data Clock								
DI	Serial Data Input								
DO	Serial Data Output								
Vss	Ground								
NC	No Connect								
Vcc	Power Supply								

TABLE 1-2: DC AND AC ELECTRICAL CHARACTERISTICS

All parameters apply over the specified operating ranges unless otherwise noted	Automotive	(E):Vcc =	+4.5V to +	5.5VTamb :	= -40°C to +125°C		
Parameter	Symbol	Min.	Max.	Units	Conditions		
High level input voltage	Viн	2.0	Vcc +1	V	(Note 2)		
Low level input voltage	VIL	-0.3	0.8	V			
Low level output voltage	Vol	_	0.4	V	IOL = 2.1 mA; VCC = 4.5V		
High level output voltage	Voн	2.4	_	V	IOH = -400 μA; VCC = 4.5V		
Input leakage current	ILI	-10	10	μΑ	VIN = VSS to VCC		
Output leakage current	ILO	-10	10	μΑ	VOUT = VSS to VCC		
Pin capacitance (all inputs/outputs)	CIN, COUT	_	7	pF	VIN/VOUT = 0 V (Notes 1 & 2) Tamb = +25°C, FCLK = 1 MHz		
Operating ourrept	ICC write	—	1.5	mA			
Operating current	Icc read	_	1	mA			
Standby current	Iccs		1	μΑ	CS = Vss; DI = Vss		
Clock frequency	FCLK	_	2	MHz			
Clock high time	Тскн	250	—	ns			
Clock low time	TCKL	250	—	ns			
Chip select setup time	Tcss	50	—	ns	Relative to CLK		
Chip select hold time	Тсѕн	0	—	ns	Relative to CLK		
Chip select low time	TCSL	250	—	ns			
Data input setup time	TDIS	100	—	ns	Relative to CLK		
Data input hold time	Тлн	100	—	ns	Relative to CLK		
Data output delay time	TPD	—	400	ns	CL = 100 pF		
Data output disable time	Tcz		100	ns	C∟ = 100 pF (Note 2)		
Status valid time	Tsv		500	ns	C∟ = 100 pF		
	Twc	_	2	ms	ERASE/WRITE mode		
Program cycle time	TEC		6	ms	ERAL mode		
	TwL		15	ms	WRAL mode		
Endurance		1M		cycles	25°C, Vcc = 5.0V, Block Mode (Note 3)		

Note 1: This parameter is tested at Tamb = 25° C and FCLK = 1 MHz.

2: This parameter is periodically sampled and not 100% tested.

3: This application is not tested but guaranteed by characterization. For endurance estimates in a specific application, please consult the Total Endurance Model which may be obtained on our website.

2.0 PIN DESCRIPTION

2.1 Chip Select (CS)

A high level selects the device; a low level deselects the device and forces it into standby mode. However, a programming cycle which is already in progress will be completed, regardless of the Chip Select (CS) input signal. If CS is brought low during a program cycle, the device will go into standby mode as soon as the programming cycle is completed.

CS must be low for 250 ns minimum (TCSL) between consecutive instructions. If CS is low, the internal control logic is held in a RESET status.

2.2 Serial Clock (CLK)

The Serial Clock (CLK) is used to synchronize the communication between a master device and the 93C66A/B. Opcodes, addresses, and data bits are clocked in on the positive edge of CLK. Data bits are also clocked out on the positive edge of CLK.

CLK can be stopped anywhere in the transmission sequence (at high or low level) and can be continued anytime with respect to clock high time (TCKH) and clock low time (TCKL). This gives the controlling master freedom in preparing opcode, address, and data.

CLK is a "Don't Care" if CS is low (device deselected). If CS is high, but the START condition has not been detected, any number of clock cycles can be received by the device without changing its status (i.e., waiting for a START condition). CLK cycles are not required during the self-timed WRITE (i.e., auto ERASE/WRITE) cycle.

After detecting a START condition, the specified number of clock cycles (respectively low to high transitions of CLK) must be provided. These clock cycles are required to clock in all required opcodes, addresses, and data bits before an instruction is executed (Table 2-1 and Table 2-2). CLK and DI then become don't care inputs waiting for a new START condition to be detected.

Note:	CS	must	go	low	between	consecutive					
	instructions.										

2.3 Data In (DI)

Data In (DI) is used to clock in a START bit, opcode, address, and data synchronously with the CLK input.

2.4 <u>Data Out (DO)</u>

Data Out (DO) is used in the READ mode to output data synchronously with the CLK input (TPD after the positive edge of CLK).

This pin also provides READY/BUSY status information during ERASE and WRITE cycles. READY/BUSY status information is available on the DO pin if CS is brought high after being low for minimum chip select low time (TCSL) and an ERASE or WRITE operation has been initiated. The status signal is not available on DO, if CS is held low during the entire ERASE or WRITE cycle. In this case, DO is in the HIGH-Z mode. If status is checked after the ERASE/WRITE cycle, the data line will be high to indicate the device is ready.

Instruction	SB	Opcode	Address									Data In	Data Out	Req. CLK Cycles
ERASE	1	11	A8	A7	A6	A5	A4	A3	A2	A1	A0	—	(RDY/BSY)	12
ERAL	1	00	1	0	Х	Х	Х	Х	Х	Х	Х	—	(RDY/BSY)	12
EWDS	1	00	0	0	Х	Х	Х	Х	Х	Х	Х	_	HIGH-Z	12
EWEN	1	00	1	1	Х	Х	Х	Х	Х	Х	Х	—	HIGH-Z	12
READ	1	10	A8	A7	A6	A5	A4	A3	A2	A1	A0	_	D7 - D0	20
WRITE	1	01	A8	A7	A6	A5	A4	A3	A2	A1	A0	D7 - D0	(RDY/BSY)	20
WRAL	1	00	0	1	Х	Х	Х	Х	Х	Х	Х	D7 - D0	(RDY/BSY)	20

TABLE 2-1: INSTRUCTION SET FOR 93C66A

TABLE 2-2: INSTRUCTION SET FOR 93C66B

Instruction	SB	Opcode				Add	ress				Data In	Data Out	Req. CLK Cycles
ERASE	1	11	A7	A6	A5	A4	A3	A2	A1	A0	—	(RDY/BSY)	11
ERAL	1	00	1	0	Х	Х	Х	Х	Х	Х	—	(RDY/BSY)	11
EWEN	1	00	1	1	Х	Х	Х	Х	Х	Х	—	HIGH-Z	11
EWDS	1	00	0	0	Х	Х	Х	Х	Х	Х	—	HIGH-Z	11
READ	1	10	A7	A6	A5	A4	A3	A2	A1	A0	—	D15 - D0	27
WRITE	1	01	A7	A6	A5	A4	A3	A2	A1	A0	D15 - D0	(RDY/BSY)	27
WRAL	1	00	0	1	Х	Х	Х	Х	Х	Х	D15 - D0	(RDY/BSY)	27

3.0 FUNCTIONAL DESCRIPTION

Instructions, addresses, and write data are clocked into the DI pin on the rising edge of the clock (CLK). The DO pin is normally held in a HIGH-Z state except when reading data from the device, or when checking the READY/BUSY status during a programming operation. The READY/BUSY status can be verified during an ERASE/WRITE operation by polling the DO pin; DO low indicates that programming is still in progress, while DO high indicates the device is ready. The DO will enter the HIGH-Z state on the falling edge of the CS.

3.1 START Condition

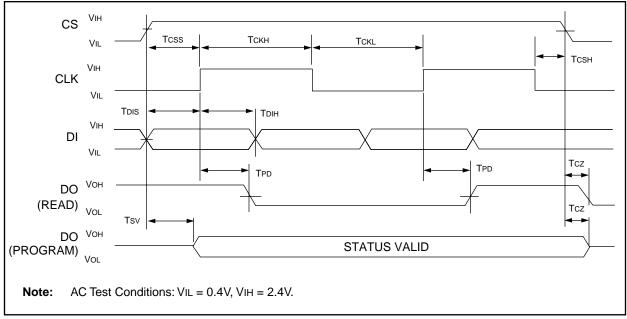
The START bit is detected by the device if CS and DI are both high with respect to the positive edge of CLK for the first time.

Before a START condition is detected, CS, CLK, and DI may change in any combination (except to that of a START condition), without resulting in any device operation (ERASE, ERAL, EWDS, EWEN, READ, WRITE, and WRAL). As soon as CS is high, the device is no longer in the standby mode.

An instruction following a START condition will only be executed if the required amount of opcodes, addresses, and data bits for any particular instruction is clocked in.

After execution of an instruction (i.e., clock in or out of the last required address or data bit) CLK and DI become don't care bits until a new START condition is detected.

3.2 Data In (DI) and Data Out (DO)


It is possible to connect the Data In (DI) and Data Out (DI) pins together. However, with this configuration it is possible for a "bus conflict" to occur during the "dummy zero" that precedes the READ operation, if A0 is a logic-high level. Under such a condition the voltage level seen at DO is undefined and will depend upon the relative impedances of DO and the signal source driving A0. The higher the current sourcing capability of A0, the higher the voltage at the DO pin.

3.3 Data Protection

During power-up, all programming modes of operation are inhibited until Vcc has reached a level greater than 3.8V. During power-down, the source data protection circuitry acts to inhibit all programming modes when Vcc has fallen below 3.8V at nominal conditions.

The ERASE/WRITE Disable (EWDS) and ERASE/ WRITE Enable (EWEN) commands give additional protection against accidentally programming during normal operation.

After power-up, the device is automatically in the EWDS mode. Therefore, an EWEN instruction must be performed before any ERASE or WRITE instruction can be executed.

FIGURE 3-1: SYNCHRONOUS DATA TIMING

3.4 <u>ERASE</u>

The ERASE instruction forces all data bits of the specified address to the logical "1" state. This cycle begins on the rising clock edge of the last address bit.

The DO pin indicates the READY/BUSY status of the device if CS is brought high after a minimum of 250 ns low (TCSL). DO at logical "0" indicates that programming is still in progress. DO at logical "1" indicates that the register at the specified address has been erased and the device is ready for another instruction.

3.5 Erase All (ERAL)

The Erase All (ERAL) instruction will erase the entire memory array to the logical "1" state. The ERAL cycle is identical to the ERASE cycle, except for the different opcode. The ERAL cycle is completely self-timed and commences at the rising clock edge of the last address bit. Clocking of the CLK pin is not necessary after the device has entered the ERAL cycle.

The DO pin indicates the READY/BUSY status of the device, if CS is brought high after a minimum of 250 ns low (TCSL) and before the entire ERAL cycle is complete.

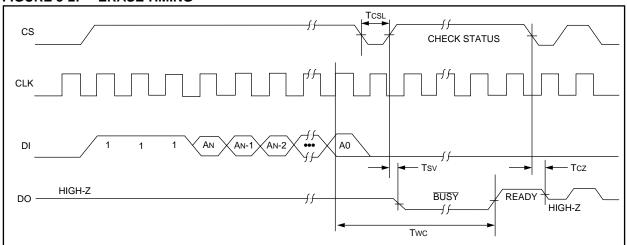
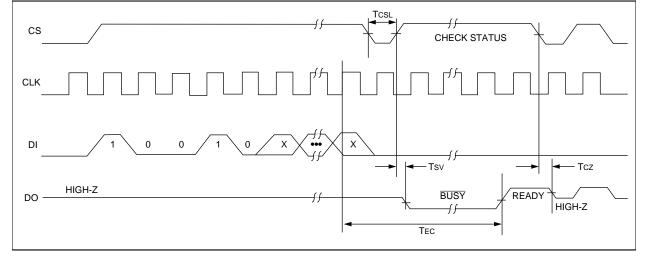
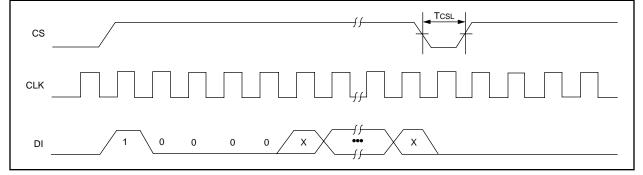
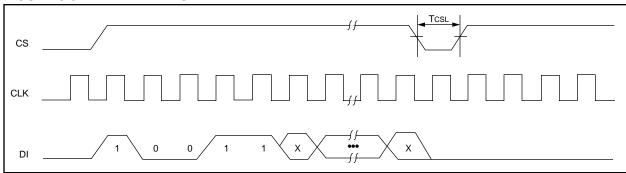



FIGURE 3-2: ERASE TIMING

FIGURE 3-3: ERAL TIMING


3.6 <u>ERASE/WRITE Disable and Enable</u> (EWDS/EWEN)


The device powers up in the ERASE/WRITE Disable (EWDS) state. All programming modes must be preceded by an ERASE/WRITE Enable (EWEN) instruction. Once the EWEN instruction is executed, programming remains enabled until an EWDS instruction is executed or VCC is removed from the device. To protect against accidental data disturbance, the EWDS instruction can be used to disable all ERASE/WRITE functions and should follow all programming operations. Execution of a READ instruction is independent of both the EWEN and EWDS instructions.

3.7 <u>READ</u>

The READ instruction outputs the serial data of the addressed memory location on the DO pin. A dummy zero bit precedes the 8-bit (93C66A) or 16-bit (93C66B) output string. The output data bits will toggle on the rising edge of the CLK and are stable after the specified time delay (TPD). Sequential read is possible when CS is held high. The memory data will automatically cycle to the next register and output sequentially.

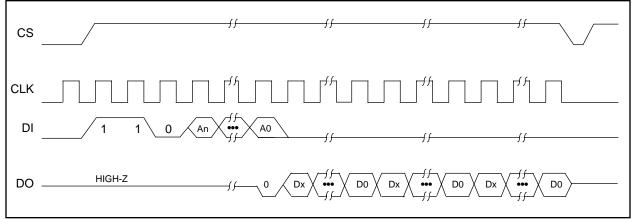
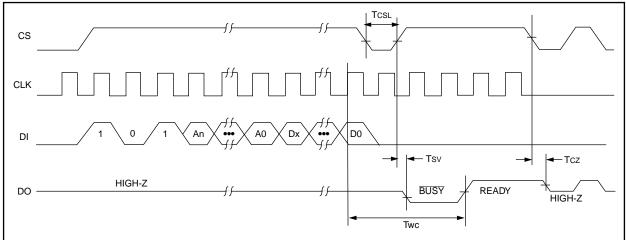

FIGURE 3-4: EWDS TIMING

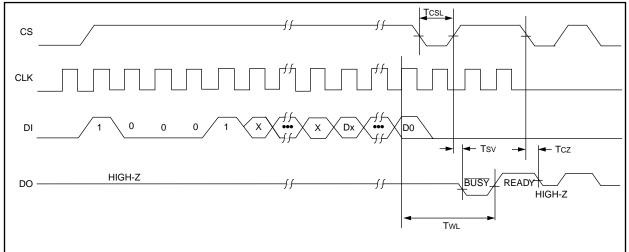
FIGURE 3-5: EWEN TIMING

3.8 <u>WRITE</u>


The WRITE instruction is followed by 8 bits (93C66A) or 16 bits (93C66B) of data which are written into the specified address. After the last data bit is clocked into the DI pin the self-timed auto-erase and programming cycle begins.

The DO pin indicates the READY/BUSY status of the device, if CS is brought high after a minimum of 250 ns low (TCSL) and before the entire write cycle is complete. DO at logical "0" indicates that programming is still in progress. DO at logical "1" indicates that the register at the specified address has been written with the data specified and the device is ready for another instruction.

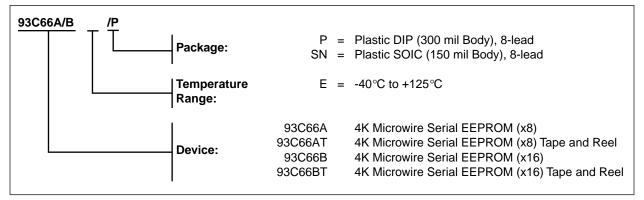
3.9 Write All (WRAL)


The WRAL instruction will write the entire memory array with the data specified in the command. The WRAL cycle is completely self-timed and commences at the rising clock edge of the last data bit. Clocking of the CLK pin is not necessary after the device has entered the WRAL cycle. The WRAL command does include an automatic ERAL cycle for the device. Therefore, the WRAL instruction does not require an ERAL instruction but the chip must be in the EWEN status.

The DO pin indicates the READY/BUSY status of the device if CS is brought high after a minimum of 250 ns low (TCSL).

FIGURE 3-7: WRITE TIMING

FIGURE 3-8: WRAL TIMING


NOTES:

NOTES:

NOTES:

93C66A/B PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office

2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277

3. The Microchip Worldwide Web Site (www.microchip.com)

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office Microchip Technology Inc. 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-786-7200 Fax: 480-786-7277 Technical Support: 480-786-7627 Web Address: http://www.microchip.com

Atlanta

Microchip Technology Inc. 500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

Microchip Technology Inc. 5 Mount Royal Avenue Marlborough, MA 01752 Tel: 508-480-9990 Fax: 508-480-8575

Chicago

Microchip Technology Inc. 333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Microchip Technology Inc. 4570 Westgrove Drive, Suite 160 Addison, TX 75248 Tel: 972-818-7423 Fax: 972-818-2924

Dayton

Microchip Technology Inc. Two Prestige Place, Suite 150 Miamisburg, OH 45342 Tel: 937-291-1654 Fax: 937-291-9175

Detroit

Microchip Technology Inc. Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Los Angeles

Microchip Technology Inc. 18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338

New York

Microchip Technology Inc. 150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

AMERICAS (continued)

Toronto

Microchip Technology Inc. 5925 Airport Road, Suite 200 Mississauga, Ontario L4V 1W1, Canada Tel: 905-405-6279 Fax: 905-405-6253 ASIA/PACIFIC

Hong Kong Microchip Asia Pacific Unit 2101, Tower 2 Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2-401-1200 Fax: 852-2-401-3431 Beijing Microchip Technology, Beijing Unit 915, 6 Chaoyangmen Bei Dajie Dong Erhuan Road, Dongcheng District New China Hong Kong Manhattan Building Beijing 100027 PRC Tel: 86-10-85282100 Fax: 86-10-85282104 India Microchip Technology Inc. India Liaison Office No. 6, Legacy, Convent Road Bangalore 560 025, India Tel: 91-80-229-0061 Fax: 91-80-229-0062 Japan

Microchip Technology Intl. Inc. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa 222-0033 Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea

168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea Tel: 82-2-554-7200 Fax: 82-2-558-5934 Shanghai

Microchip Technology RM 406 Shanghai Golden Bridge Bldg. 2077 Yan'an Road West, Hong Qiao District Shanghai, PRC 200335 Tel: 86-21-6275-5700 Fax: 86 21-6275-5060

ASIA/PACIFIC (continued)

Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore 188980 Tel: 65-334-8870 Fax: 65-334-8850

Taiwan, R.O.C

Microchip Technology Taiwan 10F-1C 207 Tung Hua North Road

Taipei, Taiwan, ROC

Tel: 886-2-2717-7175 Fax: 886-2-2545-0139 **EUROPE**

United Kingdom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5858 Fax: 44-118 921-5835

Denmark

Microchip Technology Denmark ApS **Regus Business Centre** Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910

France

Arizona Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany

Arizona Microchip Technology GmbH Gustav-Heinemann-Ring 125 D-81739 München, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Italy

Arizona Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883

11/15/99

DNV MSC **DNV Certification. Inc** USA The Netherland Accredited by the RvA ANSI * RAB CCRED DIN ISO 9001 / QS-9000 **REGISTERED FIRM**

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro[®] 8-bit MCUs, KEELOQ[®] code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

Printed on recycled paper. All rights reserved. © 1999 Microchip Technology Incorporated. Printed in the USA. 11/99

Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infiningement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No incorpose and no version of the otherwise, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.