
TMS320C6711

ADVANCE INFORMATION

- **Best Price/Performance Floating-Point Digital Signal Processor (DSP)** TMS320C6711
 - 10-, 6.7-ns Instruction Cycle Time
 - 100-, 150-MHz Clock Rates
 - Eight 32-Bit Instructions/Cycle
 - 900 MFLOPS
 - Pin-Compatible With 'C6211 Fixed-Point
- **VelociTI™ Advanced Very Long Instruction** Word (VLIW) 'C6700 CPU Core
 - Eight Highly Independent Functional Units:
 - Four ALUs (Floating- and Fixed-Point)
 - Two ALUs (Fixed-Point)
 - Two Multipliers (Floating- and Fixed-Point)
 - Load-Store Architecture With 32 32-Bit **General-Purpose Registers**
 - Instruction Packing Reduces Code Size
 - All Instructions Conditional
- Instruction Set Features
 - Hardware Support for IEEE **Single-Precision Instructions**
 - Hardware Support for IEEE **Double-Precision Instructions**
 - Byte-Addressable (8-, 16-, 32-Bit Data)
 - 32-Bit Address Range
 - 8-Bit Overflow Protection
 - Saturation
 - Bit-Field Extract, Set, Clear
 - Bit-Counting
 - Normalization
- L1/L2 Memory Architecture
 - 32K-Bit (4K-Byte) L1P Program Cache (Direct Mapped)
 - 32K-Bit (4K-Byte) L1D Data Cache (2-Way Set-Associative)
 - 512K-Bit (64K-Byte) L2 Unified Mapped RAM/Cache
 - (Flexible Data/Program Allocation)
- 32-Bit External Memory Interface (EMIF)
 - Glueless Interface to Synchronous Memories: SDRAM and SBSRAM

GFN 256-PIN BALL GRID ARRAY (BGA) PACKAGE (BOTTOM VIEW)

- Glueless Interface to Asynchronous Memories: SRAM and EPROM
- **Enhanced Direct-Memory-Access (EDMA)** Controller
- **16-Bit Host-Port Interface (HPI)**
 - Access to Entire Memory Map
- **Two Multichannel Buffered Serial Ports** (McBSPs)
 - Direct Interface to T1/E1, MVIP, SCSA **Framers**
 - ST-Bus-Switching Compatible
 - Up to 256 Channels Each
 - AC97-Compatible
 - Serial-Peripheral-Interface (SPI) Compatible (Motorola™)
- **Two 32-Bit General-Purpose Timers**
- Flexible Phase-Locked-Loop (PLL) Clock Generator
- IEEE-1149.1 (JTAG[†]) **Boundary-Scan-Compatible**
- 256-Pin BGA Package (GFN Suffix)
- 0.18-μm/5-Level Metal Process
 - CMOS Technology
- 3.3-V I/Os, 1.8-V Internal

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

VelociTI is a trademark of Texas Instruments Incorporated. Motorola is a trademark of Motorola, Inc.

† IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.

ISTRUMENTS

description

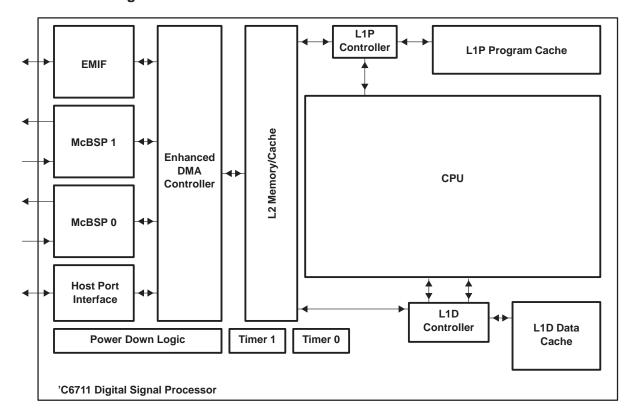
The TMS320C67x DSPs (including the TMS320C6711 device) are the floating-point DSP family in the TMS320C6000 platform. The TMS320C6711 ('C6711) device is based on the high-performance, advanced VelociTl very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI™), making this DSP an excellent choice for multichannel and multifunction applications. With performance of up to 900 million floating-point operations per second (MFLOPS) at a clock rate of 150 MHz, the 'C6711 offers cost-effective solutions to high-performance DSP programming challenges. The 100-MHz device is the lowest cost DSP in the 'C6000 family. The 'C6711 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide four floating-/fixed-point ALUs, two fixed-point ALUs, and two floating-/fixed-point multipliers. The 'C6711 can produce two multiply-accumulates (MACs) per cycle for a total of 300 million MACs per second (MMACS). The 'C6711 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals.

The 'C6711 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 32-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 32-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512-Kbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two.The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM and asynchronous peripherals.

The 'C6711 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.

device characteristics

Table 1 provides an overview of the 'C6711 DSP. The table shows significant features of each device, including the capacity of on-chip RAM, the peripherals, the execution time, and the package type with pin count.


Table 1. Characteristics of the 'C6711 Processors

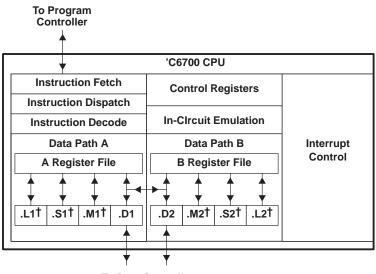
CHARACTERISTICS	DESCRIPTION
Device Number	TMS320C6711
On-Chip Memory	32-Kbit L1 Program (L1P) Cache 32-Kbit L1 Data (L1D) Cache 512-Kbit Unified Mapped RAM/Cache (L2)
Peripherals	2 Mutichannel Buffered Serial Ports (McBSP) 2 General-Purpose Timers Host-Port Interface (HPI) External Memory Interface (EMIF)
Cycle Time	6.7 ns (High-Performance Device – 150 MHz), 10 ns (Lowest-Cost Device – 100 MHz)
Package Type	27 mm × 27 mm, 256-Pin BGA (GFN)
Nominal Voltage	1.8 V Core 3.3 V I/O

TI is a trademark of Texas Instruments Incorporated. Windows is a registered trademark of the Microsoft Corporation.

functional block diagram

CPU description

The CPU fetches VelociTI advanced very-long instruction words (VLIW) (256 bits wide) to supply up to eight 32-bit instructions to the eight functional units during every clock cycle. The VelociTI VLIW architecture features controls by which all eight units do not have to be supplied with instructions if they are not ready to execute. The first bit of every 32-bit instruction determines if the next instruction belongs to the same execute packet as the previous instruction, or whether it should be executed in the following clock as a part of the next execute packet. Fetch packets are always 256 bits wide; however, the execute packets can vary in size. The variable-length execute packets are a key memory-saving feature, distinguishing the 'C6700 CPU from other VLIW architectures.

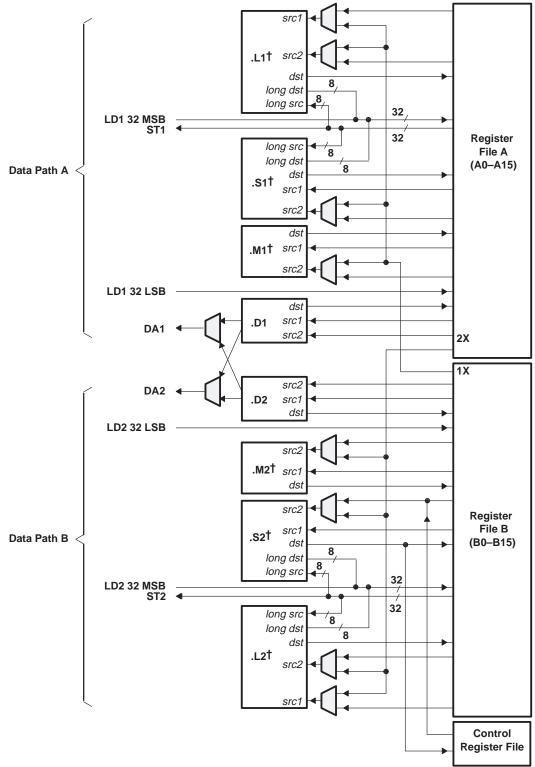

The CPU features two sets of functional units. Each set contains four units and a register file. One set contains functional units .L1, .S1, .M1, and .D1; the other set contains units .D2, .M2, .S2, and .L2. The two register files contain 16 32-bit registers each for the total of 32 general-purpose registers. The two sets of functional units, along with two register files, compose sides A and B of the CPU (see Figure 1 and Figure 2). The four functional units on each side of the CPU can freely share the 16 registers belonging to that side. Additionally, each side features a single data bus connected to all registers on the other side, by which the two sets of functional units can access data from the register files on opposite sides. While register access by functional units on the same side of the CPU as the register file can service all the units in a single clock cycle, register access using the register file across the CPU supports one read and one write per cycle.

The 'C6700 CPU executes all 'C62x instructions. In addition to 'C62x fixed-point instructions, the six out of eight functional units (.L1, .M1, .D1, .D2, .M2, and .L2) also execute floating-point instructions. The remaining two functional units (.S1 and .S2) also execute the new LDDW instruction which loads 64 bits per CPU side for a total of 128 bits per cycle.

Another key feature of the 'C6700 CPU is the load/store architecture, where all instructions operate on registers (as opposed to data in memory). Two sets of data-addressing units (.D1 and .D2) are responsible for all data transfers between the register files and the memory. The data address driven by the .D units allows data addresses generated from one register file to be used to load or store data to or from the other register file. The 'C6700 CPU supports a variety of indirect-addressing modes using either linear- or circular-addressing modes with 5- or 15-bit offsets. All instructions are conditional, and most can access any one of the 32 registers. Some registers, however, are singled out to support specific addressing or to hold the condition for conditional instructions (if the condition is not automatically "true"). The two .M functional units are dedicated for multiplies. The two .S and .L functional units perform a general set of arithmetic, logical, and branch functions with results available every clock cycle.

The processing flow begins when a 256-bit-wide instruction fetch packet is fetched from a program memory. The 32-bit instructions destined for the individual functional units are "linked" together by "1" bits in the least significant bit (LSB) position of the instructions. The instructions that are "chained" together for simultaneous execution (up to eight in total) compose an execute packet. A "0" in the LSB of an instruction breaks the chain, effectively placing the instructions that follow it in the next execute packet. If an execute packet crosses the fetch-packet boundary (256 bits wide), the assembler places it in the next fetch packet, while the remainder of the current fetch packet is padded with NOP instructions. The number of execute packets within a fetch packet can vary from one to eight. Execute packets are dispatched to their respective functional units at the rate of one per clock cycle and the next 256-bit fetch packet is not fetched until all the execute packets from the current fetch packet have been dispatched. After decoding, the instructions simultaneously drive all active functional units for a maximum execution rate of eight instructions every clock cycle. While most results are stored in 32-bit registers, they can be subsequently moved to memory as bytes or half-words as well. All load and store instructions are byte-, half-word, or word-addressable.

CPU description (continued)

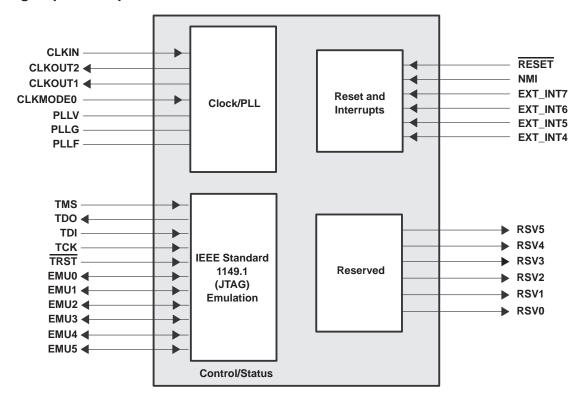


To Data Controller

Figure 1. TMS320C6700 CPU Block Diagram

[†] These functional units execute floating-point instructions.

CPU description (continued)



[†] These functional units execute floating-point instructions.

Figure 2. TMS320C6700 CPU Data Paths

signal groups description

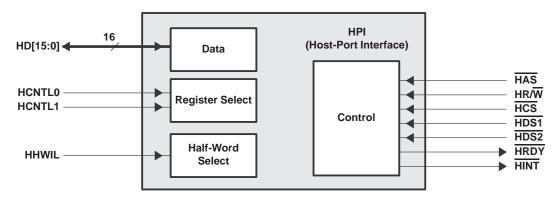


Figure 3. CPU and Peripheral Signals

signal groups description (continued)

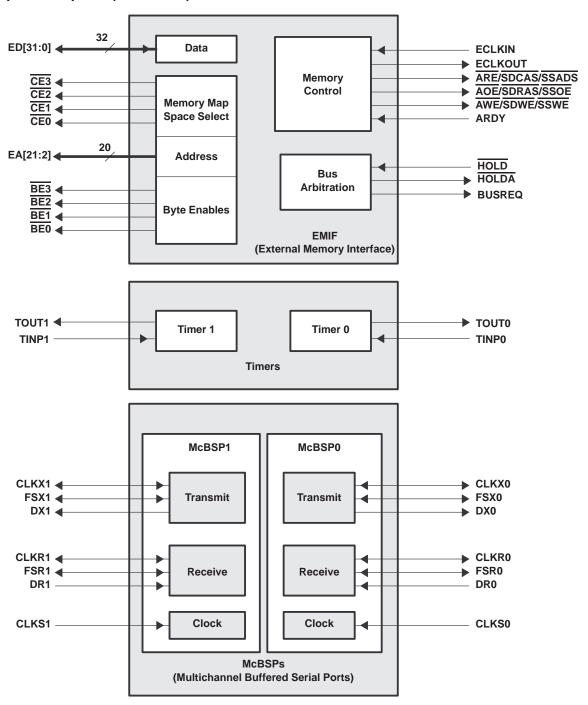


Figure 4. Peripheral Signals

Signal Descriptions

SIGNAL NAME NO.		TYPET	ET IPD/ DESCRIPTION					
	CLOCK/PLL							
CLKIN	А3	I	IPU	Clock Input				
CLKOUT1	D7	0	IPD	Clock output at device speed				
CLKOUT2	Y12	0	IPD	Clock output at half of device speed				
CLKMODE0	C4	I	IPU	Clock mode select Selects whether the CPU clock frequency = input clock frequency x4 or x1				
PLLV§	A4	Α¶		PLL analog V _{CC} connection for the low-pass filter				
PLLG§	C6	Α¶		PLL analog GND connection for the low-pass filter				
PLLF	B5	Α¶		PLL low-pass filter connection to external components and a bypass capacitor				
				JTAG EMULATION				
TMS	В7	I	IPU	JTAG test-port mode select				
TDO	A8	O/Z	IPU	JTAG test-port data out				
TDI	A7	I	IPU	JTAG test-port data in				
TCK	A6	I	IPU	JTAG test-port clock				
TRST	B6	I	IPD	JTAG test-port reset				
EMU5	B12	I/O/Z	IPU	Emulation pin 5 [#]				
EMU4	C11	I/O/Z	IPU	Emulation pin 4 [#]				
EMU3	B10	I/O/Z	IPU	Emulation pin 3 [#]				
EMU2	D10	I/O/Z	IPU	Emulation pin 2 [#]				
EMU1	B9	I/O/Z	IPU	Emulation pin 1 [#]				
EMU0	D9	I/O/Z	IPU	Emulation pin 0 [#]				
				RESETS AND INTERRUPTS				
RESET	A13	_	IPU	Device reset				
NMI	C13	I	IPD	Nonmaskable interrupt • Edge-driven (rising edge)				
EXT_INT7	E3							
EXT_INT6	D2	,	IPU	External interrupts				
EXT_INT5	C1	'	IFU	Edge-driven (rising edge)				
EXT_INT4 C2								
	HOST-PORT INTERFACE (HPI)							
HINT	J20	0	IPU	Host interrupt (from DSP to host)				
HCNTL1	G19	I	IPU	Host control – selects between control, address, or data registers				
HCNTL0	G18	I	IPU	Host control – selects between control, address, or data registers				
HHWIL	H20	I	IPU	Host half-word select – first or second half-word (not necessarily high or low order)				
HR/W	G20	I	IPU	Host read or write select				

[†] I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground

[‡] IPD = Internal pulldown, IPU = internal pullup [Most signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite supply rail, a resistor in the range of 4.7 k Ω to 5.1 k Ω should be used.]

[§] PLLV and PLLG are not part of external voltage supply or ground. See the CLOCK/PLL documentation for information on how to connect these pins. \P A = Analog Signal (PLL Filter)

[#] For interfacing details, see JTAG/MPSD Emulation Technical Reference (literature number SPDU079).

SIGNA	.L		IPD/	olgital Descriptions (Continued)						
NAME	NO.	TYPE† IPU‡		DESCRIPTION						
	HOST-PORT INTERFACE (HPI) (CONTINUED)									
HD15	B14		IPU							
HD14	C14	1	IPU							
HD13	A15	1	IPU							
HD12	C15	1	IPU							
HD11	A16	1	IPU	1						
HD10	B16	1	IPU	1						
HD9	C16	1	IPU	Host-port data						
HD8	B17	1	IPU	Used for transfer of data, address, and control						
HD7	A18	I/O/Z	IPU	Also controls initialization of DSP modes at reset via pullup/pulldown resistors Little endian/Big endian						
HD6	C17	1	IPU	- Boot mode						
HD5	B18	1	IPU							
HD4	C19	1	IPD							
HD3	C20	1	IPU							
HD2	D18	1	IPU							
HD1	D20	1	IPU							
HD0	E20		IPU							
HAS	E18	I	IPU	Host address strobe						
HCS	F20	I	IPU	Host chip select						
HDS1	E19	I	IPU	Host data strobe 1						
HDS2	F18	I	IPU	Host data strobe 2						
HRDY	H19	0	IPU	Host ready (from DSP to host)						
		EN	/IF – CON	NTROL SIGNALS COMMON TO ALL TYPES OF MEMORY						
CE3	V6	O/Z	IPU							
CE2	W6	O/Z	IPU	Memory space enables						
CE1	W18	O/Z	IPU	Enabled by bits 28 through 31 of the word address						
CE0	V17	O/Z	IPU	Only one asserted during any external data access						
BE3	V5	O/Z	IPU	Byte-enable control						
BE2	Y4	O/Z	IPU	Decoded from the two lowest bits of the internal address						
BE1	U19	O/Z	IPU	Byte-write enables for most types of memory						
BE0	V20	O/Z	IPU	Can be directly connected to SDRAM read and write mask signal (SDQM)						

[†] I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground

[‡] IPD = Internal pulldown, IPU = internal pullup [Most signal pins feature a 30-k Ω IPD or IPU resistor. To pull up a signal to the opposite supply rail, a resistor in the range of 4.7 k Ω to 5.1 k Ω should be used.]

ADVANCE INFORMATION

SIGNA	L		IPD/	DESCRIPTION				
NAME	NO.	TYPET	IPU‡	DESCRIPTION				
EMIF – BUS ARBITRATION								
HOLDA	J18	O/Z	IPU	Hold-request-acknowledge to the host				
HOLD	J17	I	IPU	Hold request from the host				
BUSREQ	J19	O/Z	IPU	Bus request output				
E	MIF – AS	YNCHRO	NOUS/SY	NCHRONOUS DRAM/SYNCHRONOUS BURST SRAM MEMORY CONTROL				
ECLKIN	Y11	I	IPD	EMIF input clock				
ECLKOUT	Y10	0	IPD	EMIF output clock (based on ECLKIN)				
ARE/SDCAS/ SSADS	V11	O/Z	IPU	Asynchronous memory read enable/SDRAM column-address strobe/SBSRAM address strobe				
AOE/SDRAS/ SSOE	W10	O/Z	IPU	Asynchronous memory output enable/SDRAM row-address strobe/SBSRAM output enable				
AWE/SDWE/ SSWE	V12	O/Z	IPU	Asynchronous memory write enable/SDRAM write enable/SBSRAM write enable				
ARDY	Y5	ı	IPU	Asynchronous memory ready input				
		•		EMIF – ADDRESS				
EA21	U18							
EA20	Y18	1						
EA19	W17	1						
EA18	Y16	1						
EA17	V16	1						
EA16	Y15	1						
EA15	W15	1						
EA14	Y14	1						
EA13	W14	1						
EA12	V14	O/Z	IPU	Estaval address (ward address)				
EA11	W13	0/2	IPU	External address (word address)				
EA10	V10	1						
EA9	Y9]						
EA8	V9	1						
EA7	Y8	1						
EA6	W8	1						
EA5	V8	1						
EA4	W7	1						
EA3	V7	1						
EA2	Y6	1						

[†] I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground

[‡] IPD = Internal pulldown, IPU = internal pullup [Most signal pins feature a 30-k Ω IPD or IPU resistor. To pull up a signal to the opposite supply rail, a resistor in the range of 4.7 k Ω to 5.1 k Ω should be used.]

SIGNA		IPD/	DECODIFICAL	
NAME	NO.	TYPET	IPU‡	DESCRIPTION
				EMIF – DATA
ED31	N3			
ED30	P3]		
ED29	P2]		
ED28	P1	1		
ED27	R2]		
ED26	R3]		
ED25	T2	1		
ED24	T1]		
ED23	U3]		
ED22	U1]		
ED21	U2]		
ED20	V1]		
ED19	V2]		
ED18	Y3]		
ED17	W4]		
ED16	V4	I/O/Z	IPU	External data
ED15	T19	1/0/2	IPU	External data
ED14	T20]		
ED13	T18]		
ED12	R20	1		
ED11	R19	1		
ED10	P20	1		
ED9	P18]		
ED8	N20]		
ED7	N19]		
ED6	N18]		
ED5	M20]		
ED4	M19]		
ED3	L19]		
ED2	L18]		
ED1	K19]		
ED0	K18	<u> </u>		

[†] I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground

[‡] IPD = Internal pulldown, IPU = internal pullup [Most signal pins feature a 30-k Ω IPD or IPU resistor. To pull up a signal to the opposite supply rail, a resistor in the range of 4.7 k Ω to 5.1 k Ω should be used.]

ADVANCE INFORMATION

SIGNAL		Ι.	IPD/						
NAME	NAME NO.		IPU‡	DESCRIPTION					
	TIMERS								
TOUT1	F1	0	IPD	Timer 1 or general-purpose output					
TINP1	F2	I	IPD	Timer 1 or general-purpose input					
TOUT0	G1	0	IPD	Timer 0 or general-purpose output					
TINP0	G2	I	IPD	Timer 0 or general-purpose input					
			MULT	ICHANNEL BUFFERED SERIAL PORT 1 (McBSP1)					
CLKS1	E1	I	IPD	External clock source (as opposed to internal)					
CLKR1	M1	I/O/Z	IPD	Receive clock					
CLKX1	L3	I/O/Z	IPD	Transmit clock					
DR1	M2	I	IPU	Receive data					
DX1	L2	O/Z	IPU	Transmit data					
FSR1	М3	I/O/Z	IPD	Receive frame sync					
FSX1	L1	I/O/Z	IPD	Transmit frame sync					
			MULT	ICHANNEL BUFFERED SERIAL PORT 0 (McBSP0)					
CLKS0	K3	I	IPD	External clock source (as opposed to internal)					
CLKR0	Н3	I/O/Z	IPD	Receive clock					
CLKX0	G3	I/O/Z	IPD	Transmit clock					
DR0	J1	I	IPU	Receive data					
DX0	H2	O/Z	IPU	Transmit data					
FSR0	J3	I/O/Z	IPD	Receive frame sync					
FSX0	H1	I/O/Z	IPD	Transmit frame sync					
				RESERVED FOR TEST					
RSV0	C12	0	IPU	Reserved (leave unconnected, <i>do not</i> connect to power or ground)					
RSV1	D12	0	IPU	Reserved (leave unconnected, do not connect to power or ground)					
RSV2	A5	0	IPU	Reserved (leave unconnected, <i>do not</i> connect to power or ground)					
RSV3	D3	0		Reserved (leave unconnected, do not connect to power or ground)					
RSV4	N2	0		Reserved (leave unconnected, do not connect to power or ground)					
RSV5	Y20	0		Reserved (leave unconnected, do not connect to power or ground)					

[†] I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground

[‡] IPD = Internal pulldown, IPU = internal pullup [Most signal pins feature a 30-k Ω IPD or IPU resistor. To pull up a signal to the opposite supply rail, a resistor in the range of 4.7 k Ω to 5.1 k Ω should be used.]

SIGNAL	SIGNAL SIGNAL .							
NAME	NO.	TYPET	TYPET DESCRIPTION					
			SUPPLY VOLTAGE PINS					
	A17							
	B3							
	B8							
	B13							
	C5							
	C10							
	D1							
	D16							
	D19							
	F3							
	H18							
	J2							
	M18							
	N1	S	3.3-V supply voltage					
DVDD	R1							
	R18							
	T3							
	U5							
	U7							
	U12							
	U16							
	V13							
	V15							
	V19							
	W3							
	W9 W12 Y7							
	Y17							
	A9							
	A10							
	A12							
	B2							
	B19							
CV _{DD}	C3	s	1.8-V supply voltage					
1 2,00	C7		1.0 v supply voltage					
	C18							
	D5							
	D6							
	D11							
	D14							

[†] I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground

ADVANCE INFORMATION

SIGNAI	1		Signal Descriptions (Continued)
NAME	NO.	TYPET	DESCRIPTION
		<u> </u>	SUPPLY VOLTAGE PINS (CONTINUED)
CVDD	D15 F4 F17 K1 K4 K17 L4 L17 L20 R4 R17 U6 U10 U11 U14 U15 V3 V18 W2	S	1.8-V supply voltage
	W19		CROLIND DING
Vss	A1 A2 A11 A14 A19 A20 B1 B4 B11 B15 B20 C8 C9 D4 D8 D13 D17 E2	GND	GROUND PINS Ground pins

[†] I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground

SIGNA	1	Ι	
NAME	NO.	TYPET	DESCRIPTION
10.002			GROUND PINS (CONTINUED)
	E4	ĺ	
		E17 F19	
	G4	1	
	G17	1	
	H4	1	
	H17	1	
	J4	1	
	K2	1	
	K20	1	
	M4]	
	M17		
	N4		
	N17		
	P4		
	P17		
VSS	P19	GND	Ground pins
	T4	-	
	T17		
	U4		
	U8		
	U9		
	U13 U17	ł	
	U20	1	
	W1	1	
	W5	1	
	W11	1	
	W16	1	
	W20	1	
	Y1		
	Y2		
	Y13		
	Y19	1	

[†] I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground

development support

Texas Instruments (TI) offers an extensive line of development tools for the 'C6000 generation of DSPs, including tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully integrate and debug software and hardware modules.

The following products support development of 'C6000-based applications:

Software Development Tools:

Assembly optimizer
Assembler/Linker
Simulator
Optimizing ANSI C compiler
Application algorithms
C/Assembly debugger and code profiler

Hardware Development Tools:

Extended development system (XDS™) emulator (supports 'C6000 multiprocessor system debug) EVM (Evaluation Module)

The *TMS320 DSP Development Support Reference Guide* (SPRU011) contains information about development-support products for all TMS320 family member devices, including documentation. See this document for further information on TMS320 documentation or any TMS320 support products from Texas Instruments. An additional document, the *TMS320 Third-Party Support Reference Guide* (SPRU052), contains information about TMS320-related products from other companies in the industry. To receive TMS320 literature, contact the Literature Response Center at 800/477-8924.

See Table 3 for a complete listing of development-support tools for the 'C6000. For information on pricing and availability, contact the nearest TI field sales office or authorized distributor.

Table 2. TMS320C6xx Development-Support Tools

DEVELOPMENT TOOL	PLATFORM	PART NUMBER							
	Software								
C Compiler/Assembler/Linker/Assembly Optimizer	Win32™	TMDX3246855-07							
C Compiler/Assembler/Linker/Assembly Optimizer	SPARC™ Solaris™	TMDX3246555-07							
Simulator	Win32	TMDS3246851-07							
Simulator	SPARC Solaris	TMDS3246551-07							
XDS510™ Debugger/Emulation Software	Win32, Windows NT™	TMDX324016X-07							
	Hardware								
XDS510 Emulator [†]	PC	TMDS00510							
XDS510WS™ Emulator‡	SCSI	TMDS00510WS							
	Software/Hardware								
EVM Evaluation Kit	PC/Win95/Windows NT	TMDX3260A6201							
EVM Evaluation Kit (including TMDX3246855-07)	PC/Win95/Windows NT	TMDX326006201							

[†] Includes XDS510 board and JTAG emulation cable. TMDX324016X-07 C-source Debugger/Emulation software is not included.

XDS, XDS510, and XDS510WS are trademarks of Texas Instruments Incorporated. Win32 and Windows NT are trademarks of Microsoft Corporation. SPARC is a trademark of SPARC International, Inc. Solaris is a trademark of Sun Microsystems, Inc.

[‡] Includes XDS510WS box, SCSI cable, power supply, and JTAG emulation cable.

device and development-support tool nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all TMS320 devices and support tools. Each TMS320 member has one of three prefixes: TMX, TMP, or TMS. Texas Instruments recommends two of three possible prefix designators for support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS).

Device development evolutionary flow:

TMX Experimental device that is not necessarily representative of the final device's electrical

specifications

TMP Final silicon die that conforms to the device's electrical specifications but has not completed

quality and reliability verification

TMS Fully qualified production device

Support tool development evolutionary flow:

TMDX Development-support product that has not yet completed Texas Instruments internal qualification

esting.

TMDS Fully qualified development-support product

TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, GFN) and the device speed range in megahertz (for example, -150 is 150 MHz). Table 3 provides a legend for reading the complete device name for any TMS320 family member.

device and development-support tool nomenclature (continued) TMS 320 C 6711 GFN -150 PREFIX -**DEVICE SPEED RANGE** TMX = Experimental device -100 MHz TMP= Prototype device -150 MHz TMS= Qualified device -167 MHz SMJ = MIL-STD-883C -200 MHz SM = High Rel (non-883C) -233 MHz -250 MHz **DEVICE FAMILY** -PACKAGE TYPET 320 = TMS320 familyΝ = Plastic DIP Ceramic DIP Ceramic DIP side-brazed ĴD = GB FZ Ceramic PGA = Ceramic CC = FΝ Plastic leaded CC = **TECHNOLOGY** FD Ceramic leadless CC = ΡJ 100-pin plastic EIAJ QFP = PQ PZ 132-pin plastic bumpered QFP = **CMOS EPROM** 100-pin plastic TQFP 128-pin plastic TQFP **CMOS Flash EEPROM** PBK = PGE = 144-pin plastic TQFP GFN = 256-pin plastic BGA GGU = 144-pin plastic BGA GGP = 352-pin plastic BGA 352-pin plastic BGA 352-pin plastic BGA 384-pin plastic BGA GJC = GJL = GLS = **DEVICE** '1x DSP: 10 16 17 14 15 '2x DSP: 26 '2xx DSP: 203 206 240 204 209 '3x DSP: 31 32 '4x DSP: 40 44 '5x DSP: 57 '54x DSP: 546 543 '6x DSP: 6201 6201B 6202 6211 6701 †DIP = Dual-In-Line Package 6711 PGA = Pin Grid Array

Figure 5. TMS320 Device Nomenclature (Including TMS320C6711)

CC =

QFP =

TQFP =

BGA =

Chip Carrier

Ball Grid Array

Quad Flat Package

Thin Quad Flat Package

documentation support

Extensive documentation supports all TMS320 family generations of devices from product announcement through applications development. The types of documentation available include: data sheets, such as this document, with design specifications; complete user's reference guides for all devices; technical briefs; development-support tools; and hardware and software applications. The following is a brief, descriptive list of support documentation specific to the 'C6x devices:

The *TMS320C6000 CPU and Instruction Set Reference Guide* (literature number SPRU189) describes the 'C6000 CPU architecture, instruction set, pipeline, and associated interrupts.

The *TMS320C6000 Peripherals Reference Guide* (literature number SPRU190) describes the functionality of the peripherals available on 'C6x devices, such as the external memory interface (EMIF), host-port interface (HPI), multichannel buffered serial ports (McBSPs), direct-memory-access (DMA), enhanced direct-memory-access (EDMA) controller, expansion bus (XB), clocking and phase-locked loop (PLL); and power-down modes. This guide also includes information on internal data and program memories.

The *TMS320C6000 Programmer's Guide* (literature number SPRU198) describes ways to optimize C and assembly code for 'C6x devices and includes application program examples.

The *TMS320C6x C Source Debugger User's Guide* (literature number SPRU188) describes how to invoke the 'C6x simulator and emulator versions of the C source debugger interface and discusses various aspects of the debugger, including: command entry, code execution, data management, breakpoints, profiling, and analysis.

The TMS320C6x Peripheral Support Library Programmer's Reference (literature number SPRU273) describes the contents of the 'C6x peripheral support library of functions and macros. It lists functions and macros both by header file and alphabetically, provides a complete description of each, and gives code examples to show how they are used.

TMS320C6000 Assembly Language Tools User's Guide (literature number SPRU186) describes the assembly language tools (assembler, linker, and other tools used to develop assembly language code), assembler directives, macros, common object file format, and symbolic debugging directives for the 'C6000 generation of devices.

The *TMS320C6x Evaluation Module Reference Guide* (literature number SPRU269) provides instructions for installing and operating the 'C6x evaluation module. It also includes support software documentation, application programming interfaces, and technical reference material.

TMS320C6000 DSP/BIOS User's Guide (literature number SPRU303) describes how to use DSP/BIOS tools and APIs to analyze embedded real-time DSP applications.

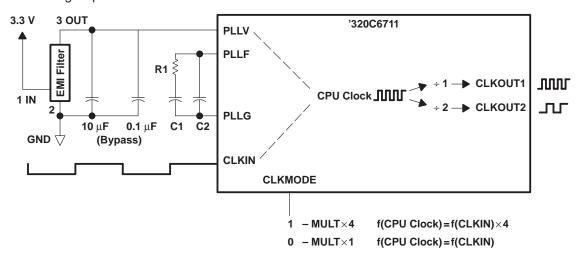
Code Composer User's Guide (literature number SPRU296) explains how to use the Code Composer development environment to build and debug embedded real-time DSP applications.

Code Composer Studio Tutorial (literature number SPRU301) introduces the Code Composer Studio integrated development environment and software tools.

The *TMS320C6000 Technical Brief* (literature number SPRU197) gives an introduction to the 'C62x/C67x devices, associated development tools, and third-party support.

A series of DSP textbooks is published by Prentice-Hall and John Wiley & Sons to support DSP research and education. The TMS320 newsletter, *Details on Signal Processing*, is published quarterly and distributed to update TMS320 customers on product information. The TMS320 DSP bulletin board service (BBS) provides access to information pertaining to the TMS320 family, including documentation, source code, and object code for many DSP algorithms and utilities. The BBS can be reached at 281/274-2323.

Information regarding TI DSP products is also available on the Worldwide Web at http://www.ti.com uniform resource locator (URL).



clock PLL

All of the internal 'C6711 clocks are generated from a single source through the CLKIN pin. This source clock either drives the PLL, which generates the internal CPU clock, or bypasses the PLL to become the CPU clock.

To use the PLL to generate the CPU clock, the filter circuit shown in Figure 6 must be properly designed.

To configure the 'C6711 PLL clock for proper operation, see Figure 6 and Table 3. To minimize the clock jitter, a single clean power supply should power both the 'C6711 device and the external clock oscillator circuit. The minimum CLKIN rise and fall times should also be observed. See the *input and output clocks* section for input clock timing requirements.

NOTES: A. The 'C6711 PLL can generate CPU clock frequencies in the range of 65 MHz to 150 MHz. For frequencies below 65 MHz, the PLL should be configured to operate in bypass mode.

- B. For the 'C6711, values for C1, C2, and R1 are fixed and apply to all valid frequency ranges of CLKIN and CLKOUT.
- C. For CLKMODE x1, the PLL is bypassed and all six external PLL components can be removed. For this case, the PLLV terminal has to be connected to a clean 3.3-V supply and the PLLG and PLLF terminals should be tied together.
- D. The 3.3-V supply for the EMI filter (and PLLV) must be from the same 3.3-V power plane supplying the I/O voltage, DV_{DD} .
- E. EMI filter manufacturer TDK part number ACF451832-153-T

Figure 6. PLL Block Diagram

Table 3. TMS320C6711 PLL Component Selection Table†

	CLKMODE	CLKIN RANGE (MHz)	CPU CLOCK FREQUENCY (CLKOUT1) RANGE (MHz)	CLKOUT2 RANGE (MHz)	R1 (Ω)	C1 (nF)	C2 (pF)	TYPICAL LOCK TIME (μs)
ı	x4	16.3–37.5	65–150	32.5-75	60.4	27	560	75

Tunder some operating conditions, the maximum PLL lock time may vary as much as 150% from the specified typical value. For example, if the typical lock time is specified as 100 µs, the maximum value may be as long as 250 µs.

power supply sequencing

The 1.8-V supply powers the core and the 3.3-V supply powers the I/O buffers. The core supply should be powered up first, or at the same time as the I/O buffers supply. This is to ensure that the I/O buffers have valid inputs from the core before the output buffers are powered up, thus preventing bus contention with other chips on the board.

absolute maximum ratings over operating case temperature range (unless otherwise noted)†

Supply voltage range, CV _{DD} (see Note 1)	-0.3 V to 2.3 V
Supply voltage range, DV _{DD} (see Note 1)	0.3 V to 4 V
Input voltage range	0.3 V to 4 V
Output voltage range	0.3 V to 4 V
Operating case temperature range, T _C	0°C to 90°C
Storage temperature range, T _{stg}	–55°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

			MIN	NOM	MAX	UNIT
CVDD	Supply voltage		1.71	1.8	1.89	V
DV_{DD}	Supply voltage		3.14	3.30	3.46	V
VSS	Supply ground		0	0	0	V
VIH	High-level input voltage		2.0			V
V_{IL}	Low-level input voltage				0.8	V
lau	High-level output current	All signals except CLKOUT1 and CLKOUT2			-4	mA
ЮН		CLKOUT1 and CLKOUT2			-8	mA
la.	Low lovel output ourrent	All signals except CLKOUT1 and CLKOUT2			4	mA
IOL	Low-level output current	CLKOUT1 and CLKOUT2			8	mA
TC	Operating case temperature		0		90	°C

electrical characteristics over recommended ranges of supply voltage and operating case temperature (unless otherwise noted)

	PARAMETER	TEST	MIN	TYP	MAX	UNIT	
Vон	High-level output voltage	$DV_{DD} = MIN,$	I _{OH} = MAX	2.4			V
VOL	Low-level output voltage	$DV_{DD} = MIN,$	$I_{OL} = MAX$			0.6	V
II	Input current V _I = V _{SS} to DV _{DD}					±125	uA
loz	Off-state output current	$V_O = DV_{DD}$ or 0 V				±10	uA
I _{DD2V}	Supply current, CPU + CPU memory access‡	$CV_{DD} = NOM,$	CPU clock = 150 MHz		TBD		mA
I _{DD2V}	Supply current, peripherals§	$CV_{DD} = NOM,$	CPU clock = 150 MHz		TBD		mA
I _{DD3V}	Supply current, I/O pins¶	$DV_{DD} = NOM,$	CPU clock = 150 MHz		TBD		mA
Ci	Input capacitance					5	pF
Co	Output capacitance					5	pF
L	·		· · · · · · · · · · · · · · · · · · ·				

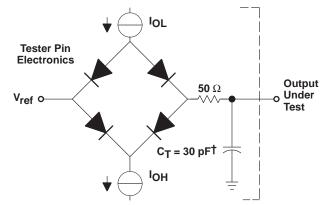
[‡] Measured with average CPU activity:

50% of time: 8 instructions per cycle, 32-bit DMEM access per cycle 50% of time: 2 instructions per cycle, 16-bit DMEM access per cycle

50% of time: Timers at max rate, McBSPs at E1 rate, and DMA burst transfer between DMEM and SDRAM

50% of time: Timers at max rate, McBSPs at E1 rate, and DMA servicing McBSPs

¶ Measured with average I/O activity (30-pF load): 25% of time: Reads from external SDRAM 25% of time: Writes to external SDRAM


50% of time: No activity

NOTE 1: All voltage values are with respect to VSS.

[§] Measured with average peripheral activity:

PARAMETER MEASUREMENT INFORMATION

[†] Typical distributed load circuit capacitance

Figure 7. Test Load Circuit

signal transition levels

All input and output timing parameters are referenced to 1.5 V for both "0" and "1" logic levels.

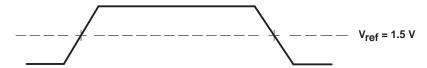


Figure 8. Input and Output Voltage Reference Levels for ac Timing Measurements

INPUT AND OUTPUT CLOCKS

timing requirements for CLKIN† (see Figure 9)

				'C671	1-100			'C671	1-150		
NO.				CLKMODE = x4		CLKMOD	E = x1	CLKMOD	E = x4	CLKMOD	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
1	t _C (CLKIN)	Cycle time, CLKIN	40		10		26.7		6.7		ns
2	tw(CLKINH)	Pulse duration, CLKIN high	16		4.5		10.9		3		ns
3	tw(CLKINL)	Pulse duration, CLKIN low	16		4.5		10.9		3		ns
4	t _t (CLKIN)	Transition time, CLKIN		5		0.6	·	5		0.6	ns

The reference points for the rise and fall transitions are measured at 20% and 80%, respectively, of VIH.

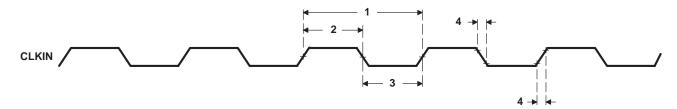


Figure 9. CLKIN Timings

switching characteristics for CLKOUT1^{‡§} (see Figure 10)

	PARAMETER						
NO.			CLKMODE = x4		CLKMODE = x1		UNIT
			MIN	MAX	MIN	MAX	
1	tc(CKO1)	Cycle time, CLKOUT1	P – 0.7	P + 0.7	P – 0.7	P + 0.7	ns
2	tw(CKO1H)	Pulse duration, CLKOUT1 high	(P/2) - 0.5	(P/2) + 0.5	PH - 0.5	PH + 0.5	ns
3	tw(CKO1L)	Pulse duration, CLKOUT1 low	(P/2) - 0.5	(P/2) + 0.5	PL - 0.5	PL + 0.5	ns
4	tt(CKO1)	Transition time, CLKOUT1		0.6		0.6	ns

[‡] PH is the high period of CLKIN in ns and PL is the low period of CLKIN in ns.

[§] P = 1/CPU clock frequency in nanoseconds (ns)

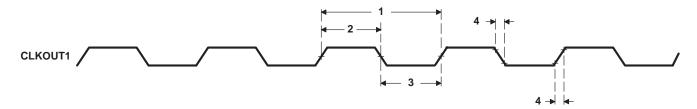


Figure 10. CLKOUT1 Timings

INPUT AND OUTPUT CLOCKS (CONTINUED)

switching characteristics for CLKOUT2[†] (see Figure 11)

NO.	PARAMETER		'C671' 'C671	UNIT	
1	tc(CKO2)	Cycle time, CLKOUT2	2P - 0.7	2P + 0.7	ns
2	tw(CKO2H)	Pulse duration, CLKOUT2 high	P – 0.7	P + 0.7	ns
3	tw(CKO2L)	Pulse duration, CLKOUT2 low	P – 0.7	P + 0.7	ns
4	t _t (CKO2)	Transition time, CLKOUT2		0.6	ns

[†]P = 1/CPU clock frequency in ns

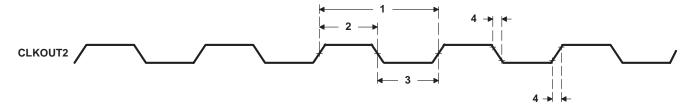


Figure 11. CLKOUT2 Timings

timing requirements for ECLKIN[‡] (see Figure 12)

NO.				'C6711-100 'C6711-150	
			MIN	MAX	
1	t _c (EKI)	Cycle time, ECLKIN	10		ns
2	tw(EKIH)	Pulse duration, ECLKIN high	4.5		ns
3	tw(EKIL)	Pulse duration, ECLKIN low	4.5		ns
4	t _t (EKI)	Transition time, ECLKIN		3	ns

[‡] The reference points for the rise and fall transitions are measured at 20% and 80%, respectively, of V_{IH}.

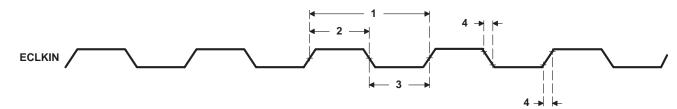


Figure 12. ECLKIN Timings

INPUT AND OUTPUT CLOCKS (CONTINUED)

switching characteristics for ECLKOUT^{†‡§} (see Figure 13)

NO.		PARAMETER	'C671 'C671	UNIT	
			MIN	MAX	
1	t _{c(EKO)}	Cycle time, ECLKOUT	E – 0.7	E + 0.7	ns
2	tw(EKOH)	Pulse duration, ECLKOUT high	EH – 0.7	EH + 0.7	ns
3	tw(EKOL)	Pulse duration, ECLKOUT low	EL - 0.7	EL + 0.7	ns
4	t _t (EKO)	Transition time, ECLKOUT		0.6	ns
5	td(EKIH-EKOH)	Delay time, ECLKIN high to ECLKOUT high	1	3	ns
6	td(EKIL-EKOL)	Delay time, ECLKIN low to ECLKOUT low	1	3	ns

[†]The reference points for the rise and fall transitions are measured at 20% and 80%, respectively, of VIH.

[§] EH is the high period of ECLKIN in ns and EL is the low period of ECLKIN in ns.

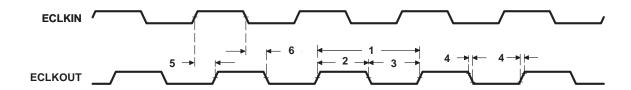


Figure 13. ECLKOUT Timings

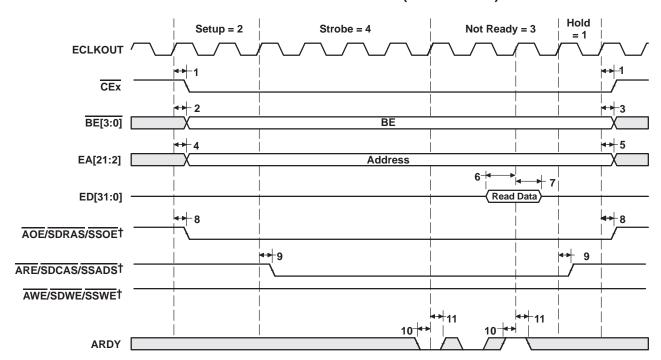
[‡]E = ECLKIN period in ns

ASYNCHRONOUS MEMORY TIMING

timing requirements for asynchronous memory cycles[†] (see Figure 14–Figure 15)

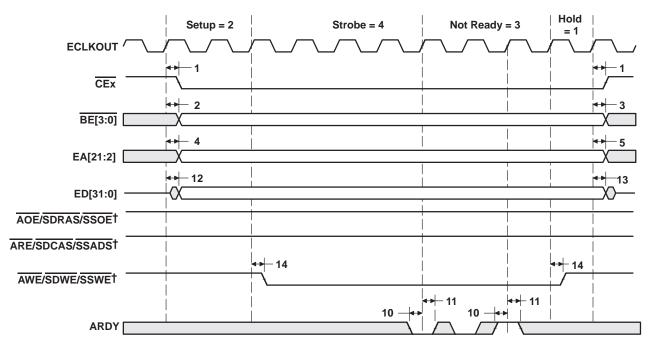
NO.			'C6711-100 'C6711-150		UNIT
			MIN	MAX	
6	t _{su} (EDV-EKOH)	Setup time, read EDx valid before ECLKOUT high	1.5		ns
7	th(EKOH-EDV)	Hold time, read EDx valid after ECLKOUT high	1		ns
10	t _{su(ARDY-EKOH)}	Setup time, ARDY valid before ECLKOUT high	1.5		ns
11	th(EKOH-ARDY)	Hold time, ARDY valid after ECLKOUT high	1		ns

To ensure data setup time, simply program the strobe width wide enough. ARDY is internally synchronized. If ARDY does meet setup or hold time, it may be recognized in the current cycle or the next cycle. Thus, ARDY can be an asynchronous input.


switching characteristics for asynchronous memory cycles^{‡§} (see Figure 14–Figure 15)

NO.		PARAMETER	'C671′ 'C671′	UNIT		
1	td(EKOH-CEV)	Delay time, ECLKOUT high to CEx valid	1.5	6	ns	
2	td(EKOH-BEV)	Delay time, ECLKOUT high to BEx valid	1.5	6	ns	
3	td(EKOH-BEIV)	Delay time, ECLKOUT high to BEx invalid	1.5	6	ns	
4	td(EKOH-EAV)	Delay time, ECLKOUT high to EAx valid	1.5	6	ns	
5	td(EKOH-EAIV)	Delay time, ECLKOUT high to EAx invalid	1.5	6	ns	
8	td(EKOH-AOEV)	Delay time, ECLKOUT high to AOE/SDRAS/SSOE valid	1.5	6	ns	
9	td(EKOH-AREV)	Delay time, ECLKOUT high to ARE/SDCAS/SSADS valid	1.5	6	ns	
12	td(EKOH-EDV)	Delay time, ECLKOUT high to EDx valid		6	ns	
13	td(EKOH-EDIV)	Delay time, ECLKOUT high to EDx invalid	1.5		ns	
14	td(EKOH-AWEV)	Delay time, ECLKOUT high to AWE/SDWE/SSWE valid	1.5	6	ns	

[†] The minimum delay is also the minimum output hold after ECLKOUT high.


§ AOE/SDRAS/SSOE, ARE/SDCAS/SSADS, and AWE/SDWE/SSWE operate as AOE (identified under select signals), ARE, and AWE, respectively, during asynchronous memory accesses.

ASYNCHRONOUS MEMORY TIMING (CONTINUED)

[†] AOE/SDRAS/SSOE, ARE/SDCAS/SSADS, and AWE/SDWE/SSWE operate as AOE (identified under select signals), ARE, and AWE, respectively, during asynchronous memory accesses.

Figure 14. Asynchronous Memory Read Timing

[†] AOE/SDRAS/SSOE, ARE/SDCAS/SSADS, and AWE/SDWE/SSWE operate as AOE (identified under select signals), ARE, and AWE, respectively, during asynchronous memory accesses.

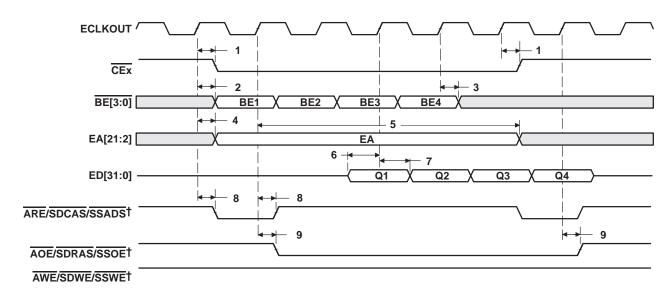
Figure 15. Asynchronous Memory Write Timing

SYNCHRONOUS-BURST MEMORY TIMING

timing requirements for synchronous-burst SRAM cycles† (see Figure 16)

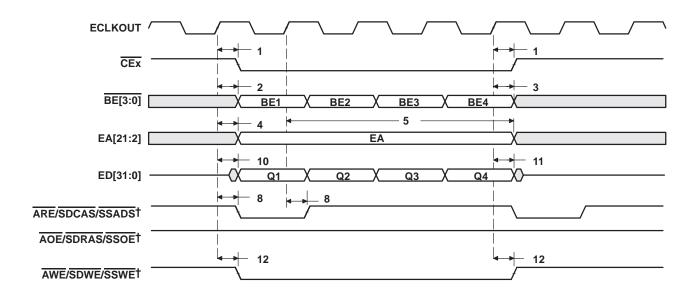
NO.			'C6711 'C6711		UNIT
			MIN	MIN MAX	
6	t _{su} (EDV-EKOH)	Setup time, read EDx valid before ECLKOUT high	1.5		ns
7	th(EKOH-EDV)	Hold time, read EDx valid after ECLKOUT high	1.0		ns

The 'C6711 SBSRAM interface takes advantage of the internal burst counter in the SBSRAM. Accesses default to incrementing 4-word bursts, but random bursts and decrementing bursts are done by interrupting bursts in progress. All burst types can sustain continuous data flow.


switching characteristics for synchronous-burst SRAM cycles^{†‡} (see Figure 16 and Figure 17)

NO.		PARAMETER			UNIT
			MIN	MAX	
1	td(EKOH-CEV)	Delay time, ECLKOUT high to CEx valid	1.5	6	ns
2	td(EKOH-BEV)	Delay time, ECLKOUT high to BEx valid	1.5	6	ns
3	td(EKOH-BEIV)	Delay time, ECLKOUT high to BEx invalid	1.5	6	ns
4	td(EKOH-EAV)	Delay time, ECLKOUT high to EAx valid	1.5	6	ns
5	td(EKOH-EAIV)	Delay time, ECLKOUT high to EAx invalid	1.5	6	ns
8	td(EKOH-ADSV)	Delay time, ECLKOUT high to ARE/SDCAS/SSADS valid	1.5	6	ns
9	t _d (EKOH-OEV)	Delay time, ECLKOUT high to, AOE/SDRAS/SSOE valid	1.5	6	ns
10	t _d (EKOH-EDV)	Delay time, ECLKOUT high to EDx valid	1.5	6	ns
11	td(EKOH-EDIV)	Delay time, ECLKOUT high to EDx invalid	1.5	6	ns
12	td(EKOH-WEV)	Delay time, ECLKOUT high to AWE/SDWE/SSWE valid	1.5	6	ns

[†] The 'C6711 SBSRAM interface takes advantage of the internal burst counter in the SBSRAM. Accesses default to incrementing 4-word bursts but random bursts and decrementing bursts are done by interrupting bursts in progress. All burst types can sustain continuous data flow.


[‡] ARE/SDCAS/SSADS, AOE/SDRAS/SSOE, and AWE/SDWE/SSWE operate as SSADS, SSOE, and SSWE, respectively, during SBSRAM accesses.

SYNCHRONOUS-BURST MEMORY TIMING (CONTINUED)

[†] ARE/SDCAS/SSADS, AOE/SDRAS/SSOE, and AWE/SDWE/SSWE operate as SSADS, SSOE, and SSWE, respectively, during SBSRAM accesses.

Figure 16. SBSRAM Read Timing

[†] ARE/SDCAS/SSADS, AOE/SDRAS/SSOE, and AWE/SDWE/SSWE operate as SSADS, SSOE, and SSWE, respectively, during SBSRAM accesses.

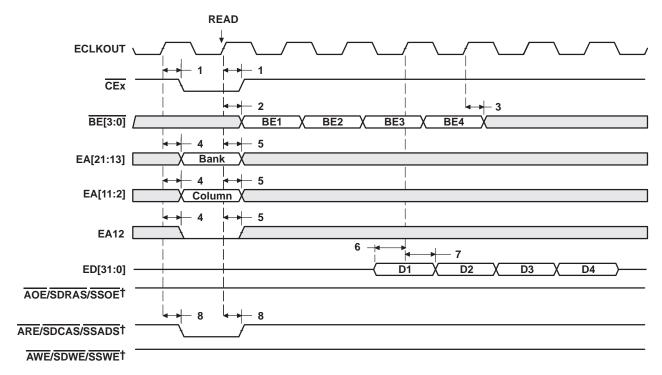
Figure 17. SBSRAM Write Timing

ADVANCE INFORMATION

SYNCHRONOUS DRAM TIMING

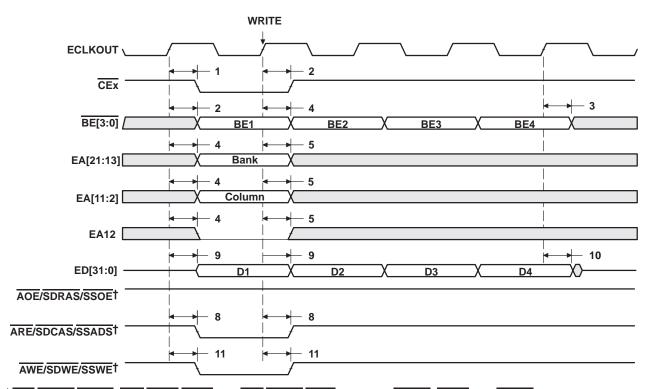
timing requirements for synchronous DRAM cycles† (see Figure 18)

NO.			'C671		UNIT
			MIN	MAX	
6	t _{su} (EDV-EKOH)	Setup time, read EDx valid before ECLKOUT high	1.5		ns
7	th(EKOH-EDV)	Hold time, read EDx valid after ECLKOUT high	1		ns


[†] The 'C6711 SDRAM interface takes advantage of the internal burst counter in the SDRAM. Accesses default to incrementing 4-word bursts, but random bursts and decrementing bursts are done by interrupting bursts in progress. All burst types can sustain continuous data flow.

switching characteristics for synchronous DRAM cycles^{†‡} (see Figure 18–Figure 24)

NO.	PARAMETER		'C6711-100 'C6711-150		UNIT
			MIN	MAX	
1	td(EKOH-CEV)	Delay time, ECLKOUT high to CEx valid	1.5	6	ns
2	td(EKOH-BEV)	Delay time, ECLKOUT high to BEx valid	1.5	6	ns
3	td(EKOH-BEIV)	Delay time, ECLKOUT high to BEx invalid	1.5	6	ns
4	td(EKOH-EAV)	Delay time, ECLKOUT high to EAx valid	1.5	6	ns
5	td(EKOH-EAIV)	Delay time, ECLKOUT high to EAx invalid	1.5	6	ns
8	td(EKOH-CASV)	Delay time, ECLKOUT high to ARE/SDCAS/SSADS valid	1.5	6	ns
9	td(EKOH-EDV)	Delay time, ECLKOUT high to EDx valid	1.5	6	ns
10	td(EKOH-EDIV)	Delay time, ECLKOUT high to EDx invalid	1.5	6	ns
11	td(EKOH-WEV)	Delay time, ECLKOUT high to AWE/SDWE/SSWE valid	1.5	6	ns
12	td(EKOH-RAS)	Delay time, ECLKOUT high to, AOE/SDRAS/SSOE valid	1.5	6	ns


[†] The 'C6711 SDRAM interface takes advantage of the internal burst counter in the SDRAM. Accesses default to incrementing 4-word bursts, but random bursts and decrementing bursts are done by interrupting bursts in progress. All burst types can sustain continuous data flow.

[‡] ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE operate as SDCAS, SDWE, and SDRAS, respectively, during SDRAM accesses.

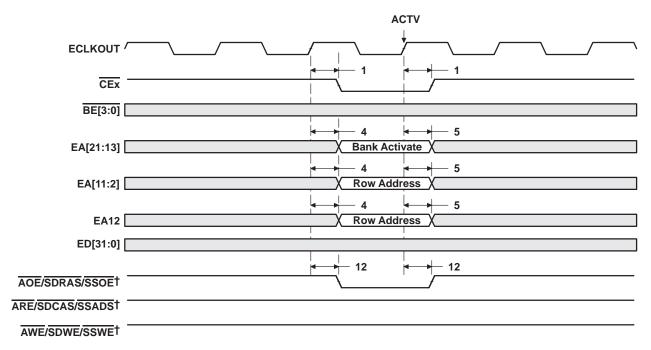

[†] ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE operate as SDCAS, SDWE, and SDRAS, respectively, during SDRAM accesses.

Figure 18. SDRAM Read Command (CAS Latency 3)

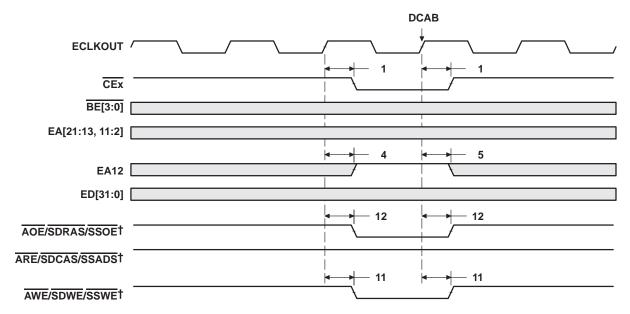
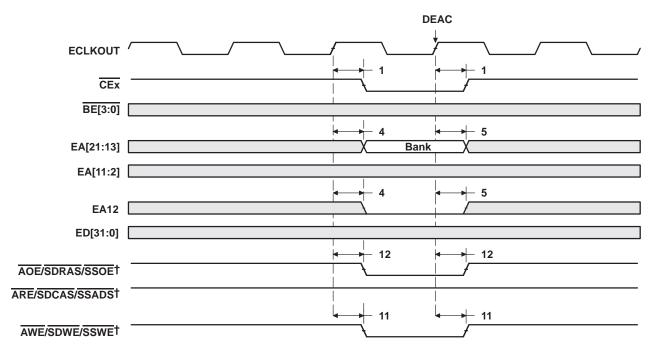
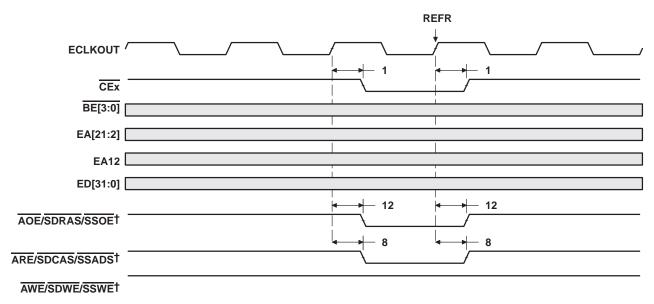

[†] ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE operate as SDCAS, SDWE, and SDRAS, respectively, during SDRAM accesses.

Figure 19. SDRAM Write Command

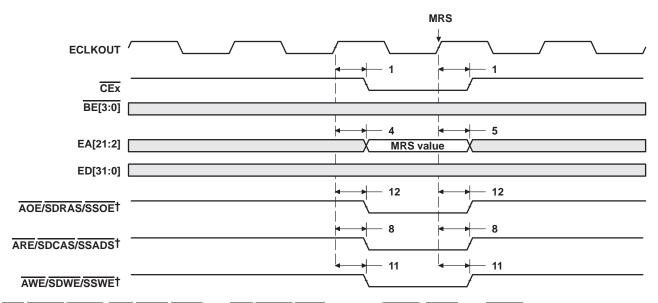
[†] ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE operate as SDCAS, SDWE, and SDRAS, respectively, during SDRAM accesses.


Figure 20. SDRAM ACTV Command

[†] ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE operate as SDCAS, SDWE, and SDRAS, respectively, during SDRAM accesses.


Figure 21. SDRAM DCAB Command

[†] ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE operate as SDCAS, SDWE, and SDRAS, respectively, during SDRAM accesses.


Figure 22. SDRAM DEAC Command

[†] ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE operate as SDCAS, SDWE, and SDRAS, respectively, during SDRAM accesses.

Figure 23. SDRAM REFR Command

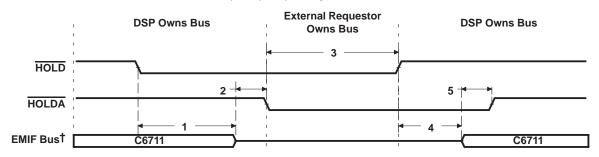
[†] ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE operate as SDCAS, SDWE, and SDRAS, respectively, during SDRAM accesses.

Figure 24. SDRAM MRS Command

HOLD/HOLDA TIMING

timing requirements for the HOLD/HOLDA cycles† (see Figure 25)

NO.			-100 -150	UNIT
		MIN	MAX	
3	toh(HOLDAL-HOLD Hold time, HOLD low after HOLDA low	Е		ns


[†]E = ECLKIN period in ns

switching characteristics for the HOLD/HOLDA cycles^{†‡} (see Figure 25)

NO.			'C671′ 'C671′	UNIT	
			MIN	MAX]
1	^t R(HOLDL-EMHZ)	Response time, HOLD low to EMIF Bus high impedance	2E	§	ns
2	^t d(EMHZ-HOLDAL)	Delay time, EMIF Bus high impedance to HOLDA low	0	2E	ns
4	^t R(HOLDH-EMLZ)	Response time, HOLD high to EMIF Bus low impedance	2E	7E	ns
5	td(EMLZ-HOLDAH)	Delay time, EMIF Bus low impedance to HOLDA high	0	2E	ns

[†]E = ECLKIN period in ns

[§] All pending EMIF transactions are allowed to complete before HOLDA is asserted. If no bus transactions are occurring, then the minimum delay time can be achieved. Also, bus hold can be indefinitely delayed by setting NOHOLD = 1.

[†] EMIF Bus consists of CE[3:0], BE[3:0], ED[31:0], EA[21:2], ARE/SDCAS/SSADS, AOE/SDRAS/SSOE, and AWE/SDWE/SSWE.

Figure 25. HOLD/HOLDA Timing

[‡] EMIF Bus consists of CE[3:0], BE[3:0], ED[31:0], EA[21:2], ARE/SDCAS/SSADS, AOE/SDRAS/SSOE, and AWE/SDWE/SSWE.

RESET TIMING

timing requirements for reset (see Figure 26)

NO.			'C6711 'C6711		UNIT
			MIN	MAX	
1	tw(RST)	Width of the RESET pulse (PLL stable)	10		CLKOUT1 cycles
		Width of the RESET pulse (PLL needs to sync up)†	250		μs

[†] The RESET signal is not connected internally to the clock PLL circuit. The PLL, however, may need up to 250 µs to stabilize following device power up or after PLL configuration has been changed. During that time, RESET must be asserted to ensure proper device operation. See the clock PLL section for PLL lock times.

switching characteristics during reset^{‡§} (see Figure 26)

NO.	PARAMETER		'C671 'C671		UNIT	
			MIN	MIN MAX		
2	tR(RST)	Response time to change of value in RESET signal	2		CLKOUT1 cycles	
3	^t R(RSTL-ECKI)	Response time, RESET active to ECLKIN synchronized	2E		ns	
4	tR(RSTH-ECKI)	Response time, RESET inactive to ECLKIN synchronized	3E		ns	
5	td(ECKIH-EMIFHZ)	Delay time, ECLKIN high to EMIF group high impedance	-1	10	ns	
6	td(ECKIH-EMIFV)	Delay time, ECLKIN high to EMIF group valid	-1	10	ns	
7	td(CKO1H-LOWIV)	Delay time, CLKOUT1 high to low group invalid	-1	10	ns	
8	td(CKO1H-LOWV)	Delay time, CLKOUT1 high to low group valid	-1	10	ns	
9	td(CKO1H-HIGHIV)	Delay time, CLKOUT1 high to high group invalid	-1	10	ns	
10	td(CKO1H-HIGHV)	Delay time, CLKOUT1 high to high group valid	-1	10	ns	
11	td(CKO1H-ZHZ)	Delay time, CLKOUT1 high to Z group high impedance	-1	10	ns	
12	td(CKO1H-ZV)	Delay time, CLKOUT1 high to Z group valid	-1	10	ns	

‡E = ECLKIN period in ns

§ EMIF group consists of: Low group consists of:

EA[21:2], ED[31:0], CE[3:0], BE[3:0], ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE **BUSREQ**

HRDY, HINT, and HOLDA High group consists of:

HD[15:0], CLKX0, CLKX1, FSX0, FSX1, DX0, DX1, CLKR0, CLKR1, FSR0, FSR1, TOUT0, and TOUT1. Z group consists of:

RESET TIMING (CONTINUED)

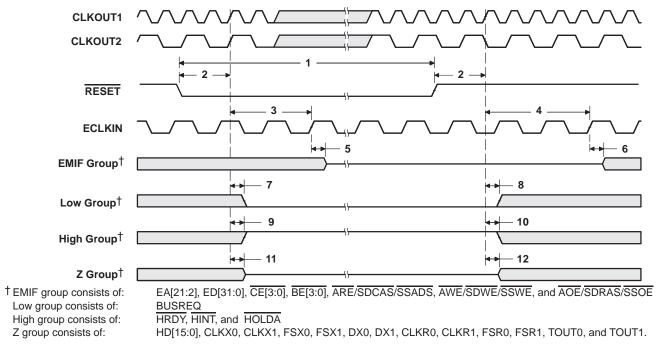


Figure 26. Reset Timing

EXTERNAL INTERRUPT/RESET TIMING

timing requirements for external interrupts[†] (see Figure 27)

NO.			'C6711-100 'C6711-150			
		MIN	MAX			
1	t _W (ILOW) Width of the interrupt pulse low	2E		ns		
2	t _W (IHIGH) Width of the interrupt pulse high	2E		ns		

[†]E = ECLKIN period in ns

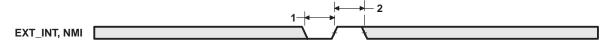


Figure 27. External/NMI Interrupt Timing

HOST-PORT INTERFACE TIMING

timing requirements for host-port interface cycles^{†‡} (see Figure 28, Figure 29, Figure 30, and Figure 31)

NO.				1-100 1-150	UNIT
			MIN	MAX	
1	t _{su(SELV-HSTBL)}	Setup time, select signals§ valid before HSTROBE low	5		ns
2	th(HSTBL-SELV)	Hold time, select signals§ valid after HSTROBE low	2		ns
3	tw(HSTBL)	Pulse duration, HSTROBE low	4P		ns
4	tw(HSTBH)	Pulse duration, HSTROBE high between consecutive accesses	4P		ns
10	tsu(SELV-HASL)	Setup time, select signals§ valid before HAS low	5		ns
11	th(HASL-SELV)	Hold time, select signals§ valid after HAS low	2		ns
12	t _{su(HDV-HSTBH)}	Setup time, host data valid before HSTROBE high	5		ns
13	th(HSTBH-HDV)	Hold time, host data valid after HSTROBE high	2		ns
14	^t h(HRDYL-HSTBL)	Hold time, HSTROBE low after HRDY low. HSTROBE should not be inactivated until HRDY is active (low); otherwise, HPI writes will not complete properly.	2		ns

[†]HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.

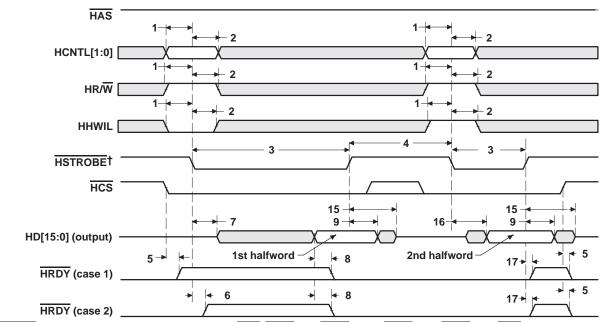
switching characteristics during host-port interface cycles^{†‡} (see Figure 28, Figure 29, Figure 30, and Figure 31)

NO.	NO. PARAMETER		'C671 'C671	UNIT	
			MIN	MAX	
5	td(HCS-HRDY)	Delay time, HCS to HRDY¶	1	7	ns
6	td(HSTBL-HRDYH)	Delay time, HSTROBE low to HRDY high#	3	12	ns
7	toh(HSTBL-HDLZ)	Output hold time, HD low impedance after HSTROBE low for an HPI read	2		ns
8	^t d(HDV-HRDYL)	Delay time, HD valid to HRDY low	2P – 4	2P	ns
9	toh(HSTBH-HDV)	Output hold time, HD valid after HSTROBE high	3	12	ns
15	td(HSTBH-HDHZ)	Delay time, HSTROBE high to HD high impedance	3	12	ns
16	t _d (HSTBL-HDV)	Delay time, HSTROBE low to HD valid	3	12	ns
17	^t d(HSTBH-HRDYH)	Delay time, HSTROBE high to HRDY high	3	12	ns

[†] HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.

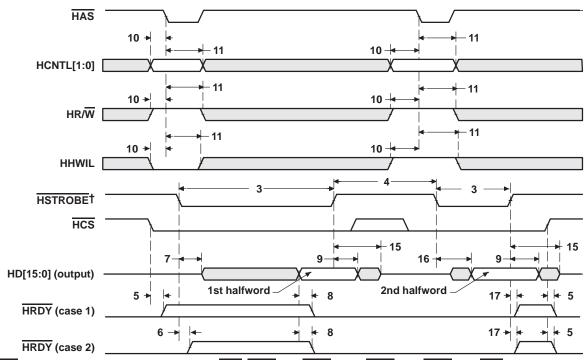
[‡] The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.

[§] Select signals include: HCNTL[1:0], HR/W, and HHWIL.


[‡] The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.

[¶]HCS enables HRDY, and HRDY is always low when HCS is high. The case where HRDY goes high when HCS falls indicates that HPI is busy completing a previous HPID write or READ with autoincrement.

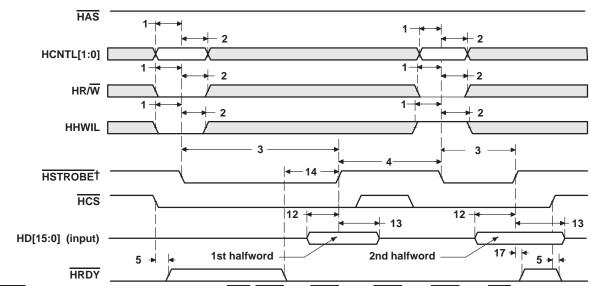
[#] This parameter is used during an HPID read. At the beginning of the first half-word transfer on the falling edge of HSTROBE, the HPI sends the request to the DMA auxiliary channel, and HRDY remains high until the DMA auxiliary channel loads the requested data into HPID.


This parameter is used after the second half-word of an HPID write or autoincrement read. HRDY remains low if the access is not an HPID write or autoincrement read. Reading or writing to HPIC or HPIA does not affect the HRDY signal.

HOST-PORT INTERFACE TIMING (CONTINUED)

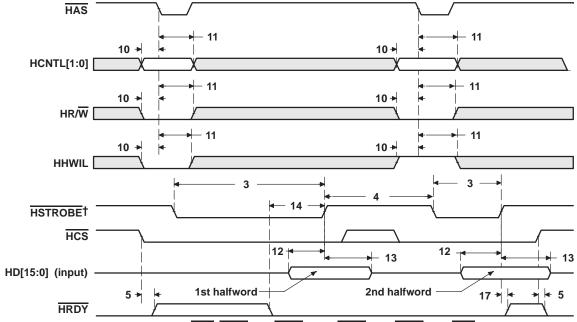
† HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.

Figure 28. HPI Read Timing (HAS Not Used, Tied High)



† HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.

Figure 29. HPI Read Timing (HAS Used)



HOST-PORT INTERFACE TIMING (CONTINUED)

† HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.

Figure 30. HPI Write Timing (HAS Not Used, Tied High)

 \dagger HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.

Figure 31. HPI Write Timing (HAS Used)

MULTICHANNEL BUFFERED SERIAL PORT TIMING

timing requirements for McBSP^{†‡} (see Figure 32)

NO.				'C6711 'C6711		UNIT
		MIN	MAX			
2	t _C (CKRX)	Cycle time, CLKR/X	CLKR/X ext	2P		ns
3	tw(CKRX)	Pulse duration, CLKR/X high or CLKR/X low	CLKR/X ext	P – 1		ns
5		Catua time automal ECD high hafara CLVD law	CLKR int	9		200
5	t _{su} (FRH-CKRL)	Setup time, external FSR high before CLKR low	CLKR ext	1		ns
6		Hold time automol ECD high offer CLVD law	CLKR int	6		ns
6	th(CKRL-FRH)	Hold time, external FSR high after CLKR low	CLKR ext	3		
7		Catua time DD valid hafara CLVD lavy	CLKR int	8		
,	tsu(DRV-CKRL)	Setup time, DR valid before CLKR low	CLKR ext	0		ns
8	.	Lold time. DD volid ofter CLVD law	CLKR int	3		
0	th(CKRL-DRV)	Hold time, DR valid after CLKR low	CLKR ext	3		ns
40		Catual time automal ECV high hafara CLIVV laur	CLKX int	9		
10	t _{su} (FXH-CKXL)	Setup time, external FSX high before CLKX low	CLKX ext	1		ns
11	t	Hold time, external ESV high ofter CLKV law	CLKX int	6		ns
11	th(CKXL-FXH)	Hold time, external FSX high after CLKX low	CLKX ext	3		118

† CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted. ‡ P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.

MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)

switching characteristics for McBSP^{†‡} (see Figure 32)

NO.		PARAMETER		'C6711 'C6711		UNIT
				MIN	MAX	
1	td(CKSH-CKRXH)	Delay time, CLKS high to CLKR/X high for internal CLKR/X generated from CLKS input		4	10	ns
2	t _C (CKRX)	Cycle time, CLKR/X	CLKR/X int	2P§		ns
3	tw(CKRX)	Pulse duration, CLKR/X high or CLKR/X low	CLKR/X int	C – 1¶	C + 1¶	ns
4	^t d(CKRH-FRV)	Delay time, CLKR high to internal FSR valid	CLKR int	-2	3	ns
9	t versus = n n Delevitime CLIVV high to internal ECV valid	CLKX int	-2	3	no	
9	td(CKXH-FXV)	Delay time, CLKX high to internal FSX valid	CLKX ext	3	9	ns
12		Disable time, DX high impedance following last data bit	CLKX int	-1	4	
12	^t dis(CKXH-DXHZ)	from CLKX high	CLKX ext	3	9	ns
13	•	Delay time CLIVY high to DV valid	CLKX int	-1 + D#	4 + D#	
13	td(CKXH-DXV)	Delay time, CLKX high to DX valid	CLKX ext	3 + D#	9 + D#	ns
14		Delay time, FSX high to DX valid	FSX int	-1	3	20
14	^t d(FXH-DXV)	ONLY applies when in data delay 0 (XDATDLY = 00b) mode	FSX ext	3	9	ns

[†] CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted.

= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero

= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero

 $[\]ddagger$ Minimum delay times also represent minimum output hold times. \S P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.

 $[\]P C = H \text{ or } L$

S = sample rate generator input clock = 2P if CLKSM = 1 (P = 1/CPU clock frequency)

⁼ sample rate generator input clock = P clks if CLKSM = 0 (P clks = CLKS period)

H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even

L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even

[#] Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.

D = extra delay from CLKX high to DX vaild = 0 if DXENA = 0

⁼ extra delay from CLKX high to DX vaild = 2P if DXENA = 1

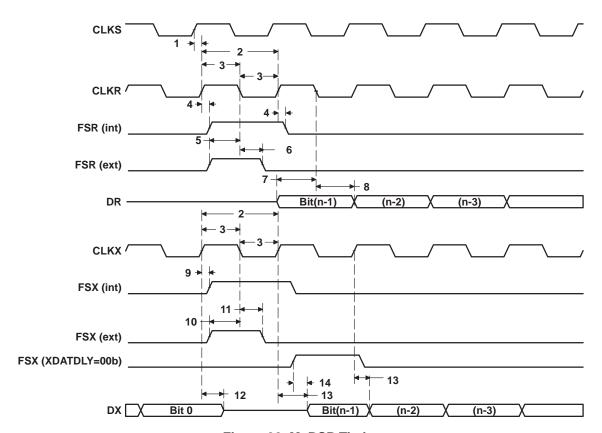


Figure 32. McBSP Timings

MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)

timing requirements for FSR when GSYNC = 1 (see Figure 33)

NO.		'C6711-100 'C6711-150 MIN MAX		UNIT
1	t _{su(FRH-CKSH)} Setup time, FSR high before CLKS high	4		ns
2	th(CKSH-FRH) Hold time, FSR high after CLKS high	4		ns



Figure 33. FSR Timing When GSYNC = 1

timing requirements for McBSP as SPI master or slave: CLKSTP = 10b, CLKXP = $0^{\dagger \ddagger}$ (see Figure 34)

	NO.		'C671 'C671			UNIT
NO.			MASTER		SLAVE	
		MIN	MAX	MIN	MAX	
4	t _{su(DRV-CKXL)} Setup time, DR valid before CLKX low	12		2 – 6P		ns
5	th(CKXL-DRV) Hold time, DR valid after CLKX low	4		5 + 12P	_	ns

[†] The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.

switching characteristics for McBSP as SPI master or slave: CLKSTP = 10b, CLKXP = $0^{+\frac{1}{2}}$ (see Figure 34)

					711-100 711-150		
NO.		PARAMETER	MAS	ΓER§	SL	AVE	UNIT
			MIN	MAX	MIN	MAX	
1	th(CKXL-FXL)	Hold time, FSX low after CLKX low¶	T – 2	T + 3			ns
2	td(FXL-CKXH)	Delay time, FSX low to CLKX high#	L-2	L+3			ns
3	td(CKXH-DXV)	Delay time, CLKX high to DX valid	-2	4	6P + 4	10P + 17	ns
6	tdis(CKXL-DXHZ)	Disable time, DX high impedance following last data bit from CLKX low	L-2	L+3			ns
7	tdis(FXH-DXHZ)	Disable time, DX high impedance following last data bit from FSX high			2P + 3	6P + 17	ns
8	td(FXL-DXV)	Delay time, FSX low to DX valid			4P + 2	8P + 17	ns

[†] The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.

H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even

= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero

L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even

= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero

CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP

CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP

For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

[§]S = sample rate generator input clock = 2P if CLKSM = 1 (P = 1/CPU clock frequency)

⁼ sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)

T = CLKX period = (1 + CLKGDV) * S

[¶] FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX and FSR is inverted before being used internally.

[#]FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock (CLKX).

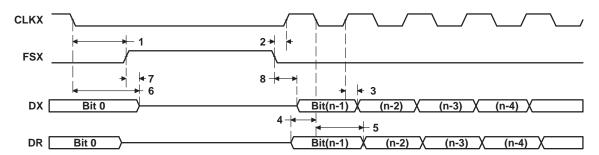


Figure 34. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0

timing requirements for McBSP as SPI master or slave: CLKSTP = 11b, CLKXP = $0^{\dagger \ddagger}$ (see Figure 35)

			'C671 'C671		0		
NO.		MAST	ER	SLA\	/E	UNIT	
		MIN	MAX	MIN	MAX		
4	t _{su(DRV-CKXH)} Setup time, DR valid before CLKX high	12		2 –6P		ns	
5	th(CKXH-DRV) Hold time, DR valid after CLKX high	4		5 + 12P		ns	

[†] The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.

switching characteristics for McBSP as SPI master or slave: CLKSTP = 11b, CLKXP = 0^{+1} (see Figure 35)

NO.					711-100 711-150		
		PARAMETER	MAST	ΓER§	SL	AVE	UNIT
			MIN	MAX	MIN	MAX	ns ns ns
1	th(CKXL-FXL)	Hold time, FSX low after CLKX low¶	L-2	L+3			ns
2	td(FXL-CKXH)	Delay time, FSX low to CLKX high#	T-2	T + 3			ns
3	td(CKXL-DXV)	Delay time, CLKX low to DX valid	-2	4	6P + 4	10P + 17	ns
6	tdis(CKXL-DXHZ)	Disable time, DX high impedance following last data bit from CLKX low	-2	4	6P + 3	10P + 17	ns
7	t _d (FXL-DXV)	Delay time, FSX low to DX valid	H – 2	H + 4	4P + 2	8P + 17	ns

[†] The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.

T = CLKX period = (1 + CLKGDV) * S

H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even

= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero

_ = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even

= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero

CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP

CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP

[#]FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock (CLKX).

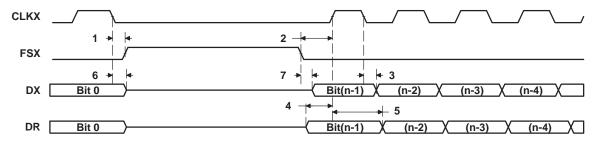


Figure 35. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0

For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

[‡] For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

[§]S = sample rate generator input clock = 2P if CLKSM = 1 (P = 1/CPU clock frequency)

⁼ sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)

[¶] FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX and FSR is inverted before being used internally.

MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)

timing requirements for McBSP as SPI master or slave: CLKSTP = 10b, CLKXP = 1^{†‡} (see Figure 36)

				1-100 1-150		
NO.		MAST	ER	SLA\	/E	ns
		MIN	MAX	MIN	MAX	
4	t _{su(DRV-CKXH)} Setup time, DR valid before CLKX high	12		2 – 6P		ns
5	th(CKXH-DRV) Hold time, DR valid after CLKX high	4		5 + 12P		ns

The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.

switching characteristics for McBSP as SPI master or slave: CLKSTP = 10b, CLKXP = 1^{\ddagger} (see Figure 36)

NO.				'C6711-100 'C6711-150				
		PARAMETER	MAS	ΓER§	SL	UNIT		
			MIN	MAX	MIN	MAX		
1	th(CKXH-FXL)	Hold time, FSX low after CLKX high¶	T – 2	T + 3			ns	
2	^t d(FXL-CKXL)	Delay time, FSX low to CLKX low#	H – 2	H+3			ns	
3	^t d(CKXL-DXV)	Delay time, CLKX low to DX valid	-2	4	6P + 4	10P + 17	ns	
6	tdis(CKXH-DXHZ)	Disable time, DX high impedance following last data bit from CLKX high	H – 2	H + 3			ns	
7	tdis(FXH-DXHZ)	Disable time, DX high impedance following last data bit from FSX high			2P + 3	6P + 17	ns	
8	^t d(FXL-DXV)	Delay time, FSX low to DX valid			4P + 2	8P + 17	ns	

The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.

H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even

= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero

L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even

= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero

CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP

CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP

[‡] For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

[‡] For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

[§] S = sample rate generator input clock = 2P if CLKSM = 1 (P = 1/CPU clock frequency)

⁼ sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)

T = CLKX period = (1 + CLKGDV) * S

[¶] FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX and FSR is inverted before being used internally.

[#]FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock (CLKX).

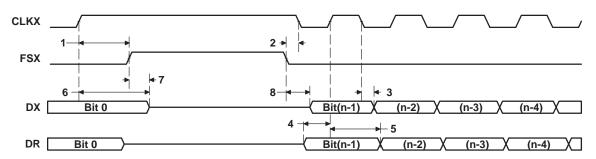


Figure 36. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1

MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)

timing requirements for McBSP as SPI master or slave: CLKSTP = 11b, CLKXP = 1^{†‡} (see Figure 37)

				1-100 1-150		
NO.		MAST	ER	SLA\	/E	ns
		MIN	MAX	MIN	MAX	
4	t _{su(DRV-CKXH)} Setup time, DR valid before CLKX high	12		2 – 6P		ns
5	th(CKXH-DRV) Hold time, DR valid after CLKX high	4		5 + 12P		ns

[†] The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.

switching characteristics for McBSP as SPI master or slave: CLKSTP = 11b, CLKXP = 1^{\ddagger} (see Figure 37)

					711-100 711-150		
NO.		PARAMETER	MAST	ΓER§	SL	AVE	UNIT
			MIN	MAX	MIN	MAX	
1	th(CKXH-FXL)	Hold time, FSX low after CLKX high¶	H-2	H + 3			ns
2	td(FXL-CKXL)	Delay time, FSX low to CLKX low#	T-2	T + 1			ns
3	td(CKXH-DXV)	Delay time, CLKX high to DX valid	-2	4	6P + 4	10P + 17	ns
6	^t dis(CKXH-DXHZ)	Disable time, DX high impedance following last data bit from CLKX high	-2	4	6P + 3	10P + 17	ns
7	t _d (FXL-DXV)	Delay time, FSX low to DX valid	L-2	L + 4	4P + 2	8P + 17	ns

[†] The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.

H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even

= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero

L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even

= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero

CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP

CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP

[‡] For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

[‡] For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

[§] S = sample rate generator input clock = 2P if CLKSM = 1 (P = 1/CPU clock frequency)

⁼ sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)

T = CLKX period = (1 + CLKGDV) * S

[¶] FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX and FSR is inverted before being used internally.

[#]FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock (CLKX).

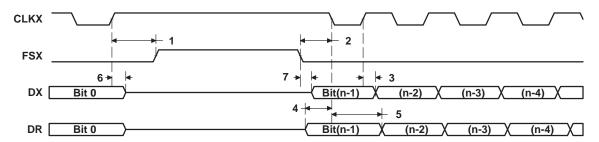


Figure 37. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1

TIMER TIMING

timing requirements for timer inputs[†] (see Figure 38)

NO.	NO.		'C6711 'C6711		UNIT
			MIN	MIN MAX	
1	^t w(TINPH)	Pulse duration, TINP high	2P		ns
2	tw(TINPL)	Pulse duration, TINP low	2P		ns

 $[\]dagger$ P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.

switching characteristics for timer outputs[†] (see Figure 38)

NO.	PARAMETER		'C6711 'C6711 MIN	 UNIT	
3	t _{w(TOUTH)} Pulse dur	ation, TOUT high		4P-3	ns
4	t _{w(TOUTL)} Pulse dur	ation, TOUT low		4P-3	ns

† P = 1/CPU clock frequency in ns. For example, when running parts at 150 MHz, use P = 6.7 ns.

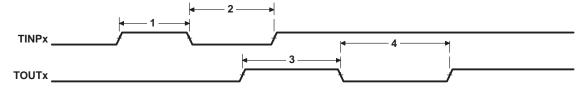
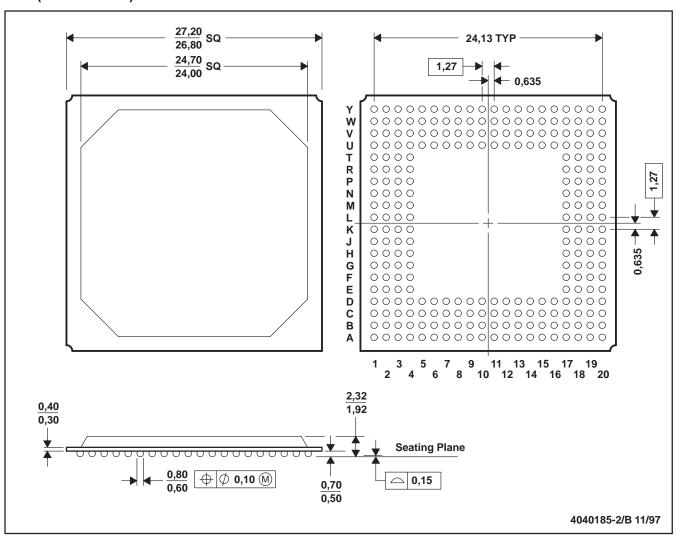



Figure 38. Timer Timing

MECHANICAL DATA

GFN (S-PBGA-N256)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

thermal resistance characteristics (S-PBGA package)

NO		°C/W	Air Flow LFPM†
1	R⊝ _{JC} Junction-to-case	6.4	N/A
2	RΘ _{JA} Junction-to-free air	25.2	0
3	RΘ _{JA} Junction-to-free air	23.1	100
4	R⊖ _{JA} Junction-to-free air	21.9	250
5	RΘ _{JA} Junction-to-free air	20.6	500

†LFPM = Linear Feet Per Minute

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated