High-Speed CMOS 3.3V 18-Bit Registered Transceivers with Bus Hold

QS74LVCH16501A ADVANCE INFORMATION

FEATURES/BENEFITS

- 5V tolerant inputs and outputs
- Bus Hold feature holds last active state during 3-state operation
- 10µA I_{CCO} quiescent power supply current
- · Hot insertable
- 2.0V-3.6V V_{CC} supply operation
- ±24mA balanced output drive
- · Power down high impedance inputs and outputs
- t_{PD} = 4.6ns max.
- · Input hysteresis for noise immunity
- Meets or exceeds JEDEC Standard 36 specifications
- · Multiple power and ground pins for low noise
- Operating temperature range: -40°C to 85°C
- Latch-up performance exceeds 500mA
- ESD performance:

Human body model > 2000V Machine model > 200V

· Packages available:

56-pin TSSOP 56-pin SSOP

DESCRIPTION

The LVCH16501A is an 18-bit registered bus transceiver with three-state outputs that are ideal for driving address and data buses. These high-speed, low-power registered transceivers combine D-type latches and D-type flip-flops to allow data flow in transparent, latched and clocked modes. The QS74LVCH16501A provides Bus Hold circuitry on the data inputs to retain the last active state during 3-state operation, eliminating the need for external pull-up resistors. The 3.3V LVC family features low power, low switching noise, and fast switching speeds for low power portable applications as well as high-end advanced workstation applications. 5V tolerant inputs and outputs allow this LVC product to be used in mixed 5V and 3.3V applications. Easy board layout is facilitated by the use of flow-through pinouts and byte enable controls provide architectural flexibility for systems designers. To accommodate hot-plug or live insertion applications, of this product is designed not to load an active bus when V_{CC} is removed. However, during power up or power down sequence, \overline{OE} should be tied to V_{CC} to ensure high-impedance state on the outputs.

Figure 1. Functional Block Diagram

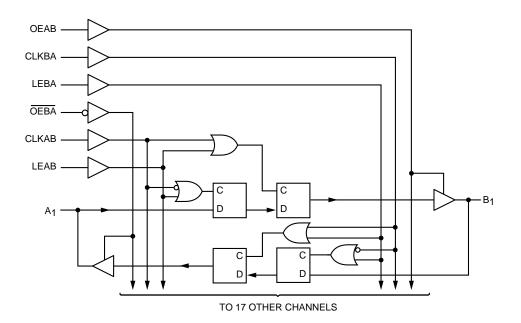
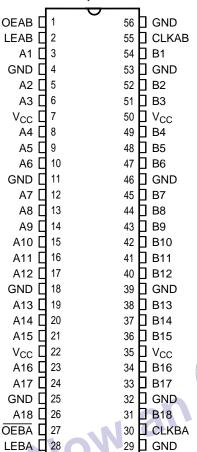



Figure 2. Pin Configuration (All Pins Top View)

SSOP, TSSOP

Table 1. Pin Description

Name	Description
OEAB	A-to-B Output Enable Input
OEBA	B-to-A Output Enable Input (Active Low)
LEAB	A-to-B Latch Enable Input
LEBA	B-to-A Latch Enable Input
CLKAB	A-to-B Clock Input
CLKBA	B-to-A Clock Input
Ax	A-to-B Data Inputs or B-to-A 3-State Outputs
Bx	B-to-A Data Inputs or A-to-B 3-State Outputs

Company

	Inputs						
OEAB	LEAB	CLKAB	Ax	Bx			
L	Х	X	X	Z			
Н	Н	X	L	L			
Н	Н	X	Н	Н			
Н	L	↑	L	L			
Н	L	↑	Н	Н			
Н	L	Н	Х	B ⁽²⁾			
Н	L	L	Х	B ⁽³⁾			

Notes:

- 1. A-to-B data flow is shown. B-to-A data flow is similar but uses OEBA, LEBA, and CLKBA.
- 2. Output level before the indicated steady-state input conditions were established.
- 3. Output level before the indicated steady-state input conditions were established, provided that CLKAB was LOW before LEAB went LOW.

Table 3. Absolute Maximum Ratings

Supply Voltage to Ground	0.5V to 7.0V
DC Output Voltage V _{OUT}	
Outputs HIGH-Z	–0.5V to 7.0V
Outputs Active	
DC Input Voltage V _{IN}	
DC Input Diode Current with V _{IN} < 0	–50mA
DC Output Diode Current	
V _O < 0	–50mA
V _O > V _{CC}	50mA
DC Output Source/Sink Current (I _{OH} /I _{OI})	±50mA
DC Supply Current per Supply Pin	±100mA
DC Ground Current per Ground Pin	±100mA
T _{STG} Storage Temperature	

Note: Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to this device resulting in functional or reliability type failures.

Table 4. Recommended Operating Conditions

able 4.	Recommended O	perating Cond	itions			oan'
Symbol	Parameter	Min	Max	Unit		
V _{CC}	Supply Voltage, Ope	rating	2.0	3.6	V	
	Supply Voltage, Data	Retention Only	1.5	™ 3.6		
V _{IH}	Input HIGH Voltage V _{OL} = 2.7 to 3.6V		2.0	_	V	
V _{IL}	Input LOW Voltage	$V_{CC} = 2.7 \text{ to } 3.6 \text{V}$	_	0.8	V	
V _{IN}	Input Voltage	0	5.5	V		
V _{OUT}	Output Voltage in Ac	tive State	0	V _{cc}	V	
	Output Voltage in "O	FF" State	0	5.5		
I _{OH}	Output Current HIGH	$V_{CC} = 3.0 - 3.6 V$	_	-24	mA	
		$V_{CC} = 2.7V$		-12		
I _{OL}	Output Current LOW	$V_{CC} = 3.0 - 3.6 V$	_	24	mA	
		$V_{CC} = 2.7V$		12		
Δt/Δν	Input Transition Slew	_	10	ns/V		
T _A	Operating Free Air To	emperature	-40	85	°C	

QS74LVCH16501A ADVANCE INFORMATION

Table 5. DC Electrical Characteristics Over Operating Range

Industrial Temperature Range, $T_A = -40$ °C to 85°C

Symbol	Parameter	Test Conditions	Min	Typ ⁽¹⁾	Max	Unit
V _{OH}	Output HIGH Voltage	$\begin{split} V_{CC} &= 2.7 \text{V, } I_{OH} = -100 \mu \text{A} \\ V_{CC} &= 2.7 \text{V, } I_{OH} = -12 \text{mA} \\ V_{CC} &= 3.0 \text{V, } I_{OH} = -12 \text{mA} \\ V_{CC} &= 3.0 \text{V, } I_{OH} = -24 \text{mA} \end{split}$	V _{CC} -0.2 2.2 2.4 2.2	_ _ _	_ _ _	V
V _{OL}	Output LOW Voltage	$V_{CC} = 2.7V, I_{OL} = 100 \mu A$ $V_{CC} = 2.7V, I_{OL} = 12 m A$ $V_{CC} = 3.0V, I_{OL} = 24 m A$	_ _ _	_ 	0.2 0.4 0.55	V
V _{IK}	Input Clamp Voltage	$V_{CC} = 2.7V, I_{IN} = -18mA$	_	-0.7	-1.2	V
I _I	Input Leakage Current	$V_1 = 0V, V_1 = 5.5V, V_{CC} = 3.6V$	_	_	±1.0	μΑ
I _{BH}	Bus Hold Inputs Overdrive Current ^(2,3)	$V_{CC} = 3.6V$, $V_{IN} = 0V$ or $V_{IN} = V_{CC}$ $V_{CC} = 3.6V$, $0.8V < V_{IN} < 2.0V$	_		50 500 ⁽⁴⁾	μΑ
I _{BHH}	Bus Hold Input Sustaining Current	$V_{CC} = 3V \qquad V_{IN} = 2.0V$ $V_{IN} = 0.8V$	-75 75		_ _	μА
I _{OZ}	High-Z I/O Leakage	$V_O = 0V, V_O = 5.5V,$ $V_I = V_{IH} \text{ or } V_{IL}, V_{CC} = 3.6V$	_	_	±1.0	μΑ
I _{OFF}	Power Off Leakage	$V_{CC} = 0V$, V_I or $V_O = 5.5V$		A DO	10	μΑ
I _{cc}	Quiescent Power Supply Current	$V_{CC} = 3.6V$, $V_{IN} = V_{CC}$ or GND	OL	0.1	10	μА
Δl _{CC}	Quiescent Power Supply Current per Control Inputs at TTL HIGH	$V_{CC} = 3.6V, V_{IN} = V_{CC} - 0.6V^{(5)}$		2.0	3.0	μА
	Quiescent Power Supply Current per Bus Hold Inputs at TTL HIGH	$V_{CC} = 3.6V, V_{IN} = V_{CC} - 0.6V^{(5)}$	_	75	500	μΑ

- Typical values are at V_{CC} = 3.3V and T_A = 25°C.
 These parameters are guaranteed by characterization, but not production tested.
- 3. Pins with Bus Hold are identified in the pin description.
- 4. An external driver must provide at least |I_{BH}| during transition to guarantee that the Bus Hold input will change state.
 5. Per TTL driven input. All other inputs at V_{CC} or GND.

Table 6. Dynamic Switching Characteristics

Symbol	Parameter	Test Conditions		Typ ⁽¹⁾	Unit
V_{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 50pF, V_{CC} = 3.3V$	$V_{IH} = 3.3V, V_{IL} = 0V$	0.8	V
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 50pF, V_{CC} = 3.3V$	$V_{IH} = 3.3V, V_{IL} = 0V$	0.8	V
C _{PD}	Power Dissipation	$C_L = 50pF, f = 10MHz,$	Output Enable	35	pF
		$V_{CC} = 3.3 \pm 0.3 V$	Output Disable	6	

Note:

1. Typical values are at $V_{CC} = 3.3V$, 25°C ambient.

QS74LVCH16501A ADVANCE INFORMATION

Table 7. Capacitance⁽¹⁾

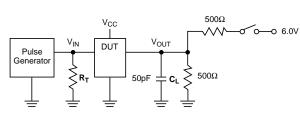
Symbol	Pins	Conditions	Тур	Unit
C_{IN}	Input Capacitance	$V_{IN} = 0V$, $V_{OUT} = 0V$, $f = 1MHz$	7.0	рF
C _{I/O}	I/O Capacitance	$V_{IN} = 0V$, $V_{OUT} = 0V$, $f = 1MHz$	8.0	pF

Note:

Table 8. Switching Characteristics Over Operating Range

Industrial Temperature Range, $T_A = -40^{\circ} C$ to $85^{\circ} C$ $C_{LOAD} = 50 pF$, $R_{LOAD} = 500 \Omega$ unless otherwise noted.

		$V_{CC} = 3.3 \pm 0.3 V$ $V_{CC} = 2.7 V^{(2)}$				1		
Symbol	Description ⁽¹)	Min	Max	Min	Max	Unit	
f _{MAX}	CLKAB or CLKBA Frequency ⁽²⁾		150	_	_	_	MHz	
t _{PD}	Propagation D Ax to Bx or Bx		1.5	4.6	1.5	5.2	ns	any
	Propagation D LEBA to Ax, L	•	1.5	5.3	1.5	6.0		901-
	Propagation DCLKBA to Ax,	Delay CLKAB to Bx	1.5	5.3	1.5	6.0		
t _{EN}	Output Enable OEBA to Ax,		1.5	5.6	1.5	6.0	ns	
t _{DIS}	Output Disable Time ⁽²⁾ OEBA to Ax, OEAB to Bx		1.5	5.8	1.5	6.5	ns	
t _{su}	Setup Time H Ax to CLKAB,	IGH or LOW Bx to CLKBA	3.0	_	3.0	_	ns	
t _H	Hold Time HIG Ax to CLKAB,	GH or LOW Bx to CLKBA	0	_	0	_	ns	
t _{SU}	Setup Time HIGH or Low	Clock LOW	3.0	_	3.0	_	ns	
	Ax to LEAB Bx to LEBA	Clock HIGH	2.0	_	2.0	_	ns	
t _H	Hold Time HIGH or LOW Ax to LEAB, Bx to LEBA		1.5	_	1.5	_	ns	
t_W	Pulse Width(2)		3.0	_	3.0	_	ns	
t _{SK(O)}	Output Skew(3)	_	0.5	_	0.5	ns	


Notes:

- 1. See test circuit and waveforms. Minimum Limits are guaranteed but not tested on Propagation Delays.
- 2. Guaranteed by characterization.
- 3. Skew between any two outputs, of the same package, switching in the same direction. This parameter is guaranteed by characterization but not production tested.

^{1.} Capacitance is characterized but not production tested.

TEST CIRCUIT AND WAVEFORMS

Figure 3. Test Circuit

SWITCH POSITION

Test	Switch
Open Drain	
Disable LOW	6V
Enable LOW	
Disable HIGH	GND
Enable HIGH	
All Other Inputs	Open

DEFINITIONS:

C_L = Load capacitance: includes jig and probe capacitance.

R_T = Termination resistance: should be equal to Z_{OUT} of the Pulse Generator.

Figure 4. Setup, Hold, and Release Timing

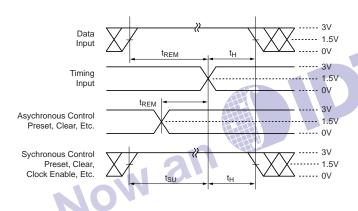
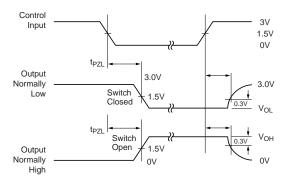
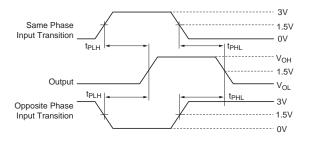
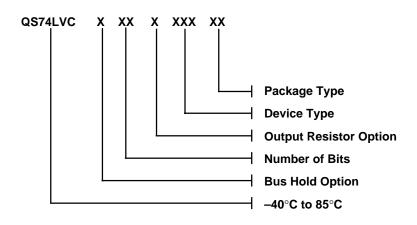


Figure 6. Pulse Width



Figure 5. Enable and Disable Timing


Figure 7. Propagation Delay

Notes:

- Input Control Enable = LOW and Input Control Disable = HIGH.
- 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; $Z_{OUT} \leq 50\Omega$; t_F , $t_R \leq$ 2.5ns.

ORDERING INFORMATION

Bus Hold Option:

H - with Bus Hold

Number of Bits:

16 - 18-Bit

Output Resistor Option:

Blank - No Output Resistor

Device Type:

501

Package Type:

PV – SSOP, 300 mil

