SATELLITE SOUND AND VIDEO PROCESSORS

SOUND

- TWOINDEPENDENTSOUNDDEMODULATORS
- PLL DEMODULATION WITH 5-10MHz FREQUENCY SYNTHESIS
- PROGRAMMABLE FM DEMODULATOR BANDWIDTH ACCOMODATING FM DEVIATIONS FROM $\pm 30 \mathrm{kHz}$ TILL $\pm 400 \mathrm{kHz}$
- PROGRAMMABLE 50/75 μ s OR NO DE-EMPHASIS
- DYNAMIC NOISE REDUCTION
- ONE OR TWO AUXILIARY AUDIO INPUTS AND OUTPUTS
- GAIN CONTROLLED AND MUTEABLE AUDIO OUTPUTS
- HIGH IMPEDANCE MODE AUDIO OUTPUTS FOR TWIN TUNER APPLICATIONS

VIDEO

- COMPOSITE VIDEO 6-bit 0 to 12.7 dB GAIN CONTROL
- COMPOSITE VIDEO SELECTABLE INVERTER
- TWO SELECTABLE VIDEO DE-EMPHASIS NETWORKS
- 4×2 VIDEO MATRIX
- HIGH IMPEDANCE MODE VIDEO OUTPUTS FOR TWIN TUNER APPLICATIONS

MISCELLANEOUS

- 22kHz TONE GENERATIONFORLNBCONTROL
- ${ }^{2} \mathrm{C}$ BUS CONTROL :

CHIP ADDRESSES = 06HEX

- LOW POWER STAND-BY MODE WITH ACTIVE AUDIO AND VIDEOMATRIXES

DESCRIPTION

The STV0042A BICMOS integrated circuit realizes all the necessary signal processing from the tuner to the Audio/Video input and output connectors regardless the satellite system.
The STV0042 is intended for low cost satellite receiver application.

PRODUCT PREVIEW

PIN CONNECTIONS

PIN ASSIGNMENT

Pin Number	Name	Function
1	FC R	Audio Roll-off Right
3	SUM OUT	Noise Reduction Summing Output
2	PK IN	Noise Reduction Peak Detector Input
4	VOL R	Volume Controlled Audio Out Right
5	S1 VID OUT	TV-Scart 1 Video Output
6	S2 VID OUT	VCR-Scart 2 Video Output
7	VOL L	Volume Controlled Audio Out Left
8	S2 VID RTN	VCR-Scart 2 Video Return
9	S2 OUT L	Fixed Level Audio Output Left
10	CLAMP IN	Sync-Tip Clamp Input
11	S2 OUT R	Fixed Level Audio Output Right
12	UNCL DEEM	Unclamped Deemphasized Video Output
13	VIDEEM2/22kHz	Video Deemphasis 2 or 22kHz Output
14	V 12V	Video 12V Supply
15	VIDEEM1	Video Deemphasis 1
16	V GND	Video Ground
17	B-BAND IN	Base Band Input
18	S2 RTN L	Auxiliary Audio Return Left
19	S2 RTN R	Auxiliary Audio Return Right
20	FM IN	FM Demodulator Input
21	AGC L	AGC Peak Detector Capacitor Left
22	SCL	$\mathrm{I}^{2} \mathrm{C}$ Bus Clock
23	SDA	$I^{2} \mathrm{C}$ Bus Data
24	XTL	4/8MHz Quartz Crystal or Clock Input
25	$\mathrm{V}_{\text {DD }} 5 \mathrm{~V}$	Digital 5V Power Supply
26	GND 5V	Digital Power Ground
27	CPUMP L	FM PLL Charge Pump Capacitor Left
28	DET L	FM PLL Filter Left
29	U75 L	Deemphasis Time Constant Left
30	AMPLK L	Amplitude Detector Capacitor Left
31	AGC R	AGC Peak Detector Capacitor Right
32	A GND L	Audio Ground
33	$\mathrm{V}_{\text {REF }}$	2.4V Reference
34	A 12V	Audio 12V Supply
35	AMPLK R	Amplitude Detector Capacitor Left
36	DET R	FM PLL Filter Right
37	U75 R	Deemphasis Time Constant Right
38	CPUMP R	FM PLL Charge Pump Capacitor Right
39	$\mathrm{I}_{\text {REF }}$	Current Reference Resistor
40	PK OUT	Noise Reduction Peak Detector Output
41	FC L	Audio Roll-off Left
42	A GND R	Audio Ground

PIN DESCRIPTION

1 - Sound Detection FMIN

This is the input to the two FM demodulators. It feeds two AGC amplifiers with a bandwidth of at least $5-10 \mathrm{MHz}$. There is one amplifier for each channel both with the same input. The AGC amplifiers have a 0 dB to +40 dB range.
$\mathrm{Z}_{\mathrm{IN}}=5 \mathrm{k} \Omega$, Min input $=2 \mathrm{mV}$ PP per subcarrier.
Max input $=500 \mathrm{mV}$ PP (max when all inputs are added together, when their phases coincide).

AGC L, AGC R

AGC amplifiers peak detector capacitor connections. The output current has an attack/decayratio of $1: 32$. That is the ramp up current is approximately $5 \mu \mathrm{~A}$ and decay current is approximately $160 \mu \mathrm{~A} .11 \mathrm{~V}$ gives maximum gain. These pins are also driven by a circuit monitoring the voltage on AMPLKL and AMPLK R respectively.

AMPLK L, AMPLK R

The outputs of amplitude detectors LEFT and RIGHT. Each requires a capacitor and a resistor to GND. The voltage across this is used to decide whether there is a signal being received by the FM detector. The level detector output drives a bit in the detector $\mathrm{I}^{2} \mathrm{C}$ bus control block.
AMPLK L and AMPLK R drive also respectively AGC L and AGC R. For instance when the voltage on AMPLK L is $>\left(V_{\text {REF }}+1 \mathrm{~V}_{\mathrm{BE}}\right)$ it sinks current to $V_{\text {Ref }}$ from pin AGCL to reduce the AGC gain.

DET L, DET R

Respectively the outputs of the FM phase detector left and right. This is for the connection of an external loop filter for the PLL. The output is a push-pull current source.

CPUMP L, CPUMP R

The output from the frequency synthesizer is a push-pullcurrent source which requiresa capacitor to ground to derive a voltage to pull the VCO to the target frequency. The output is $\pm 100 \mu \mathrm{~A}$ to achieve lock and $\pm 2 \mu$ A during lock to provide a tracking time constant of approximately 10 Hz .

VREF

This is the audio processor voltage reference used through out the FM/audio section of the chip. As such it is essential that it is well decoupled to ground to reduce as far as possible the risk of crosstalk and noise injection. This voltage is derived directly from the bandgap reference of 2.4 V . The Vref output can sink up to $500 \mu \mathrm{~A}$ in normal operation and $100 \mu \mathrm{~A}$ when in stand-by.

IREF

This is a buffered $V_{\text {ReF }}$ outputto an off-chip resistor to produce an accurate current reference, within
the chip, for the biasing of amplifiers with current outputs into filters. It is also required for the Noise reduction circuit to provide accurate roll-off frequencies.
This pin should not be decoupled as it would inject current noise. The target current is $50 \mu \mathrm{~A} \pm 2 \%$ thus a $47.5 \mathrm{k} \Omega \pm 1 \%$ is required.

A 12V

Double bonded main power pin for the audio/FM section of the chip. The two bond connections are to the ESD and to power the circuit and on chip regulators/references.

A GND L

This ground pin is double bonded:

1) to channel LEFT : RF section \& VCO,
2) to both AGC amplifiers, channel LEFT and RIGHT audio filter section.

A GND R

This ground pin is double bonded:

1) to the volume control, noise reduction system, $E S D+M u x+V_{\text {REF }}$
2) to channel right: RF section \& VCO

2 - Baseband Audio Processing PK OUT

The noise reduction control loop peak detector output requires a capacitor to ground from this pin, and a resistor to $\mathrm{V}_{\text {REF }}$ pin to give some accurate decaytimeconstant.An on chip $5 \mathrm{k} \Omega \pm 25 \%$ resistor and external capacitor give the attack time.

PK IN

This pin is an input to a control loop peak detector and is connectedto the output of the offchip control loop band pass filter.

SUM OUT

The two audio demodulated signals are summed together by means of an amplifier with a gain of 0.5. If both inputs are 1 V then the output is 1 V . This amplifier has an input follower buffer which gives a $V_{B E}$ offset in the DC bias voltage. Thus the filter which this amplifier drives must include AC coupling to the next stage (PK IN Pin).

FC L, FC R

The variable bandwidth transconductance amplifier has a current output which is variable depending on the input signal amplitude as defined by the control loop of the noise reduction. The output current is then dumped into an off-chip capacitor which together with the accurate current reference define the min/max rolloff frequencies. A resistor in series with a capacitor is connected to ground from these two pins.

PIN DESCRIPTION (continued)

U75 L, U75 R

External deemphasis networks for channels left and right. For each channel a capacitor and resistor in parallel of $75 \mu \mathrm{~s}$ time constant are connected between hereand $\mathrm{V}_{\text {REF }}$ to provide 75μ s de-emphasis. Internally selectable is an internal resistor that can be programmed to be addedin paralleltherebyconvertingthe networkto approx50 μ s de-emphasis(see controlblock map). The value of the intemal resistors is $30 \mathrm{k} \Omega \pm 30 \%$. Theamplifier forthisfilterisvoltageinput,currentoutput; with $\pm 500 \mathrm{mV}$ input the outputwill be $\pm 55 \mu \mathrm{~A}$.

VOL L, VOL R

Themainaudiooutputfrom thevolume controlamplifier the signal to get output signals as high as $2 \mathrm{~V}_{\mathrm{RMS}}$ $(+12 \mathrm{~dB})$ on a DCbias of 4.8 V . Control is from +12 dB to -26.75 dB plus Mute with 1.25 dB steps. This amplifier has short circuit protection and is intended to drive a SCART connector directly via AC coupling and meets thestandardSCARTdriverequirements. Theseoutputs feature high impedance mode for parallel connection.

S2 OUT L, S2 OUT R

These audio outputs are sourced directly from the audioMUX, and as a result do not include any volume controlfunction. They will outputa $1 \mathrm{~V}_{\text {RMS }}$ signalbiased at 4.8 V . They are shortcircuit protected. These outputs feature high impedance mode for parallel connection and meetSCART drive requirement.

S2 RTN L, S2 RTN R

These pins allow auxiliary audio signals to be connected to the audio processor and hence makes use of the on-chip volume control. For additional details please refer to the audio switching table.

3 - Video Processing B-BAND IN

AC-coupled video input from a tuner.
$\mathrm{Z}_{\mathrm{I}}>10 \mathrm{k} \Omega \pm 25 \%$. This drives an on-chip video amplifier. Theotherinputofthis ampis AC groundedby being connectedto an internal $\mathrm{V}_{\text {REF }}$. The video amplifier has selectablegain from 0 dB to 12.7 dB in 63 steps and its output signal can be selected normal or inverted.

UNCL DEEM

Deemphasized still unclamped output. It is also an input of the video matrix.

VIDEEM1

Connected to an external de-emphasis network (for instance 625 lines PAL de-emphasis).

VIDEEM2/ 22kHz

Connected to an external de-emphasis network (for instance 525 lines NTSC or other video de-emphasis). Alternatively a precise 22 kHz tone may be output by $I^{2} \mathrm{C}$ bus control.

CLAMP IN

This pin clamps the most negativeextremeof theinput (the sync tips) to $2.7 \mathrm{~V}_{\mathrm{DC}}$ (or appropriate voltage). The
video at the clamp input is only 1 V PP. This clamped video which is de-emphasised, filtered and clamped (energy dispersal removed) is normal, negative syncs, video. This signal drives the Video Matrix input called Normal Video. It has a weak (1.04A ± 15 \%) stable current source pulling the input towards GND. Otherwise the input impedance is very high at DC to 1 kHz $\mathrm{Z}_{\mathrm{IN}}>2 \mathrm{M} \Omega$. Video bandwidth through this is -1 dB at 5.5 MHz . The CLAMP input DC restore voltage is then used as a means forgetting the correct DC voltageon the SCART outputs.

S2 VID RTN

External video input 1.0 V PP AC coupled 75Ω source impedance. This input has a DC restoration clamp on its input. The clamp sink current is $1 \mu \mathrm{~A}$ $\pm 15 \%$ with the buffer $Z_{I N}>1 M \Omega$. This signal is an input to the Video Matrix.

S1 VID OUT, S2 VID OUT

Videodrivers for SCART 1 and SCART 2. An external emitterfollower bufferis required to drive a 150Ω load. The average DC voltage to be 1.5 V on the O / P. The signal is video2.0 VPP 5.5 MHz BW with synctip $=1.2 \mathrm{~V}$. These pins get signals from the Video Matrix. The signal selected from the Video Matrix for outputon this pin is controlled by a control register. This output also featureahighimpedancemodeforparallelconnection.

V 12V

+12V double bonded: ESD+guard rings and video circuit power.

V GND

Doubled bonded. Clean VID IN GND. Strategically placed video power ground connection to reduce video currents getting into the rest of the circuit.

4-Control Block
 GND 5V

The main power ground connection for the control logic, registers, the $I^{2} \mathrm{C}$ bus interface, synthesizer \& watchdog and XTLOSC.

VDD 5V

Digital +5 V power supply.

SCL

This is the $l^{2} \mathrm{C}$ busclock line. Clock $=$ DC to 100 kHz . Requires external pull up eg. $10 \mathrm{k} \Omega$ to 5 V .

SDA

This is the $\mathrm{I}^{2} \mathrm{C}$ bus data line. Requires external pull up eg. $10 \mathrm{k} \Omega$ to 5 V .

XTL

This pin allows for the on-chip oscillator to be either used with a crystal to ground of 4 MHz or 8 MHz , or to be driven by an external clock source. The external source can be either 4 MHz or 8 MHz . A programmable bit in the control block removes a $\div 2$ block when the 4 MHz option is selected.

GENERAL BLOCK DIAGRAM

VIDEO PROCESSING BLOCK DIAGRAM

AUDIO PROCESSING BLOCK DIAGRAM (CHANNEL RIGHT)

AUDIO PROCESSING BLOCK DIAGRAM (CHANNEL LEFT)

AUDIO SWITCHING

\mathbf{K}_{2}	\mathbf{K}_{3}	
a	ON	No ANRS, No De-emphasis
b_{1}	ON	No ANRS, $50 \mu \mathrm{~s}$
b_{2}	ON	No ANRS, $75 \mu \mathrm{~s}$
a	OFF	ANRS, No De-emphasis
b_{1}	OFF	ANRS, $50 \mu \mathrm{~s}$
b_{2}	OFF	ANRS, $75 \mu \mathrm{~s}$

FM DEMODULATION BLOCK DIAGRAM

CIRCUIT DESCRIPTION

1 - Video Section

The composite video is first set to a standard level by means of a 64 step gain controlled amplifier. In the case that the modulation is negative, an inverter can be switched in.
One of two different external video de-emphasis networks (for instance PAL and NTSC) is selectable by an integrated bus controlled switch.
Then energy dispersal is removed by a sync tip clamping circuit, which is used on all inputs to a video switching matrix, thus making sure that no DC steps occur when switching video sources.
The matrix can be used to feed video to and from decoders, VCR's and TV's.
Additionaly all the video outputs are tristate type (high impedance mode is supported), allowing a simple parallel connections to the scarts (Twin tuner applications).

2 - Audio Section

The two audio channels are totally independentexcept for the possibility given to output on both channels only one of the selected input audio channels.
To allow a very cost effective application, each channel uses PLL demodulation. Neither external complex filter nor ceramic filters are needed.
The frequency of the demodulated subcarrier is chosen by a frequency synthesizer which sets the frequency of the internal local oscillator by comparing its phase with the internally generated reference. When the frequency is reached, the microprocessor switches in the PLL and the demodulationstarts. At any moment the microprocessor can read from the device (watchdog registers) the actual frequency to which the PLL is locked. It can also verify that a carrier is present at the wanted frequency (by reading AMPLK status bit) thanks to a synchronous amplitude detector, which is also used for the audio input AGC.
In order to maintain constant amplitude of the
recovered audio regardless of variations between satellites or subcarriers, the PLL loop gain may be programmed from 56 values.
Any frequency deviation can be accomodated (from $\pm 30 \mathrm{kHz}$ till $\pm 400 \mathrm{kHz}$).
In the typical application, the STV0042A offers two audio de-emphasis 75μ s and $50 \mu \mathrm{~s}$. When required a J 17 de-emphasis can be implemented by using specific applicationdiagram (see Application Note: AN838, Chapter 4.2).
Adynamic noise reduction system (ANRS) is integrated into the STV0042A using a lowpass filter, the cut-off frequency of which is controlled by the amplitude of the audio after insertion of a bandpass filter.
Two types of audio outputs are provided : one is a fixed $1 V_{\mathrm{RMS}}$ and the other is a gain controlled $2 V_{\text {RMS }}$ max. The control range being from +12 dB to -26.75 dB with 1.25 dB steps. This output can also be muted.
A matrix is implemented to feed audio to and from decoders VCR's and TV's.
Noise reduction system and de-emphasis can be inserted or by-passed through bus control.
Also all the audio outputs are tristate-type (high impedance mode is supported), allowing a simple parallel connections to the scarts (Twin tuner applications).

3-Others

A 22 kHz tone is generated for LNB control.
It is selectable by bus control and available on one of the two pins connected to the external video de-emphasis networks.
By means of the $\mathrm{I}^{2} \mathrm{C}$ bus there is the possibility to drive the ICs into a low power consumption mode with active audio and video matrixes. Independantly from the main power mode, each individual audio and video output can be driven to high impedance mode.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	15	V
$\mathrm{~V}_{\mathrm{DD}}$		7.0	V
$\mathrm{P}_{\text {tot }}$	Total Power Dissipation	900	mW
$\mathrm{~T}_{\text {oper }}$	Operating Ambient Temperature	$0,+70$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature	$-55,+150$	${ }^{\circ} \mathrm{C}$

THERMAL DATA

Symbol	Parameter	Value	Unit
Rth(j-a)	Thermal Resistance Junction-ambient	60	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DC AND AC ELECTRICAL CHARACTERISTICS

($\mathrm{V} \mathrm{CC}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{CC}	Sypply Voltage		11.4	12	12.6	V
$\mathrm{~V}_{\mathrm{DD}}$			4.75	5.0	5.25	V
$\mathrm{IQ}_{\mathrm{CC}}$	Supply Current					
IQ $_{\mathrm{DD}}$		All audio and all video outputs		55	70	mA
IQLPCC	Supply Current at Low Power Mode	All audio and all video outputs		27	35	mA
IQLP $_{\mathrm{DD}}$		are in high impedance mode		6	9	mA

AUDIO DEMODULATOR

FMIN	FM Subcarrier Input Level (Pin FMIN for AGC action)	VCO locked on carrier at 6 MHz $560 \mathrm{k} \Omega$ load on AMPLOCK Pins $180 \mathrm{k} \Omega$ load on DET Pins	5		500	mV PP
DETH	Detector 1 and 2 (AMPLOCK Pins) (Threshold for activating Level Detector 2)	$8 \mathrm{mV}_{\mathrm{PP}} \leq \mathrm{FMIN} \leq 500 \mathrm{mV} \mathrm{VP}_{\mathrm{P}}$ Carrier without modulation	2.90	3.10	3.30	V
VCOMI	VCO Mini Frequency	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}: 11.4 \text { to } 12.6 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{amb}}: 0 \text { to } 70^{\circ} \mathrm{C} \end{aligned}$			5	MHz
VCOMA	VCO Maxi Frequency		10			MHz
AP50	1kHz Audio Level at PLL output (DET Pins)	$0.5 \mathrm{~V}_{\text {PP }} 50 \mathrm{kHz}$ dev. FM input, Coarse deviation set to 50 kHz (Reg. $05=36$ HEX)	0.6	1	1.35	V_{PP}
APA50	1kHz Audio Level at PLL output (DET Pins)	$0.5 \mathrm{~V}_{\text {PP }} 50 \mathrm{kHz}$ dev. FM input, Coarse and fine settings used	0.92	1	1.08	V_{PP}
FMBW	FM Demodulator Bandwidth	Gain at 12 kHz versus 1 kHz $180 \mathrm{k} \Omega, 82 \mathrm{k} \Omega 22 \mathrm{pF}$ on DET Pins	0	0.3	1	dB
DPCO	Digital Phase Comparator Output Current (CPUMP Pins)	Average sink and source current to external capacitor		60		$\mu \mathrm{A}$

AUTOMATIC NOISE REDUCTION SYSTEM

LRS	Output Level (Pin SUMOUT)	$1 \mathrm{~V}_{\text {PP }}$ on left and right channel	0.9	1	1.1	VPP
LDOR	Level Detector Output Resistance (Pins PK OUT)		4.0	5.4	6.8	$\mathrm{k} \Omega$
NDFT	Level Detector Fall Time Constant (Pins PK OUT)	External 22nF to GND and $1.2 \mathrm{M} \Omega$ to $\mathrm{V}_{\text {REF }}$		26.4		ms
NDLL	Bias Level (Pins PK OUT)	No audio in		2.40		V
LLCF	Noise Reduction Cut-off Frequency at Low Level Audio	100 mV PP on DET Pins, External capacitor 330pF (FC Pins)		0.85		kHz
HLCF	Noise Reduction Cut-off Frequency at High Level Audio	1VPP on DET Pins, External capacitor 330pF (FC Pins)		7		kHz

DC AND AC ELECTRICAL CHARACTERISTICS (continued)
(VCC $=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit

AUDIO OUTPUT (Pins VOL OUT R, VOL OUT L)

DCOL	DC Output Level			4.8		V
AOLN	Audio Output Level with Reg $00=1 \mathrm{~A}$	FM input as for APA50 No de-emphasis, No pre-emphasis No noise reduction	1.5	1.9	2.34	$V_{\text {PP }}$
AOL50	Audio Output Level with Reg $00=1 \mathrm{~A}$	FM input as for APA50 $50 \mu \mathrm{~s}$ de-emphasis, $27 \mathrm{k} \Omega / / 2.7 \mathrm{nF}$ load No pre-emphasis, No noise reduction	2.0	3.3	4.0	$\mathrm{V}_{\text {PP }}$
AOL75	Audio Output Level with Reg $00=1 \mathrm{~A}$	FM input as for APA50 $75 \mu \mathrm{~s}$ de-emphasis, $27 \mathrm{k} \Omega / / 2.7 \mathrm{nF}$ load No pre-emphasis, No noise reduction	2.0	3.3	4.0	V_{PP}
AMA1	Audio Output Attenuation with Mute-on. Reg $00=00$.	$1 \mathrm{~V}_{\text {PP }}$-1kHz from S2 RTN Pins	60	65		dB
MXAT	Max Attenuation before Mute. Reg $00=01$.	1kHz, from S2 RTN Pins		32.75		dB
MXAG	Audio Gain. Reg $00=1 \mathrm{~F}$.	1kHz, from S2 RTN Pins	5	6	7	dB
ASTP	Attenuation of each of the 31 steps	1 kHz		1.25		dB
THDA1	THD with Reg $00=1 \mathrm{~A}$	$1 \mathrm{~V}_{\text {PP }}-1 \mathrm{kHz}$ from S2 RTN Pins		0.15		\%
THDA2	THD with Reg $00=1 \mathrm{~A}$	2VPP -1kHz from S2 RTN Pins		0.3	1	\%
THDFM	THD with Reg $00=1 \mathrm{~A}$	FM input as for APA50 $75 \mu \mathrm{~s}$ de-emphasis, ANRS ON		0.3	1	\%
ACS	Audio Channel Separation	$1 \mathrm{~V}_{\text {PP }}-1 \mathrm{kHz}$ on S2 RTN Pins	60	74		dB
ACSFM	Audio Channel Separation at 1kHz	$-0.5 \mathrm{~V}_{\mathrm{PP}}-50 \mathrm{kHz}$ deviation FM input on one channel - 0.5VPP no deviation FM input on the other channel - Reg $05=36_{\text {HEX }}$ - $75 \mu \mathrm{~s}$ de-emphasis, no ANRS		60		dB
SNFM	Signal to Noise Ratio	FM input as for APA50, $75 \mu \mathrm{~s}$ de-emphasis, no ANRS, Unweighted		56		dB
SNFMNR	Signal to Noise Ratio	FM input as for APA50 $75 \mu \mathrm{~s}$ de-emphasis, ANRS ON, Unweighted		69		dB
$\begin{array}{r} \text { ZoutL } \\ \text { Zout } \\ \hline \end{array}$	Audio Output Impedance	Low impedance mode High impedance mode	30	$\begin{aligned} & 18 \\ & 44 \end{aligned}$	55	$\begin{gathered} \hline \Omega \\ \mathrm{k} \Omega \end{gathered}$

AUXILIARY AUDIO OUTPUT (Pins S2 OUT R, S2 OUT L)

DCOLAO	DC output level	Aux. input pins open circuit		4.8		V
AOLNS	Audio Output Level on S2	FM input as for APA50 No de-emphasis, No pre-emphasis No noise reduction	1.55	2	2.42	$V_{\text {PP }}$
AOL50S	Audio Output Level on S2	FM input as for APA50 $50 \mu \mathrm{~s}$ de-emphasis, $27 \mathrm{k} \Omega / / 2.7 \mathrm{nF}$ load No pre-emphasis, No noise reduction	2.0	3.4	4.0	V_{PP}
AOL75S	Audio Output Level on S2	FM input as for APA50 75μ s de-emphasis, $27 \mathrm{k} \Omega / 2.7 \mathrm{nF}$ load No pre-emphasis, No noise reduction	2.0	3.4	4.0	V_{PP}
THDAOFM	THD on S2	FM input as for APA50 $75 \mu \mathrm{~s}$ de-emphasis, no ANRS		0.3	1	\%
$\begin{aligned} & \hline \text { ZOUTL } \\ & \text { ZOUTH } \end{aligned}$	Audio Output Impedance	Low impedance mode High impedance mode	30	$\begin{aligned} & 60 \\ & 44 \end{aligned}$	$\begin{gathered} \hline 100 \\ 55 \end{gathered}$	$\begin{gathered} \Omega \\ \hline \mathrm{k} \Omega \end{gathered}$

DC AND AC ELECTRICAL CHARACTERISTICS (continued)
(V cc $=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
RESET						
RTCCU	End of Reset Threshold for $\mathrm{V}_{\text {cc }}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}$ going up		8.7		V
RTCCD	Start of Reset Threshold for $\mathrm{V}_{\text {cc }}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{C C}$ going down		7.9		V
RTDDU	End of Reset Threshold for V_{DD}	$\mathrm{V}_{C C}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}$ going up		3.8		V
RTDDD	Start of Reset Threshold for V ${ }_{\text {DD }}$	$\mathrm{V}_{C C}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}$ going down		3.5		V

COMPOSITE SIGNAL PROCESSING

VIDC	VID IN	External load current $<1 \mu \mathrm{~A}$	2.25	2.45	2.65	V
ZVI	VID IN Input Impedance		7	11	14	$\mathrm{k} \Omega$
DEODC	DC Output Level (Pins VIDEEM)		2.25	2.45	2.65	V
DEOMX	Max AC Level before Clipping (Pins VIDEEM)	$\mathrm{GV}=0 \mathrm{~dB}, \mathrm{Reg} 01=00$	2			V_{PP}
DGV	Gain error vs GV @ 100kHz	$\mathrm{GV}=0$ to 12.7 dB , Reg $01=00 \rightarrow 3 \mathrm{~F}$	-0.5	0	0.5	dB
INVG	Inverter Gain		-0.9	-1	-1.1	
VISOG	Video Input to SCART Output Gain	De-emphasis amplifier mounted in unity gain, Normal video selected	-1	0	1	dB
DEBW	Bandwidth for 1V PP input measured on Pins VIDEEM	@ - 3dB with GV = 0dB, Reg $01=00$	10			MHz
DFG	Differential Gain on Sync Pulses measured on Pins VIDEEM	$\begin{array}{\|l} \hline \mathrm{GV}=0 \mathrm{~dB}, 1 \mathrm{~V}_{\mathrm{PP}} \mathrm{CVBS}+0.5 \mathrm{~V}_{\mathrm{PP}} \\ 25 \mathrm{~Hz} \text { sawtooth (input : VID IN) } \\ \hline \end{array}$			1	\%
ITMOD	Intermodulation of FM subcarriers with chroma subcarrier	7.02 and 7.2 MHz sub-carriers, 12.2 dB lower than chroma		-60		dB

CLAMP STAGES (Pins CLAMP IN, S2)

ISKC	Clamp Input Sink Current	$\mathrm{V}_{\mathbb{I N}}=3 \mathrm{~V}$	0.5	1	1.5	$\mu \mathrm{~A}$
ISCC	Clamp Input Source Current	$\mathrm{V}_{\mathbb{I N}}=2 \mathrm{~V}$	40	50	60	$\mu \mathrm{~A}$

VIDEO MATRIX

XTK	Output Level on any Output when 1VPP CVBS input is selected for any other output	$@ 5 M H z$		-60		dB
BFG	Output Buffer Gain (Pins S1 VID OUT, S2 VID OUT)	@ 100kHz	1.87	2	2.13	
DCOLVH	DC Output Level	High impedance mode		0	0.2	V
Zout HV	Video Output Impedance	High impedance mode	16	23	30	$\mathrm{k} \Omega$
VCL	Sync Tip Level on Selected Outputs (Pins S1 VID OUT, S2 VID OUT)	1VPP CVBS through 10nF on input	1.05	1.3	1.55	V

PIN INTERNAL CIRCUITRY
S2 VID RTN, CLAMP IN
$50 \mu \mathrm{~A}$ source is active only when VIDIN $<2.7 \mathrm{~V}$.
Figure 1

S1 VID OUT, S2 VID OUT

Same as above but with no black level adjustment.
Figure 3

UNCL DEEM

Same as above but with no black level adjustment and slightly different gain.
Figure 4

VIDEEM1
Ron of the transistor gate is $\approx 10 \mathrm{k} \Omega$.
Figure 5

VIDEEM2 / 22kHz
Ron of the transistor gate is $\approx 10 \mathrm{k} \Omega$.
Figure 6

VID IN
Figure 7

PK OUT
Figure 8

PIN INTERNAL CIRCUITRY (continued)

FCL, FC R

Ivar is controlled by the peak det audio level max. $\pm 15 \mu \mathrm{~A}$ (1 VPP audio).
Figure 9

VOL OUT R, VOL OUT L
Audio output with volume and scart driver with +12 dB of gain for up to $2 \mathrm{~V}_{\text {Rms }}$. The opamp has a push-pull output stage.
Figure 10

S2 OUT L, S2 OUT R

Same as above but with gain fixed at +6 dB .
Figure 11

S2 RTN L, S2 RTN R

4.8 V bias voltage is the same as the bias level on the audio outputs.
Figure 12

FM IN

The otherinputfor each channelis internallybiased in the same way via $10 \mathrm{k} \Omega$ to the $2.4 \mathrm{~V} \mathrm{~V}_{\text {REF }}$.
Figure 13

IREF
The optimum value if IreF is $50 \mu \mathrm{~A} \pm 2 \%$ so an external resistor of $47.5 \mathrm{k} \Omega \pm 1 \%$ is required.
Figure 14

SCL
This is the input to a Schmittinput buffer made with a CMOS amplifier.
Figure 15

SDA

Input same as above. Output pull down only : relies on external resistor for pull-up.
Figure 16

U75 L, U75 R
I1-I2 = 2 x audio $/ 18 \mathrm{k} \Omega$. eg 1 VPP audio : $\pm 55 \mu \mathrm{~A}$. The are internal switches to match the audio level of the different standards.
Figure 17

PIN INTERNAL CIRCUITRY (continued)

XTL
Figure 18

CPUMP L, CPUMP R

An offset on the PLL loop filter will cause an offset in the two $1 \mu \mathrm{~A}$ currents that will prevent the PLL from drifting-off frequency.
Figure 19

DET L, DET R
I2 - I1 = f (phase error).
Figure 20

AMPLK L, AMPLK R, AGC L, AGC R
I2 and I1 from the amplitude detecting mixer.
Figure 21

$V_{\text {REF }}$
The $400 \mu \mathrm{~A}$ source is off during stand-by mode.
Figure 22

SUMOUT

Figure 23

PK IN
Figure 24

V 12V

 one package pin) :

- One pad is connected to all of the 12V ESD and video guard rings.
- The second pad is connected to power up the video block.

V GND

Doubled bonded :

- One pad is connected to power-up all of the video mux and I/O.
- The second pad is only as a low noise GND for the video input.
$\stackrel{\text { ® }}{\underset{\sim}{4}} V_{\text {DD }} 5 V$, GND 5V
Connected to XTL oscillator and the bulk of the CMOS logic and 5V ESD.

PIN INTERNAL CIRCUITRY (continued)

A GND L

Doubled bonded :

- One pad connected to the left VCO, dividers, mixers and guard ring. the guard connection is star connected directly to the pad.
- The second pad is connected to both AGC amps and the deemphasis amplifiers, frequency synthesis and FM deviation selection circuit for both channels.

A 12V

Doubled bonded :

- One pad connected to the ESD and guard ring.
- The second pad is connected to the main power for all of the audio parts.

A GND R

Boubled bonded :

- One pad connected to the right VCO, dividers, mixers and guard ring. The guard connection is star connected directly to the pad.
- The second pad is connected to the bias block, audio noise reduction, volume, mux and ESD.

A third bond wire on this pin is connected directly to the die pad (substrate).

Figure 25

$I^{2} \mathrm{C}$ PROTOCOL

1) WRITING to the chip

S-Start Condition
P-Stop Condition
CHIP ADDR -7 bits. 06 H
W-Write/Read bit is the 8th bit of the chip address.
A-ACKNOWLEDGE after receiving 8 bits of data/adress.
REG ADDR Address of register to be written to, 8 bits of which bits 3, 4, 5, $6 \& 7$ are ' X^{\prime} or don't care ie only the first 3 bits are used.
DATA 8 bits of data being written to the register. All 8 bits must be written to at the same time.
REG ADDR/A/DATA/A can be repeated, the write process can continue untill terminated with a STOP condition. If the REG ADDR is higher than 07 then IIC PROTOCOL will still be met (ie an A generated).

Example:

S	06	W	A	00	A	55	A	01	A	8 F	$/ /$	H	A

2) READING from the chip

When reading, there is an auto-incrementfeature. This means any read command always starts by reading Reg 8 and will continue to read the following registers in order after each acknowledge or until there is no acknowledge or a stop. This function is cyclic that is it will read the same set of registers without re-addressing the chip. There are two modes of operation as set by writing to bit 7 of register 0 . Read 3 registers in a cyclic fashion or all 5 registers in a cyclic fashion. Note only the last 5 of the 11 registers can be read.

Reg0 bit $7=L \Rightarrow$ Start / chip add / R / A/Reg $8 / A / \operatorname{Reg} 9 / A / R e g ~ 0 A / A / R e g ~ 8 / A / R e g 9 / A / R e g ~ 0 A ~$ /... / P /
Reg0 bit $7=\mathrm{H} \Rightarrow$ Start/ chip add/R/A/Reg $8 /$ A/Reg $9 / A / R e g$ 0A/A/Reg $7 / A / R e g 6 / A / R e g 8$ / A/Reg 9 / A/Reg 0A / A/Reg 7 / A/Reg 6 / ... / P /

CONTROL REGISTERS

Reg 0 write only

Bit (default 00hex)

```
    L Select 5 bits audio volume control \(\quad 00 \mathrm{H}=\) MUTE
    \(L\) Select 5 bits audio volume control \(01 \mathrm{H}=-26.75 \mathrm{~dB}\)
    L Select 5 bits audio volume control : : : :
    L Select 5 bits audio volume control 1.25 dB steps up to
    \(L\) Select 5 bits audio volume control \(1 \mathrm{FH}=+12 \mathrm{~dB}\)
    L Not to be used
    L Audio mux switch K3-ANRS select ( \(\mathrm{L}=\) no ANRS, \(\mathrm{H}=\) ANRS)
    \(\mathrm{L} \quad \mathrm{L}=\) read 3 registers, \(\mathrm{H}=\) read 5 registers
```

Reg 1 write only
Bit (default 00hex)
L Select video gain bits
$01 \mathrm{H}=+0.202 \mathrm{~dB}$
$02 \mathrm{H}=+0.404 \mathrm{~dB}$
L Select video gain bits $n=+0.202 d B$ * n
L Select video gain bits $3 F H=+12.73 \mathrm{~dB}$
$L \quad$ Selected video invert ($H=$ inverted, $L=$ non inverted)
L Video deemphasis 1 / Video deemphasis 2 (L: VID De-em 1)
16/24

CONTROL REGISTERS (continued)

Reg 2 write only

Bit (default F7HEX)
0 H Select video source for scart 1 O/P
H Select video source for scart $1 \mathrm{O} / \mathrm{P}$
2 H Select video source for scart 1 O/P
3 L Select 4.000 MHz or 8.000 MHz clock speed ($\mathrm{L}=8 \mathrm{MHz}$)
4 H Select audio source for volume output (Switch K1)
5 H Select audio source for volume output (Switch K1)
6 H Select Left/Right/Stereo for volume output
7 H Select Left/Right/Stereo for volume output

Reg 3 write only

Bit (default F7HEX)
0 H Select video source for scart2 O/P
1 H Select video source for scart 2 O/P
2 H Select video source for scart2 O/P
3 L Video deemphais $2 / 22 \mathrm{kHz}(\mathrm{H}: 22 \mathrm{kHz})$
4 H Select audio source for Scart 2 output (Switch K5)
5 H Select audio source for Scart 2 output (Switch K5)
6 H Audio deemphasis select (Switch K2)
7 H Audio deemphasis select (Switch K2)

Reg 4 write only

Bit (default BFhex)
0 H Not to be used
H Not to be used
H Not to be used
H Stand-by or low power mode ($\mathrm{H}=$ low power)
H Not to be used
H Not to be used
L Not to be used
H Not to be used

Reg 5 write only

Bit (default B5 HEX)
H FM deviation selection -- default value for 50 kHz modulation
L FM deviation selection
H FM deviation selection
L FM deviation selection
H FM deviation selection
H FM deviation selection ($L=$ double the FM deviation)
L Not to be used
H Not to be used

Reg 6 write/read

Bit (default 86HEx)
L Status of I/O
H Select data direction of I/O 1 ($\mathrm{H}=$ output)
H Select frequency synthesizer 1 OFF/ON (L = OFF)
L Select frequency synthesizer 2 OFF/ON (L = OFF)
L Select RF source ($\mathrm{L}=\mathrm{OFF}$) to FM det 1
L Select RF source ($\mathrm{L}=\mathrm{OFF}$) to FM det 2
L Select frequency for PLL synthesizer - LSB (bit 0) of 10 -bit value
H Select frequency for PLL synthesizer- bit 1 of 10 -bit value

CONTROL REGISTERS (continued)

Reg 7 write/read

Bit (default AF HEX)
0 H Select frequency for PLL synthesizer - bit 2 of 10-bit value
H Select frequency for PLL synthesizer
H Select frequency for PLL synthesizer
H Select frequency for PLL synthesizer
L Select frequency for PLL synthesizer
H Select frequency for PLL synthesizer
L Select frequency for PLL synthesizer
H Select frequency for PLL synthesizer - bit 9, MSB (10th bit) of 10-bit value

Reg 8 read only

Bit
0 Subcarrier detection (DET 1) (L = No subcarrier)
1 Not used
2 Read frequency of watchdog 1-LSB (bit 0) of 10-bit value
3 Read frequency of watchdog 1 - bit 1 of 10-bit value
4 Subcarrier detection (DET 2) (L = No subcarrier)
5 Not used
6 Read frequency of watchdog 2 - bit 0 of 10-bit value
7 Read frequency of watchdog 2 - bit 1 of 10-bit value

Reg 9 read only

Bit (default AFHEX)
0 Read frequency of watchdog 1 - bit 2 of 10-bit value
1 Read frequency of watchdog 1
2 Read frequency of watchdog 1
3 Read frequency of watchdog 1
4 Read frequency of watchdog 1
$5 \quad$ Read frequency of watchdog 1
6 Read frequency of watchdog 1
7 Read frequency of watchdog 1 - bit 9, MSB (10th bit) of 10-bit

Reg 0A read only

Bit
0 Read frequency of watchdog 2 - bit 2 of 10-bit value
1 Read frequency of watchdog 2
2 Read frequency of watchdog 2
$3 \quad$ Read frequency of watchdog 2
4 Read frequency of watchdog 2
5 Read frequency of watchdog 2
$6 \quad$ Read frequency of watchdog 2
7 Read frequency of watchdog 2 - bit 9, MSB (10th bit) of 10-bit

CONTROL REGISTERS (continued)

Video Mux Truth Tables

Register $2<0: 2>\Rightarrow$ Scart 1 video output control
Register $3<0: 2>\Rightarrow$ Scart 2 video output control
The truth table for the three scart outputs are the same.

| Register 2/3 | | | | |
| :---: | :---: | :---: | :--- | :--- | Video Output

Audio Mux Truth Tables

Register 2			Switch K1/Audio Source Selection for Volume Output
Bit <5>	Bit $<4>$		Volume Output
0	0	A	Audio deemphasis (K2 switch O/P)
1	0	C	Scart 2 return
0	1	B	Not to be used
1	1	-	High Z or low power (default)

Register 3			Switch K2/Audio Deemphasis
Bit $<7>$	Bit $<6>$		Audio Deemphasis
0	0	A	No deemphasis
1	0	C	Not to be used
0	1	B	50μ s
1	1	B	75μ s (default)

Register 0			Switch K3 \& K4
Bit <6>	Bit $<5>$		ANRS I/O Select
0	X	A	Noise reduction OFF
1	X	B	Noise reduction ON (default)
X	0	A	Not to be used
X	1	B	Not to be used

Register 3			Switch K5/Audio Source Selection for Scart 2
Bit $<5>$	Bit $<4>$		Aux Audio Output
0	0	C	PLL output
1	0	A	Not to be used
0	1	B	Audio deemphasis (K2 switch O/P)
1	1	-	High Z or low power state (default)

Register 2		Left / Right / Stereo on Volume Output
Bit $<7>$	Bit $<6>$	
0	0	Mono left / channel 1
1	0	Mono right / channel 2
1	1	Stereo left \& right (default)

CONTROL REGISTERS (continued)
Register 5 : FM Deviation Selection

4	3	2	1	0	Selected Nominal Carrier Modulation	
					Bit 5 = 0	Bit 5 = 1
0	0	0	0	0	Do not use	cal : do not use $=0.3373 \mathrm{~V}$ offset on VCO
0	0	0	0	1	Do not use	cal : do not use $=0.3053 \mathrm{~V}$ offset on VCO
0	0	0	1	0	Do not use	cal : do not use $=0.2763 \mathrm{~V}$ offset on VCO
0	0	0	1	1	Cal. set. (2V)	calibration setting (1V offset on VCO)
0	0	1	0	0	592 kHz	296kHz modulation
0	0	1	0	1	534 kHz	267 kHz modulation
0	0	1	1	0	484 kHz	242 kHz
0	0	1	1	1	436 kHz	218 kHz
0	1	0	0	0	396 kHz	198 kHz
0	1	0	0	1	358 kHz	179 kHz
0	1	0	1	0	322 kHz	161 kHz
0	1	0	1	1	292 kHz	146 kHz
0	1	1	0	0	266 kHz	133kHz
0	1	1	0	1	240 kHz	120 kHz
0	1	1	1	0	218 kHz	109 kHz
0	1	1	1	1	196kHz	98.3 kHz
1	0	0	0	0	179 kHz	89.7 kHz
1	0	0	0	1	161 kHz	80.9 kHzz
1	0	0	1	0	146 kHz	73.1 kHz
1	0	0	1	1	122 kHz	66.0 kHz
1	0	1	0	0	120 kHz	60.0 kHz
1	0	1	0	1	109 kHz	$54.4 \mathrm{kHz}=$ default power up state
1	0	1	1	0	98 kHz	49.1 kHz
1	0	1	1	1	89 kHz	44.3 kHz
1	1	0	0	0	78 kHz	39.8 kHz
1	1	0	0	1	71 kHz	35.9 kHz
1	1	0	1	0	65 kHz	32.4 kHz
1	1	0	1	1	58 kHzz	29.1 kHzz
1	1	1	0	0	53 kHz	26.7 kHz
1	1	1	0	1	48.6 kHz	24.3 kHz
1	1	1	1	0	43.8 kHz	21.9 kHz
1	1	1	1	1	39.6 kHz	19.7 kHz

Example : Default power up state $54.4 \mathrm{kHz} \Rightarrow \pm 54.4 \mathrm{kHz}$.

Register 1 Bit $<\mathbf{7} \boldsymbol{>}$	Register 3 Bit $<$ 3 $>$	Video Deemphasis/22kHz
0	0	Deemphasis 1 (default)
0	1	Deemphasis 1 + 22kHz (Pin 13)
1	0	Deemphasis 2
1	1	Deemphasis 2

FM DEMODULATION SOFTWARE ROUTINE

With the STV0042A circuit, for each channel, three steps are required to acheive a FM demodulation:
$-1^{\text {st }}$ step :To set the demodulation parameters :

- FM deviation selection,
- Subcarrier frequency selection.
- $2^{\text {nd }}$ step : To implement a waiting loop to check the actual VCO frequency.
$-3^{\text {rd }}$ step :To close the demodulationphase locked loop (PLL).
Refering to the FM demodulation block diagram (page 12), the frequency synthesis block is common to both channels (left and right) ; consequently
two complete sequenceshave to be done one after the other when demodulating stereo pairs.

Detailed Description

Conventions:

- R = Stands for Register
- B = Stands for Bit

Example : R05 B2 = Register 05, Bit 2
For clarity, the explanations are based on the following example : stereo pair $7.02 \mathrm{MHz} / \mathrm{L}$ $7.20 \mathrm{MHz} / \mathrm{R}$, deviation $\pm 50 \mathrm{kHz}$ max.

FM DEMODULATION SOFTWARE ROUTINE (continued)

1st Step (Left) : Setting the Demodulation Parameters
A. The FM deviation is selected by loading R5 with the appropriate value. (see R5 truth table).
NB: Very wide deviations (up to $\pm 592 \mathrm{kHz}$) can be accomodated when R5 B5 is low.
Corresponding bandwidth can be calculated as follows:
$\mathrm{Bw} \approx 2$ (FM deviation + audio bandwidth)
$B w \approx 2$ (value given in table + audio bandwidth)
In the example :

R5Bits	7	6	5	4	3	2	1	0
	X	X	1	1	0	1	1	0

B. The subcarrier frequency is selected by launching afrequencysynthesis(the VCOisdriventothewanted frequency). This operation requires two actions:

- To connect the VCO to the frequency synthesis loop. Refering to the FM block diagram (page 12):
- SW4 closed \Rightarrow R6 B2 $=\mathrm{H}$
- SW3 to bias \Rightarrow R6 B4 = L
- SW2 to bias \Rightarrow R6 $33=L$
- SW1 opened \Rightarrow R6 B5 = L
- To load R7 and R6 B6 B7 with the value corresponding to the left channel frequency. This 10 bits value is calculated as follows:
Subcarrier frequency $=$ coded value $\times 10 \mathrm{kHz}$ (10 kHz is the minimum step of the frequency synthesis function). Considering that the tunning range is comprised between 5 to 10 MHz , the coded value is a number between 500 and 1000 $\left(2^{10}=1024\right)$ then 10 bits are required.

Example :

$7.02 \mathrm{MHz}=702 \times 10 \mathrm{kHz}$
$702 \Rightarrow 10101111 \quad 10 \Rightarrow A F+10$
$R 7$ is loaded with AF and R6 B6: L, R6 B7: H.
The Table 1 gives the setting for the most common subcarrier frequencies.
$2^{\text {nd }}$ Step (Left) : VCO Frequency Checking (VCO)
This second step is actually a waiting loop in which the actual running frequency of the VCO is measured.
To exit of this loop is allowed when : Subcarrier Frequency - 10kHz \leq Measured Frequency \leq Subcarrier Frequency $+10 \mathrm{kHz}(\pm 10 \mathrm{kHz}$ is the maximum dispersion of the frequency synthesisfunction).
In practice, R8 B2 B3 and R9 are read and compared to the value loaded in R6 B6 B7 and R7 ± 1 bit.

Note:

The duration of this step depends on how large is frequency difference between the start frequency and the targeted frequency. Typically :

- the rate of change of the VCO frequencyis about $3.75 \mathrm{MHz} / \mathrm{s}\left(\mathrm{C}_{\text {pump }}=10 \mu \mathrm{~F}\right)$
- In addition to this settling time, 100 ms must be added to take into account the sampling period of
the watchdog.

$3^{\text {rd }}$ Step (Left)

The FM demodulation can be started by connecting the VCO to the phase locked loop (PLL).
In practice:

- SW3 closed \Rightarrow R6 B4 = H
- SW4 opened \Rightarrow R6 B2 = L

After this sequence of 3 steps for left channel, a similar sequence is needed for the right channel.

Note :

In the sequenceforthe right, thereis no need to again select the FM deviation (once is enoughfor the pair).

General Remark

Before to enable the demodulated signal to the audio output, it is recommanded to keep the muting and to check whether a subcarrier is present at the wanted frequency. Such an information is available in R8 B0 and R8 B4 which can be read.
Two different strategies can be adopted when enabling the output :

- Eitherboth left and rightdemodulatedsignals are simultaneouslyauthorizedwhenbothchannelare ready.
- Or while the right channel sequence is running, the already ready left signal is sent to the left and right outputsandthe real stereo soundL/Ris outputwhen both channels are ready. This second option gives sound a few hundreds of ms before the first one.
Table 1 : Frequency Synthesis Register Setting for the Most Common Subcarrier Frequencies

Subcarrier Freq. (MHz)	Register 7	Register 6	
	Hex)	Bit 7	Bit 6
5.58	8B	1	0
5.76	90	0	0
5.8	91	0	0
5.94	94	1	0
6.2	$9 B$	0	0
6.3	$9 D$	1	0
6.4	A0	0	0
6.48	A2	0	0
6.5	A2	1	0
6.6	A5	0	0
6.65	A6	0	1
6.8	AA	0	0
6.85	AB	0	1
7.02	AF	1	0
7.20	B4	0	0
7.25	B5	0	1
7.38	B8	1	0
7.56	BD	0	0
7.74	C1	1	0
7.85	C4	0	1
7.92	C6	0	0
8.2	CD	0	0
8.65	D8	0	1

TYPICAL APPLICATION (with 2 video deemphasis network)

TYPICAL APPLICATION (with 22kHz tone and three audio de-emphasis $50 \mu \mathrm{~s}, 75 \mu \mathrm{~s}, \mathrm{~J} 17$)

PACKAGE MECHANICAL DATA
42 PINS - PLASTIC SHRINK DIP

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Micr oelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise und erany patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
© 1997 SGS-THOMSON Microelectronics - All Rights Reserved
Purchase of $I^{2} C$ Components of SGS-THOMSON Microelectronics, conveys a license under the Philips $I^{2} C$ Patent. Rights to use these components in a $I^{2} C$ system, is granted provided that the system conforms to the $I^{2} C$ Standard Specifications as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

