

128K x 8-Bit 3.3V Synchronous SRAM With ZBT[™] and Pipelined Output

Preliminary IDT71V508

Features

- 128K x 8 memory configuration
- High speed 100 MHz (5 ns Clock-to-Data Access)
- Registered Output
- No dead cycles between Write and Read Cycles
- Low power deselect mode
- Single 3.3V power supply (±5%)
- Packaged in 44-lead SOJ

Description

The IDT71V508 is a 3.3V high-speed 1,048,576-bit synchronous SRAM organized as $128K \times 8$. It is designed to eliminate dead cycles when turning the bus around between reads and writes, or writes and reads. Thus, it has been given the name ZBT^M, or Zero Bus Turnaround.

Functional Block Diagram

Addresses and control signals are applied to the SRAM during one clock cycle, and two clock cycles later its associated data cycle occurs, be it read or write.

The IDT71V508 contains data, address, and control signal registers. Output Enable is the only asynchronous signal, and can be used to disable the output at any time.

A Clock Enable $\overline{(CEN)}$ pin allows operation of the IDT71V508 to be suspended as long as necessary. All synchronous inputs are ignored when \overline{CEN} is high. A Chip Select $\overline{(CS)}$ pin allows the user to deselect the device when desired. If \overline{CS} is high, no new memory operation is initiated, but any pending data transfers (reads and writes) will still be completed.

The IDT71V508 utilizes IDT's high-performance 3.3V CMOS process, and is packaged in a JEDEC Standard 400-mil 44-lead small outline J-lead plastic package (SOJ) for high board density.

The IDT logo is a registered trademark, and CacheRAM, Zero Bus Turnaround, and ZBT are trademarks of Integrated Device Techology, Inc.

MARCH 1998

Pin Configuration

NOTES:

- 1. Pin 32: Future control input
- 2. Pin 20: Future I/O8

Top View

- Pin 23: Future A17
 Pin 44: Future A18
- 5. Pin 36 does not need to to be connected directly to Vss, as long as it is \leq VIL.

Symbol	Pin Function	I/O	Active	Description			
A0-A16	Address Inputs	Ι	N/A	Synchronous Address inputs. The address is registered on every rising edge of CLK if $\overline{\text{CEN}}$ and $\overline{\text{CS}}$ are both low.			
CLK	Clock	Ι	N/A	The clock input. Except for \overline{OE} , all input and output timing references for the device are with respect to the rising edge of CLK.			
CEN	Clock Enable	I	LOW	Synchronous clock enable input. When $\overline{\text{CEN}}$ is sampled high, the other synchronous inputs are ignored, and outputs remain unchanged. When $\overline{\text{CEN}}$ is sampled low, the IDT71V508 operates normally.			
CS	Chip Select	I	LOW	Synchronous chip select input. When \overline{CS} is sampled low, the device operates normally. When \overline{CS} is sampled high, no read or write operation is initiated, and the I/O bus is tri-stated the cycle after next. \overline{CS} is ignored if \overline{CEN} is high at the same rising edge of clock			
WE	Write Enable	I	LOW	Synchronous write enable. If \overline{WE} is sampled low, a write is initiated at the address that is registered at that time. If \overline{WE} is sampled high, a read is initiated at the address that is registered at that time. \overline{WE} is ignored when either \overline{CEN} or \overline{CS} is sampled high.			
ŌĒ	Output Enable	Ι	LOW	Asynchronous output enable. When $\overline{\text{OE}}$ is high, the I/O bus goes high impedance. $\overline{\text{OE}}$ must be low to read data from the IDT71V508.			
I/O0-I/O7	Data Input/Output	I/O	N/A	Synchronous data input/output (I/O) pins. Both the data input path and data output path are registered and triggered by the rising edge of CLK.			
VDD	Power Supply	N/A	N/A	3.3V power supply pins.			
Vss	Ground	N/A	N/A	Ground pins.			

Pin Definitions⁽¹⁾

IDT71V508 128K x 8 3.3V Synchronous SRAM with ZBT™ and Pipelined Output

Functional Timing Diagram

CYCLE	n+29	n+30	n+31	n+32	n+33	n+34	n+35	n+36	n+37	
CLOCK										
ADDRESS (A0–A16)	A29	A30	A31	A32	A33	A34	A35	A36	A37	
CONTROL (CS, CEN, WE)	C29	C30	C31	C32	C33	C34	C35	C36	C37	
DATA (I/O0–I/O7)	D27	D28	D29	D30	D31	D32	D33	D34	D35	

3589 drw 03

Typical Operation — \overline{CS} and \overline{CEN} are Low

Cycle	Address	WE	<u>c</u> s	CEN	ŌĒ	I/O	Comments
n	A0	Н	L	L	?	D-2	?
n+1	A1	L	L	L	?	D-1	?
n+2	A2	Н	L	L	L	D0	Data Out
n+3	A3	L	L	L	Х	D1	Data In
n+4	A4	Н	L	L	L	D2	Data Out
n+5	A5	L	L	L	Х	D3	Data In
n+6	A6	Н	L	L	L	D4	Data Out
n+7	A7	L	L	L	Х	D5	Data In
n+8	A8	Н	L	L	L	D6	Data Out
n+9	A9	L	L	L	Х	D7	Data In
n+10	A10	Н	L	L	L	D8	Data Out
n+11	A11	Н	L	L	Х	D9	Data In
n+12	A12	L	L	L	L	D10	Data Out
n+13	A13	L	L	L	L	D11	Data Out
n+14	A14	Н	L	L	Х	D12	Data In
n+15	A15	Н	L	L	Х	D13	Data In
n+16	A16	Н	L	L	L	D14	Data Out
n+17	A17	L	L	L	L	D15	Data Out
n+18	A18	L	L	L	L	D16	Data Out
n+19	A19	L	L	L	Х	D17	Data In
n+20	A20	Н	L	L	Х	D18	Data In
n+21	A21	Н	L	L	Х	D19	Data In

128K x 8 3.3V Synchronous SRAM with ZBT™ and Pipelined Output

Read Operation⁽¹⁾

Cycle	Address	WE	<u>cs</u>	CEN	ŌĒ	I/O	Comments
n	A0	Н	L	L	Х	X Address and Control meet setup	
n+1	Х	Х	Х	L	Х	Х	Clock Setup Valid
n+2	Х	Х	Х	Х	L	D0 Contents of Address A0 Read Out	

NOTE:

IDT71V508

1. H = High; L = Low; X = Don't Care; ? = Don't Know; Z = High Impedance

Write Operation⁽¹⁾

Cycle	Address	WE	<u>cs</u>	CEN	ŌĒ	I/O	Comments
n	A0	L	L	L	Х	Х	Address and Control meet setup
n+1	Х	Х	Х	L	Х	Х	Clock Setup Valid
n+2	Х	Х	Х	L	Х	D0	New Data Drives SRAM Inputs
							3589 tbl 04

NOTE:

1. H = High; L = Low; X = Don't Care; ? = Don't Know; Z = High Impedance

Read Operation with Clock Enable Used⁽¹⁾

Cycle	Address	WE	<u>cs</u>	CEN	ŌĒ	I/O	Comments
n	A0	Н	L	L	Х	X X Address and Control meet setup	
n+1	Х	Х	Х	Н	Х	X Clock Ignored at n+1 to n+2 Low-to-High	
n+2	A2	Н	L	L	Х	Х	Clock Valid
n+3	Х	Х	Х	Н	L	D0	Contents of Address A0 Read Out
n+4	Х	Х	Х	Н	L	D0	Contents of Address A0 Read Out
n+5	A5	Н	L	L	L	D0	Contents of Address A0 Read Out
n+6	A6	?	L	L	L	D2 Contents of Address A2 Read Out	
n+7	A7	?	L	L	L	D5	Contents of Address A5 Read Out

NOTE:

1. H = High; L = Low; X = Don't Care; ? = Don't Know; Z = High ImpedanceH = High; L = Low; X = Don't Care; ? = Don't Know; Z = High Impedance

Write Operation with Clock Enable Used⁽²⁾

Cycle	Address	WE	CS	CEN	ŌĒ	I/O	Comments
n	A0	L	L	L	Х	Х	Address and Control meet setup
n+1	Х	Х	Х	Н	Х	Х	Clock Ignored at n+1 to n+2 Low-to-High
n+2	A2	L	L	L	Х	Х	Clock Valid
n+3	Х	Х	Х	Н	Х	d i ⁽¹⁾	Clock Ignored at n+3 to n+4 Low-to-High
n+4	Х	Х	Х	Н	Х	d i ⁽¹⁾	Clock Ignored at n+4 to n+5 Low-to-High
n+5	A5	L	L	L	Х	D0	New Data Drives SRAM Inputs
n+6	A6	?	L	L	Х	D2	New Data Drives SRAM Inputs
n+7	A7	?	L	L	Х	D5	New Data Drives SRAM Inputs

NOTES:

1. H = High; L = Low; X = Don't Care; ? = Don't Know; Z = High Impedancedi = Could be D0 if desired

2. H = High; L = Low; X = Don't Care; ? = Don't Know; Z = High Impedance

3589 tbl 06

3589 tbl 05

Read Operation with Chip Select Used⁽¹⁾

Cycle	Address	WE	<u>cs</u>	CEN	ŌĒ	I/O	Comments
n	Х	Х	Н	L	Х	?	Deselected
n+1	Х	Х	Н	L	Х	?	Deselected
n+2	A2	Н	L	L	Х	Z	Address and Control meet setup
n+3	Х	Х	Н	L	Х	Z	Deselected
n+4	A4	Н	L	L	L	D2	Address and Control meet setup, Contents of Address A2 Read Out
n+5	Х	Х	Н	L	Х	Z	Deselected
n+6	Х	Х	Н	L	L	D4	Deselected, Contents of Address A4 Read Out
n+7	A7	Н	L	L	Х	Z	Address and Control meet setup
n+8	Х	Х	Н	L	Х	Z	
n+9	Х	Х	Н	L	L	D7	Contents of Address A7 Read Out

NOTE:

3589 tbl 07

1. H = High; L = Low; X = Don't Care; ? = Don't Know; Z = High ImpedanceH = High; L = Low; X = Don't Care; ? = Don't Know; Z = High Impedance

Write Operation with Chip Select Used⁽¹⁾

Cycle	Address	WE	<u>cs</u>	CEN	ŌĒ	I/O	Comments
n	Х	Х	Н	L	Х	?	Deselected
n+1	Х	Х	Н	L	Х	?	Deselected
n+2	A2	L	L	L	Х	Z	Address and Control meet setup
n+3	Х	Х	Н	L	Х	Z	Deselected
n+4	A4	L	L	L	Х	D2	Address and Control meet setup, New Data Drives SRAM Inputs
n+5	Х	Х	Н	L	Х	Z	Deselected
n+6	Х	Х	Н	L	Х	D4	Deselected, New Data Drives SRAM Inputs
n+7	A7	L	L	L	Х	Z	Address and Control meet setup
n+8	Х	Х	Х	L	Х	Z	
n+9	Х	Х	Х	L	Х	D7	New Data Drives SRAM Inputs
	-	-	-	-	-	-	- 3589 tbl 08

NOTE:

1. H = High; L = Low; X = Don't Care; ? = Don't Know; Z = High ImpedanceH = High; L = Low; X = Don't Care; ? = Don't Know; Z = High Impedance

Absolute Maximum Ratings⁽¹⁾

Symbol	Rating	Value	Unit
Vterm ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
Vterm ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to VDD+0.5	V
Та	Operating Temperature	0 to +70	٥C
TBIAS	Temperature Under Bias	-55 to +125	٥C
Tstg	Storage Temperature	-55 to +125	٥C
Рт	Power Dissipation	1.0	W
Ιουτ	DC Output Current	50	mA

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- $\label{eq:VDD} \mbox{ and Input terminals only.}$
- 3. I/O terminals.

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Мах.	Unit
Vdd	Supply Voltage	3.135	3.3	3.465	۷
Vss	Ground	0	0	0	۷
V⊪	Input High Voltage - Inputs	2.0	_	4.6	۷
V⊪	Input High Voltage - I/O	2.0		VDD +0.3	۷
VIL	Input Low Voltage	-0.3(1)		0.8	V

NOTE:

3589 tbl 09

1. VIL (min.) = -1.5V for pulse width less than 5 ns, once per cycle.

Capacitance

(TA = +25°C, f = 1.0MHz, SOJ Package)

Symbol	Parameter ⁽¹⁾	Conditions	Мах.	Unit
CIN	Input Capacitance	VIN = 3dV	6	pF
Cvo	I/O Capacitance	Vout = 3dV	7	pF
				3589 tbl 11

NOTE:

1. This parameter is guaranteed by device characterization, but not production tested.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (VDD = 3.3V ±5%)

Symbol	Parameter	Test Conditions	Min.	Мах.	Unit
Lu	Input Leakage Current	$V_{DD} = Max., V_{IN} = 0V to V_{DD}$	—	5	
llo	Output Leakage Current	$\overline{\text{CS}} \geq \text{Vih}, \text{ Vout} = \text{OV to Vdd}, \text{ Vdd} = Max.$	_	5	μA
Vol	Output Low Voltage	Iol = 5mA, Vdd = Min.	_	0.4	V
Vон	Output High Voltage	Ioh = -5mA, Vdd = Min.	2.4	_	V

3589 tbl 12

3589 tbl 10

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range⁽¹⁾ (VDD = $3.3V \pm 5\%$, VHD = VDD - 0.2V, VLD = 0.2V)

Symbol	Parameter	Test Conditions	71V508S100	71V508S80	Unit
ldd	Operating Power Supply Current	$\label{eq:constraint} \begin{split} \overline{CS} &\leq \text{Vil, Outputs Open, Vdd} = Max., \\ \overline{VN} &\geq \text{ViH or} \leq \text{Vil, } f = f_{MAX}^{(2)} \end{split}$	220	180	mA
lsв	Standby Power Supply Current	$\label{eq:cs_loss} \begin{split} \overline{CS} &\geq V \text{IH}, \mbox{ Outputs Open}, \mbox{ Vdd} = Max., \\ V \text{IN} &\geq V \text{IH or } \leq V \text{IL}, f = f_{MAX}^{(2)} \end{split}$	80	75	mA
ISB1	Full Standby Power Supply Current	$\label{eq:cs_loss} \begin{array}{l} \overline{CS} \geq \mbox{Vhd}, \mbox{ Outputs Open}, \mbox{Vdd} = \mbox{Max.}, \\ \overline{Vin} \geq \mbox{ Vhd} \ or \leq \mbox{ Vld}, \ f = 0^{(2)} \end{array}$	25	25	mA

NOTES:

1. All values are maximum guaranteed values.

2. At f = fmax, address inputs are switching at 1/tcvc and CLK is cycling at 1/tcvc; f=0 means no input signals are changing.

IDT71V508 128K x 8 3.3V Synchronous SRAM with ZBT™ and Pipelined Output

AC Electrical Characteristics (VDD = 3.3V ±5%, TA = 0 to 70°C)

		IDT71V508S100		IDT71V508S80				
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit		
Clock Parar	neters							
fMAX	Clock Frequency		100		80	MHz		
tcyc	Clock Cycle Time	10		12.5		ns		
tсн	Clock High Pulse Width	4		4		ns		
tcL	Clock Low Pulse Width	4	-	4		ns		
Output Para	Output Parameters							
tCD	Clock High to Valid Data		5		7	ns		
tCDC	Clock High to Data Change	2	-	2		ns		
tcLZ ⁽¹⁾	Clock High to Output Active	2		2		ns		
tcHz ⁽¹⁾	Clock High to Data High-Z	2	4	2	5	ns		
tOE	Output Enable Access Time		5		6	ns		
tol z ⁽¹⁾	Output Enable Low to Data Active	0	_	0		ns		
tонz ⁽¹⁾	Output Enable High to Data High-Z		5		6	ns		
Setup Time	Setup Times							
tse	Clock Enable Setup Time	2		2		ns		
tsa	Address Setup Time	1.5	_	2		ns		
tsd	Data in Setup Time	1.5		2		ns		
tsw	Write Enable Setup Time	1.5	-	2		ns		
tsc	Chip Select Setup Time	1.5	_	2		ns		
Hold Times								
the	Clock Enable Hold Time	1	_	1		ns		
tha	Address Hold Time	2.5	-	2.5		ns		
thd	Data in Hold Time	1		1		ns		
tHW	Write Enable Hold Time	1		1		ns		
tHC	Chip Select Hold Time	1		1		ns		

NOTE:

1. Transition is measured ±200mV from steady-state.

AC Test Conditions

Input Pulse Levels	0 to 3.0V		
Input Rise/Fall Times	2ns		
Input Timing Reference Levels	1.5V		
Output Timing Reference Levels	1.5V		
AC Test Load	See Figures 1 and 2		
	3589 tbl 15		

AC Test Loads

Figure 1. AC Test Load

IDT71V508

Timing Waveform of Read and Write Cycles⁽¹⁾

NOTES:

1. Dx represents the data for address Ax.

2. DATA_in and DATA_out together represent I/O(7:0).

Timing Waveform of **CEN** Operation⁽¹⁾

1. Dx represents the data for address Ax.

2. DATA_in and DATA_out together represent I/O(7:0).

Timing Waveform of CS Operation⁽¹⁾

1. Dx represents the data for address Ax.

2. DATA_in and DATA_out together represent I/O(7:0).

Timing Waveform of **OE** Operation

NOTE:

1. A read operation is assumed to be in progress.

Ordering Information

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054

for SALES: 800 345-7015 or 408 727-6116 fax: 408 492-8674 www.idt.com *for Tech Support:* sramhelp@idt.com 800 544-7726, x4033

The IDT logo is a registered trademark of Integrated Device Technology, Inc.