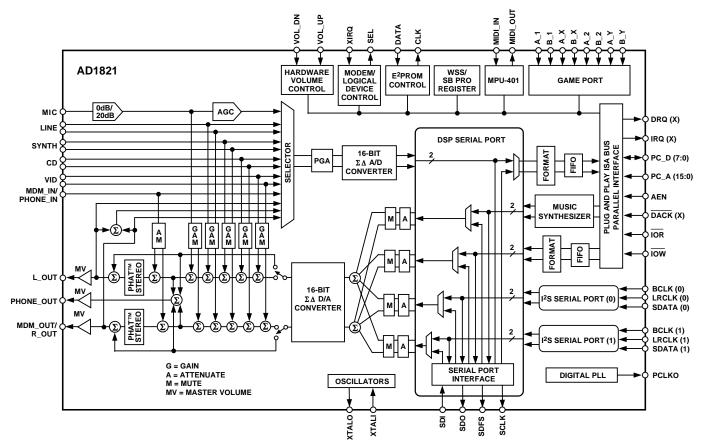


MODIO[™] SoundComm[®]* Host Signal Processing Codec

AD1821

FEATURES

General Compatible with Microsoft® PC 97 Logo Requirements Supports Applications Written for Windows® 95, Windows 3.1, Windows NT, SoundBlaster® Pro, AdLib®/OPL3® ISA Plug and Play Compatible Operation from +5 V Supply Power Management Modes 100-Lead PQFP Package Modem V.34bis (14.4 kbps up to 33.6 kbps)


56k Software Upgradable

V.32/32bis, V.23, V.22/22bis, V.21, Bell 103 and Bell 212 Modem Protocols: V.8 and Automode V.42/42bis MNP 5 Data Compression and V.43 MNP 2-4 Error Correction Virtual COM Port 460.8 kbps and 16550 UART Hayes AT Command Set

Fax

Group 3, Class 1 Support V.17 (14.4 kbps), V.29 (9600/7200 bps), V.27/V.27ter Hayes AT Command Set TIES Escape Sequence

Voice/Telephony AT#V Commands Unimodem V TAPI-Compliant Voice/Fax/Modem Distinction Ring Detection

*SoundComm is a registered trademark of Analog Devices, Inc. *Phat is a trademark of Analog Devices, Inc. All other trademarks are the property of their respective holders.

REV.0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700 World Wide Web Site: http://www.analog.com Fax: 617/326-8703 © Analog Devices, Inc., 1997

FUNCTIONAL BLOCK DIAGRAM

On/Off Hook Control Call Progress Monitor DTMF Detection and Generation Auto Dial Call Forwarding and Conferencing VOX (Voice Detection) ADPCM (32 kpbs Voice Compression) Caller ID Full-Duplex Speakerphone Handset Record and Playback Handset On/Off Detection DSVD Software Upgradeable

Audio

Stereo Audio 16-Bit Σ∆ Codec
V.34 Class Modem Analog Front End
Full-Duplex Capture and Playback Operation at
Different Sample Rates
Internal 3D Circuit—Phat™* Stereo Phase Expander
Integrated OPL3-Compatible Music Synthesizer
Software and Hardware Volume Control

PRODUCT OVERVIEW

The AD1821 MODIO[™] (Modem over Audio) SoundComm[®] HSP (Host Signal Processing) Codec is a single-chip audio and communications subsystem for personal computers. The AD1821 solution includes the AD1821 mixed-signal controller IC controller IC and MODIO[™] host signal processing software drivers. The AD1821 maintains full legacy compatibility with applications written for SoundBlaster Pro and AdLib, while servicing Microsoft PC 97 application requirements. The AD1821 includes an internal OPL3 compatible music synthesizer, Phat[™] Stereo circuitry for phase expanding the analog stereo output, an MPU-401 UART joystick interface with built-in timer, a DSP serial port and two I2S Serial ports. The MODIO[™] drivers utilize CPU resources to implement high speed fax, data, voice (with Echo Cancellation) communications and maintain audio compatibility. The drivers enable simultaneous execution of communications and audio with data flowing through the AD1821, and provide a graceful degradation of modem performance as the host CPU load changes. The AD1821 on-chip Plug and Play routine provides configuration services for all integrated logical devices.

TABLE OF CONTENTS

FEATURES 1 Figures

PRODUCT OVERVIEW 1
SPECIFICATIONS
PIN CONFIGURATION
PIN FUNCTION DESCRIPTIONS 10
HOST INTERFACE 14
REFERENCES 15
SERIAL INTERFACES 16
ISA INTERFACE
AD1821 Chip Registers 20
AD1821 Plug and Play Device Configuration Registers 21
Sound System Direct Registers
Sound System Indirect Registers 28
SB Pro; AdLib Registers 37
MIDI and MPU-401 Registers
Game Port Register
APPENDIX A
AD1821JS AND AD1821JS-M 39
AD1821JS PLUG AND PLAY INTERNAL ROM 39
AD1821JS-M PLUG AND PLAY INTERNAL ROM 40
APPENDIX B 41
PLUG AND PLAY KEY AND "ALTERNATE KEY"
SEQUENCES 41
PROGRAMMING EXTERNAL EEPROMS 42
REFERENCE DESIGNS AND DEVICE DRIVERS 42
OUTLINE DIMENSIONS 44

Functional Block Diagram	. 1
Figure 1. PIO Read Cycle	. 6
Figure 2. PIO Write Cycle	. 6
Figure 3. DMA Read Cycle	
Figure 4. DMA Write Cycle	
Figure 5. Codec Transfers	
Figure 6. DSP Port Timing	
Figure 7. I ² S Serial Port Timing	
Figure 8. Reset Pulse Width	. 7
Figure 9. Serial Interface Right-Justified Mode	
Figure 10. Serial Interface I ² S-Justified Mode	
Figure 11. Serial Interface Left-Justified Mode	16
Figure 12. DSP Serial Interface (Default Frame Rate)	
Figure 13. DSP Serial Interface (User Programmed	
Frame Rate)	20
Figure 14. DSP Serial Port	20
Figure 15. Codec Transfers	
Figure 16. AD1821 Frequency Response Plots	43
Tables	
Table I. DSP Port Time Slot Map	17
Table II. Chip Register Diagram	
Table III. Logical Devices and Compatible Plug and	
Play Device Drivers	21
Table IV. Logical Device Configuration	
Table V. Sound System Direct Registers	22
Table VI. Codec Transfers	
Table VII. Indirect Register Map and Reset/Default States .	29
Table VIII. Sound System Indirect Registers	30
Table IX. SoundBlaster Pro ISA Bus Registers	
Table X. AdLib ISA Bus Registers	
Table XI. MIDI ISA Bus Registers	38
Table XII. Game Port ISA Bus Registers	

SPECIFICATIONS

STANDARD TEST CONDITIONS UNLESS

STANDARD TEST CONDITION	S UNLESS		DAC Test Conditions
OTHERWISE NOTED			0 dB Attenuation
Temperature	25	°C	Input Full Scale
Digital Supply (V _{DD})	5.0	V	16-Bit Linear Mode
Analog Supply (V _{CC})	5.0	V	100 kΩ Output Load
Sample Rate (F _S)	48	kHz	Mute Off
Input Signal Frequency	1008	Hz	Measured at Line Output
Audio Output Passband	20 Hz to 2	20 kHz	ADC Test Conditions
V _{IH}	5.0	V	0 dB Gain
V _{IL}	0	V	Input –4 dB Relative to Full Scale
			Line Input Selected
			16-Bit Linear Mode

ANALOG INPUT

Parameter	Min	Тур	Max	Units
Full-Scale Input Voltage (RMS Values Assume Sine Wave Input)				
PHONE_IN, LINE, SYNTH, CD, VID, MDM_IN		1		V rms
		2.83		V p-p
MIC with $+20 \text{ dB Gain} (MGE = 1)$		0.1		V rms
		0.283		V p-p
MIC with 0 dB Gain (MGE = 0)		1		V rms
		2.83		V p-p
Input Impedance*		17		kΩ
Input Capacitance*		15		pF

PROGRAMMABLE GAIN AMPLIFIER-ADC

Parameter	Min	Тур	Max	Units
Step Size (0 dB to 22.5 dB)		1 5		JD
(All Steps Tested)		1.5		dB
PGA Gain Range Span		22.5		dB

CD, LINE, MICROPHONE, MODEM, SYNTHESIZER, AND VIDEO INPUT ANALOG GAIN/AMPLIFIERS, ATTENUATORS/ MUTE

Parameter	Min	Тур	Max	Units
CD, LINE, MIC, SYNTH, VID, MDM_IN				
Step Size: (All Steps Tested)				
+12 dB to -34.5 dB		1.5		dB
Input Gain/Attenuation Range		46.5		dB
PHONE_IN				
Step Size 0 dB to -45 dB: (All Steps Tested)		3.0		dB
Input Gain/Attenuation Range		45		dB

DIGITAL DECIMATION AND INTERPOLATION FILTERS*

Parameter	Min	Тур	Max	Units
Audio Passband	0		$0.4 \times F_S$	Hz
Audio Passband Ripple			± 0.09	dB
Audio Transition Band	$0.4 \times F_S$		$0.6 \times F_S$	Hz
Audio Stopband	$0.6 \times F_S$		∞	Hz
Audio Stopband Rejection	82			dB
Audio Group Delay			$12/F_S$	sec
Group Delay Variation Over Passband			0.0	μs

ANALOG-TO-DIGITAL CONVERTERS

Parameter	Min	Тур	Max	Units
Resolution		16		Bits
Signal-to-Noise Ratio (SNR) (A-Weighted, Referenced to Full Scale)		-82	-80	dB
Total Harmonic Distortion (THD) (Referenced to Full Scale)		0.011	0.015	%
		-79	-76.5	dB
Audio Dynamic Range (-60 dB Input THD+N Referenced to				
Full-Scale, A-Weighted)	79	82		dB
Audio THD+N (Referenced to Full-Scale)			0.019	%
		-76	-74.5	dB
Signal-to-Intermodulation Distortion* (CCIF Method)		82		dB
ADC Crosstalk*				
Line Inputs (Input L, Ground R, Read R; Input R, Ground L, Read L)		-95	-80	dB
Line to MIC (Input LINE, Ground and Select MIC, Read ADC)		-95	-80	dB
Line to SYNTH		-95	-80	dB
Line to CD		-95	-80	dB
Line to VID		-95	-80	dB
Gain Error (Full-Scale Span Relative to Nominal Input Voltage)			± 10	%
Interchannel Gain Mismatch (Difference of Gain Errors)			± 1	dB
ADC Offset Error	-22		+15	mV

DIGITAL-TO-ANALOG CONVERTERS

Parameter	Min	Тур	Max	Units
Resolution		16		Bits
Signal-to-Noise Ratio (SNR) (A-Weighted)		-83	-79	dB
Total Harmonic Distortion (THD)		0.006	0.009	%
		-85	-80.5	dB
Audio Dynamic Range (-60 dB Input THD+N Referenced to				
Full Scale, A-Weighted)	79	82		dB
Audio THD+N (Referenced to Full Scale)		0.013	0.017	%
		-78	-75.5	dB
Signal-to-Intermodulation Distortion* (CCIF Method)		95		dB
Gain Error (Full-Scale Span Relative to Nominal Input Voltage)			± 10	%
Interchannel Gain Mismatch (Difference of Gain Errors)			± 0.5	dB
DAC Crosstalk* (Input L, Zero R, Measure R_OUT;				
Input R, Zero L, Measure L_OUT)			-80	dB
Total Out-of-Band Energy (Measured from $0.6 \times F_S$ to 100 kHz				
at L_OUT and R_OUT)*			-45	dB
Audible Out-of-Band Energy (Measured from $0.6 \times F_S$ to 20 kHz				
at L_OUT and R_OUT)*			-75	dB

MASTER VOLUME ATTENUATORS (L_OUT AND R_OUT, PHONE_OUT)

Parameter	Min	Тур	Max	Units
Master Volume Step Size (0 dB to –43.5 dB)		1.5		dB
Master Volume Step Size (-43.5 dB to -46.5 dB)		1.5		dB
Master Volume Output Attenuation Range Span		46.5		dB
Mute Attenuation of 0 dB Fundamental $\tilde{*}$	80			dB

DIGITAL MIX ATTENUATORS*

Parameter	Min	Тур	Max	Units
Step Size: I ² S (0), I ² S (1), Music, ISA		1.505		dB
Digital Mix Attenuation Range Span		94.8		dB

ANALOG OUTPUT

Parameter	Min	Тур	Max	Units
Full-Scale Output Voltage (at L_OUT, R_OUT, PHONE_OUT)		2.8		V p-p
Output Impedance*			570	Ω
External Load Impedance*	10			kΩ
Output Capacitance*		15		pF
External Load Capacitance			100	pF
V _{REFX} *	2.10	2.25	2.40	V
V _{REFX} Current Drive*		100		μA
V _{REFX} Output Impedance*		6.5		kΩ
Mute Click (Muted Analog Mixers), Muted Output Minus				
Unmuted Output at 0 dB		± 5		mV

SYSTEM SPECIFICATIONS*

Parameter	Min	Тур	Max	Units
System Frequency Response Ripple (Line In to Line Out)			1.0	dB
Differential Nonlinearity			±1	LSB
Phase Linearity Deviation			5	Degrees

STATIC DIGITAL SPECIFICATIONS

Parameter	Min	Тур	Max	Units
High Level Input Voltage (V _{IH})	2			V
XTALI	2.4			V
Low Level Input Voltage (V_{IL})			0.8	V
High Level Output Voltage (V_{OH}), $I_{OH} = 8 \text{ mA}^{\dagger}$	2.4			V
Low Level Output Voltage (V_{OL}), $I_{OL} = 8 \text{ mA}$			0.4	V
Input Leakage Current	-10		+10	μA
Output Leakage Current	-10		+10	μA

POWER SUPPLY

Parameter	Min	Тур	Max	Units
Power Supply Range—Analog	4.75		5.25	V
Power Supply Range—Digital	4.75		5.25	V
Power Supply Current			221	mA
Power Dissipation			1105	mW
Analog Supply Current			51	mA
Digital Supply Current			170	mA
Analog Power Supply Current—Power-Down			2	mA
Digital Power Supply Current—Power-Down			24	mA
Analog Power Supply Current—RESET			0.2	mA
Digital Power Supply Current—RESET			10	mA
Power Supply Rejection (100 mV p-p Signal @ 1 kHz)* (At Both Analog				
and Digital Supply Pins, Both ADCs and DACs)		40		dB

CLOCK SPECIFICATIONS*

Parameter	Min	Тур	Max	Units
Input Clock Frequency Recommended Clock Duty Cycle	25	33 50	75	MHz %
Power-Up Initialization Time			500	ms

TIMING PARAMETERS (Guaranteed Over Operating Temperature Range)

Parameter	Symbol	Min	Тур	Max	Units
IOW/IOR Strobe Width	t _{STW}	100			ns
IOW/IOR Rising to IOW/IOR Falling	t _{BWDN}	80			ns
Write Data Setup to IOW Rising	t _{WDSU}	10			ns
IOW Falling to Valid Read Data	t _{RDDV}			40	ns
AEN Setup to IOW/IOR Falling	t _{AESU}	10			ns
AEN Hold from IOW/IOR Rising	t _{AEHD}	0			ns
Adr Setup to IOW/IOR Falling	t _{ADSU}	10			ns
Adr Hold from IOW/IOR Rising	t _{ADHD}	0			ns
DACK Rising to IOW/IOR Falling	t _{DKSU}	20			ns
Data Hold from IOR Rising	t _{DHD1}			2	ns
Data Hold from IOW Rising	t _{DHD2}	15			ns
DRQ Hold from IOW/IOR Falling	t _{DRHD}			25	ns
DACK Hold from IOW/IOR Rising	t _{DKHD}	10			ns
Data [SDI] Input Setup Time to SCLK*	t _s	15			ns
Data [SDI] Input Hold Time from SCLK*	t _H	10			ns
Frame Sync [SDFS] HI Pulse Width*	t _{FSW}		80		ns
Clock [SCLK] to Frame Sync [SDFS]					
Propagation Delay*	t _{PD}			15	ns
Clock [SCLK] to Output Data [SDO] Valid*	t _{DV}			15	ns
RESET Pulse Width	t _{RPWL}	100			ns
BCLK HI Pulse Width	t _{DBH}	25			ns
BCLK LO Pulse Width	t _{DBL}	25			ns
BCLK Period	t _{DBP}	50			ns
LRCLK Setup	t _{DLS}	5			ns
SDATA Setup	t _{DDS}	5			ns
SDATA Hold	t _{DDH}	5			ns

NOTES

*Guaranteed, not tested.

†(All ISA pins MIDI_OUT IOL = 24 mA. Refer to pin description for individual output drive levels.

Specifications subject to change without notice.

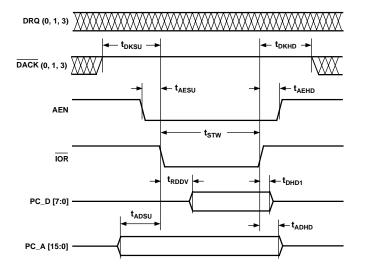


Figure 1. PIO Read Cycle

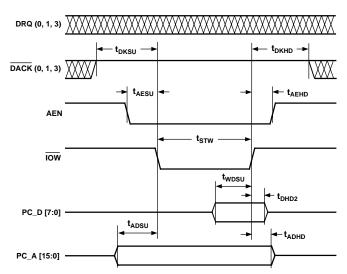
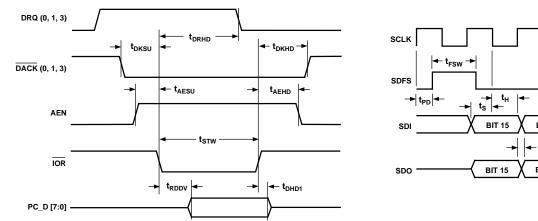
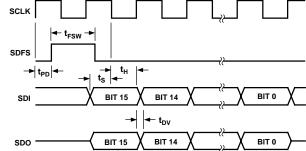




Figure 2. PIO Write Cycle

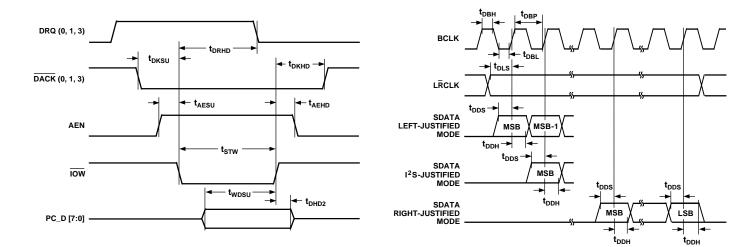


Figure 4. DMA Write Cycle

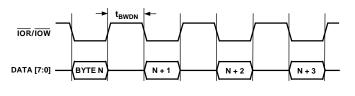
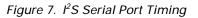



Figure 5. Codec Transfers

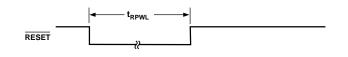


Figure 8. Reset Pulse Width

ABSOLUTE MAXIMUM RATINGS*

Parameter	Min	Max	Units
Power Supplies			
Digital (V _{DD})	-0.3	6.0	V
Analog (V _{CC})	-0.3	6.0	V
Input Current (Except Supply Pins)		± 10.0	mA
Analog Input Voltage (Signal Pins)	-0.3	$V_{CC} + 0.3$	V
Digital Input Voltage (Signal Pins)	-0.3	$V_{DD} + 0.3$	V
Ambient Temperature (Operating)	0	+70	°C
Storage Temperature	-65	+150	°C

*Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ENVIRONMENTAL CONDITIONS

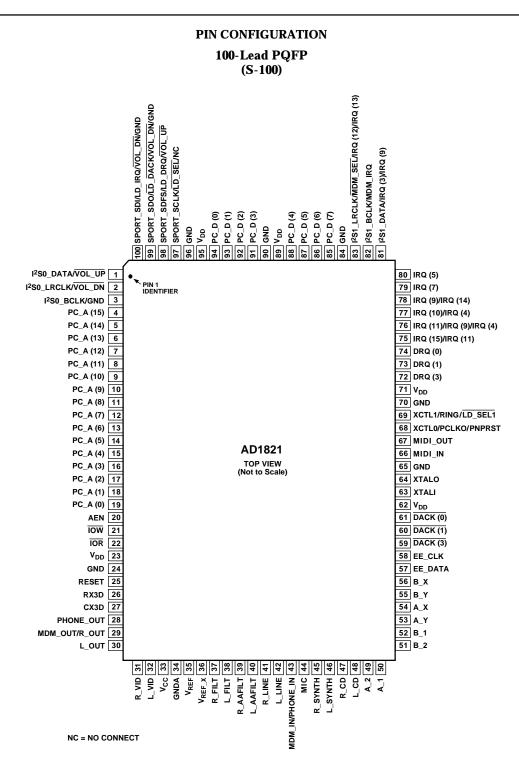
Aml	bient	Temperature	Rating:
-----	-------	-------------	---------

- $\begin{array}{l} T_{AMB} &= T_{CASE} (PD \times \theta_{CA}) \\ T_{CASE} &= Case \ Temperature \ in \ ^{\circ}C \end{array}$
- = Power Dissipation in W PD
- = Thermal Resistance (Case-to-Ambient) θ_{CA}
- θ_{JA} = Thermal Resistance (Junction-to-Ambient)
- = Thermal Resistance (Junction-to-Case) $\theta_{\rm JC}$

Package	θ_{JA}	θ_{JC}	θ _{CA}	
PQFP	77°C/W	7°C/W	70°C/W	

ORDERING GUIDE

Model	Temperature	Package	Function	Package
	Range	Description	Description	Option*
AD1821JS	0°C to +70°C	100-Lead PQFP	Audio/Modem	S-100
AD1821JS-M	0°C to +70°C	100-Lead PQFP	Modem	S-100


*S = Plastic Quad Flatpack.

CAUTION_

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD1821 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

The AD1821 latchup immunity has been demonstrated at \geq +100 mA/-80 mA on all pins when tested to Industry Standard/JEDEC methods.

PIN FUNCTION DESCRIPTIONS

Pin Name	PQFP	I/O	Description
MIC	44	I	Microphone Input. The MIC input may be either line-level or -20 dB from line-level (the difference being made up through a software controlled 20 dB gain block). The mono MIC input may be sent to the left and right channel of the ADC for conversion, or gained/ attenuated from +12 dB to -34.5 dB in 1.5 dB steps and then summed with left and right line OUT before the Master Volume stage.
L_LINE	42	I	Left Line-Level Input. The left line-level input may be: sent to the left channel of the ADC; gained/attenuated from $+12$ dB to -34.5 dB in 1.5 dB steps and then summed with left line OUT.
R_LINE	41	I	Right Line-Level Input. The right line-level input may be: sent to the right channel of the ADC; gained/attenuated from $+12$ dB to -34.5 dB in 1.5 dB steps and then summed with right line OUT.
L_SYNTH	46	I	Left Synthesizer Input. The left MIDI upgrade line-level input may be: sent to the left channel of the ADC; gained/attenuated from $+12$ dB to -34.5 dB in 1.5 dB steps and then summed with left line OUT.
R_SYNTH	45	I	Right Synthesizer Input. The right MIDI upgrade line-level input may be: sent to the right channel of the ADC; gained/attenuated from +12 dB to -34.5 dB in 1.5 dB steps and then summed with right line OUT.
L_CD	48	I	Left CD Line-Level Input. The left CD line-level input may be: sent to the left channel of the ADC; gained/attenuated from +12 dB to -34.5 dB in 1.5 dB steps and then summed with left line OUT.
R_CD	47	I	Right CD Line-Level Input. The right CD line-level input may be: sent to the right channel of the ADC; gained/attenuated from $+12$ dB to -34.5 dB in 1.5 dB steps and then summed with right line OUT.
L_VID	32	I	Left Video Input. The left audio track for a video line-level input may be: sent to the left channel of the ADC; gained/attenuated from $+12$ dB to -34.5 dB in 1.5 dB steps and then summed with left line OUT.
R_VID	31	I	Right Video Input. The right audio track for a video line-level input may be: sent to the right channel of the ADC; gained/attenuated from $+12$ dB to -34.5 dB in 1.5 dB steps and then summed with right line OUT.
L_OUT	30	0	Left Output. Left channel line-level post-mixed output. The final stage passes through the Master Volume block and may be attenuated 0 dB to -45 dB in 1.5 dB steps.
MDM_OUT/ R_OUT	29	0	Modem Output/Right Output. Right channel line-level post-mixed output. The final stage passes through the Master Volume block and may be attenuated 0 dB to -45 dB in 1.5 dB steps.
MDM_IN/ PHONE_IN	43	I	Modem Input/Phone Input. Line-level input from a DAA/modem chipset.
PHONE_OUT	28	0	Phone Output. Line-level output from a DAA/modem chipset.
RX3D	26	0	Phat [™] * Stereo Phase Expander filter network, resistor pin.
CX3D	27	Ι	Phat [™] * Stereo Phase Expander filter network, capacitor pin.

·	× I	,		
Pin Name	PQFP	I/O	Description	
PC_D[7:0]	85-88, 91-94	83-86, 89-92	I/O Bidirectional ISA Bus PC Data, 24 mA drive. Connects the AD1821 to the low byte data on the bus.	
IRQ(x)*	75–81, 83	0	Host Interrupt Request, 24 mA drive. IRQ (3)/IRQ (9), IRQ(5), IRQ(7), IRQ(9)/IRQ (14), IRQ(10)/IRQ(4), IRQ(11)/IRQ (9)/IRQ (4), IRQ(12)/IRQ(13), IRQ(15)/IRQ (11). Active HI signals indicating a pending interrupt.	
DRQ(x)	72-74	0	DMA Request, 24 mA drive. DRQ(0), DRQ(1), DRQ(3). Active HI signals indicating a request for DMA bus operation.	
PC_A[15:0]	4-19	Ι	ISA Bus PC Address. Connects the AD1821 to the ISA bus address lines.	
AEN	20	Ι	Address Enable. Low signal indicates a PIO transfer.	
DACK (x)	59-61	Ι	DMA Acknowledge. DACK(0), DACK(1), DACK(3). Active LO signal indicating that a DMA operation can begin.	
IOR	22	Ι	I/O Read. Active LO signal indicates a read operation.	
IOW	21	Ι	I/O Write. Active HI signal indicates a write operation.	
RESET	25	Ι	Reset. Active HI.	

Parallel Interface (All Outputs are 24 mA Drivers)

Game Port

Pin Name	PQFP	I/O	Description
A_1	50	Ι	Game Port A, Button #1.
A_2	49	I	Game Port A, Button #2.
A_X	54	I	Game Port A, X-Axis.
A_Y	53	I	Game Port A, Y-Axis.
B_1	52	I	Game Port B, Button #1.
B_2	51	I	Game Port B, Button #2.
B_X	56	I	Game Port B, X-Axis.
B_Y	55	I	Game Port B, Y-Axis.

MIDI Interface Signal (24 mA Drivers)

Pin Name	PQFP	I/O	Description
MIDI_IN	66	Ι	RXD MIDI Input. This pin is typically connected to Pin 15 of the game port connector.
MIDI_OUT	67	0	TXD MIDI Output. This pin is typically connected to Pin 12 of the game port connector.

Muxed Serial Ports (8 mA Drivers)

Pin Name PQFP I/O		I/O	Description		
I ² S(0)_BCLK*	3	Ι	I ² S (0) Bit Clock.		
I ² S(0)_LRCLK*	2	I	I ² S (0) Left/Right Clock.		
I ² S(0)_DATA*	1	I	I ² S (0) Serial Data Input.		
I ² S(1)_BCLK*	82	I	I^2S (1) Bit Clock.		
I ² S(1)_LRCLK*	83	I	I ² S (1) Left/Right Clock.		
I ² S(1)_DATA*	81	I	I ² S (1) Serial Data Input.		
SPORT_SDI*	100	I	Serial Port Digital Serial Input.		
SPORT_SCLK*	97	0	Serial Port Serial Clock.		
SPORT_SDFS*	98	0	Serial Port Serial Data Frame Synchronization.		
SPORT_SDO*	99	0	Serial Port Serial Data Output.		

Miscellaneous Analog Pins

Pin Name	PQFP	I/O	Description			
V _{REF_X}	36	0	Voltage Reference. Nominal 2.25 volt reference available for dc-cou- pling and level-shifting. V _{REF_X} should not be used to sink or source sig nal current.			
V_{REF}	35	Ι	Voltage Reference Filter. Voltage reference filter point for external by- passing only.			
L_FILT	38	Ι	Left Channel Filter. Requires a 1.0 μ F to analog ground for proper operation.			
R_FILT	37	Ι	Right Channel Filter. Requires a 1.0 μ F to analog ground for proper operation.			
L_AAFILT	40	Ι	Left Channel Antialias Filter. This pin requires a 270 pF NPO capacitor to analog ground for proper operation.			
R_AAFILT	39	I	Right Channel Antialias Filter. This pin requires a 270 pF NPO capacitor to analog ground for proper operation.			

Crystal Pin

Pin Name	PQFP	I/O	Description	
XTALO	64	0	33 MHz Crystal Output. If no Crystal is present leave XTAL unconnected.	
XTALI	63	I	33 MHz Clock. When using a crystal as a clock source, the crystal should be connected between the XTALI and XTALO pins. Clock input may be driven into XTALI in place of a crystal. When using an external clock, V_{IH} must be 2.4 V rather than the V_{IH} of 2.0 V specified for all other digital inputs.	

External Logical Devices

Pin Name PQFP I/O			Description
LD_IRQ*	100	Ι	Logical Device IRQ.
LD_DACK*	99	0	Logical Device DACK.
LD_DRQ*	98	Ι	Logical Device DRQ.
LD_SEL*	97	0	Logical Device Select.
MDM_SEL*	83	0	Modem Chip Set Select.
MDM_IRQ*	82	Ι	Modem Chip Set IRQ.
LD_SEL1*	69	0	Logical Device (1) Select.
PNPRST*	68	0	Plug and Play Reset.

Hardware Volume Pins

Pin Name	PQFP	I/O	Description
VOL_DN*	2, 99, 100	I	Master Volume Down. Modifies output level on pins L_OUT and R_OUT. Contains a 10 k Ω internal pull-up resistor. When asserted LO, decreases Master Volume by 1.5 dB/sec. Must be asserted at least 25 ms to be recognized. When asserted simultaneously with VOL_UP, output is muted. Output level modifica- tion reflected in indirect register 0 × 29.
VOL_UP*	1, 98	I	Master Volume Up. Modifies output level on pins L_OUT and R_OUT. Con- tains a 10 k Ω internal pull-up resistor. When asserted LO, increases Master Volume by 1.5 dB/sec. Must be asserted at least 25 ms to be recognized. When asserted simultaneously with VOL_UP, output is muted. Output level modifica- tion reflected in indirect register 0 × 29.

Control Pins

Pin Name	PQFP	I/O	Description	
XCTL0*	68	0	External Control 0. The state of this pin (TTL HI or LO) is reflected in codec indexed register. This pin is an open drain driver.	
PCLKO*	68	0	Programmable Clock Output. This pin can be programmed to generate an output clock equal to F_S , $8\times F_S$, $16\times F_S$, $32\times F_S$, $64\times F_S$, $128\times F_S$ or $256\times F_S$. MPEG decoders typically require a master clock of $256\times F_S$ for audio synchronization.	
XCTL1*	69	0	External Control 1. The state of this pin (TTL HI or LO) is reflected in codec indexed register. Open drain, 8 mA active 0.5 mA pull-up resistor.	
RING*	69	I	Ring Indicator. Used to accept the ring indicator flag from the DAA.	

Power Supplies

Pin Name	PQFP	I/O	Description
V _{CC}	33	Ι	Analog Supply Voltage (+5 V).
GNDA	34	I	Analog Ground.
V _{DD}	23, 62, 71, 89, 95	Ι	Digital Supply Voltage (+5 V).
GND	3*, 24, 65, 70, 84, 90, 96, 99*, 100*	I	Digital Ground.

Optional EEPROM Pins

Pin Name	PQFP	I/O	Description
EE_CLK	58	0	EEPROM Clock.
EE_DATA	57	Ι	EEPROM Data.

*The position of this pin location/function is dependent on the EEPROM data.

HOST INTERFACE

The AD1821 contains all necessary ISA bus interface logic onchip. This logic includes address decoding for all onboard resources, control and signal interpretation, DMA selection and control logic, IRQ selection and control logic, and all interface configuration logic.

The AD1821 supports a Type "F" DMA request/grant architecture for transferring data with the ISA bus through the 8-bit interface. The AD1821 also supports DACK preemption. Programmed I/O (PIO) mode is also supported for control register accesses and for applications lacking DMA control. The AD1821 includes dual DMA count registers for full-duplex operation enabling simultaneous capture and playback on separate DMA channels.

Codec Functional Description

The AD1821's full-duplex stereo codec supports business audio and multimedia applications. The codec includes stereo audio converters, complete on-chip filtering, MPC Level-2 and Level-3 compliant analog mixing, programmable gain and attenuation, a variable sample rate converter, extensive digital mixing and FIFOs buffering the Plug and Play ISA bus interface. When using MODIO modem software, PHONE_IN and R_OUT channels are used to support modem and telephony features.

Analog Inputs

The codec contains a stereo pair of $\Sigma\Delta$ analog-to-digital converters (ADC). Inputs to the ADC can be selected from the following analog signals: mono (PHONE_IN), mono microphone (MIC), stereo line (LINE), external stereo synthesizer (SYNTH), stereo CD ROM (CD), stereo audio from a video source (VID) and post-mixed stereo or mono line output (OUT).

Analog Mixing

PHONE_IN, MIC, LINE, SYNTH, CD and VID can be mixed in the analog domain with the stereo line OUT from the $\Sigma\Delta$ digital-to-analog converters (DAC). Each channel of the stereo analog inputs can be independently gained or attenuated from +12 dB to -34.5 dB in 1.5 dB steps, except for PHONE_IN, which has a range of 0 dB to -45 dB steps. The summing path for the mono inputs (MIC, and PHONE_IN to line OUT) duplicates mono channel data on both the left and right line OUT, which can also be gained or attenuated from +12 dB to -34.5 dB in 1.5 dB steps for MIC, and +0 dB to -45.5 dB in 3 dB steps for PHONE_IN. The left and right mono summing signals are always identical being equally gained or attenuated.

Analog-to-Digital Datapath

The selector sends left and right channel information to the programmable gain amplifier (PGA). The PGA following the selector allows independent gain for each channel entering the ADC from 0 dB to 22.5 dB in 1.5 dB steps.

For supporting time correlated I/O echo cancellation, the ADC is capable of sampling microphone data on the left channel and the mono summation of left and right OUT on the right channel.

The codec can operate in either a global stereo mode or a global mono mode with left channel inputs appearing at both channels of the 16-bit $\Sigma\Delta$ converters. Data can be sampled at the programmed sampling frequency (from 4 kHz to 55.2 kHz with 1 Hz resolution).

Digital Mixing & Sample Rates

The audio ADC sample rate and the audio DAC sample rates

are completely independent. The AD1821 includes a variable sample rate converter that lets the codec instantaneously change and process sample rates from 4 kHz to 55.2 kHz with a resolution of 1 Hz. The in-band integrated noise and distortion artifacts introduced by rate conversions are below –90 dB.

Up to four channels of digital data can be summed together and presented to the stereo DAC for conversion. Each digital channel pair can contain information encoded at a different sample rate. For example, 8 kHz .wav data received from the ISA interface, 48 kHz MPEG audio data received from I²S(0), digital 44.1 kHz CD data received from I²S(1) and internally generated 22.05 kHz music data may be summed together and converted by the DACs.

Digital-to-Analog Datapath

The internally generated music synthesizer data, PCM data received from the ISA interface, data received from the $I^2S(0)$ port and data received from the $I^2S(1)$ port, and the DSP serial port passes through an attenuation mute stage. The attenuator allows independent control over each digital channel, which can be attenuated from 0 dB to -94.5 dB in 1.5 dB steps before being summed together and passed to the DAC, or the channel may be muted entirely.

Analog Outputs

The analog output of the DAC can be summed with any of the analog input signals. The summed analog signal enters the Master Volume stage where each channel L_OUT, R_OUT and PHONE_OUT may be attenuated from 0 dB to -46.5 dB in 1.5 dB steps or muted.

Digital Data Types

The codec can process 16-bit twos-complement PCM linear digital data, 8-bit unsigned magnitude PCM linear data and 8-bit μ -law or A-law companded digital data as specified in the control registers. The AD1821 also supports ADPCM encoded in the Creative SoundBlaster ADPCM formats.

Host-Based Echo Cancellation Support

The AD1821 supports time correlated I/O data format by presenting MIC data on the left channel of the ADC and the mono summation of left and right OUT on the right channel. The ADC sample rates are independent of the DAC sample rate allowing the AD1821 to support ADC time correlated I/O data at 8 kHz and DAC data at any other sample rate in the range of 4 kHz to 55.2 kHz simultaneously.

Telephony Support

The AD1821 contains a PHONE_IN input and a PHONE_OUT output. These pins are supplied so the AD1821 may be connected to a modem chip set, a telephone handset or down-line phone.

WSS and SoundBlaster Compatibility

Windows Sound System software audio compatibility is built into the AD1821.

SoundBlaster emulation is provided through the SoundBlaster register set and the internal music synthesizer. SoundBlaster Pro version 2.01 functions are supported, including record and Creative SoundBlaster ADPCM.

Virtually all applications developed for SoundBlaster, Windows Sound System, AdLib and MIDI MPU-401 platforms run on the AD1821 SoundComm[®] Controller. Follow the same development process for the controller as you would for these other devices. As the AD1821 contains SoundBlaster (compatible) and Windows Sound System logical devices. You may find the following related development kits useful when developing AD1821 applications.

Developer Kit for SoundBlaster Series, 2nd ed. © 1993, Creative Labs, Inc., 1901 McCarthy Blvd., Milpitas, CA 95035

Microsoft Windows Sound System Driver Development Kit (CD), Version 2.0, © 1993, Microsoft Corp., One Microsoft Way, Redmond, WA 98052

The following reference texts can serve as additional sources of information on developing applications that run on the AD1821.

S. De Furia & J. Scacciaferro, *The MIDI Implementation Book*, (© 1986, Third Earth, Pompton Lake)

C. Petzold, *Programming Windows: the Microsoft guide to writing applications for Windows 3.1*, 3rd. ed., (© 1992, Microsoft Press, Redmond)

K. Pohlmann, *Principles of Digital Audio*, (© 1989, Sams, Indianapolis)

A. Stolz, *The SoundBlaster Book*, (© 1993, Abacaus, Grand Rapids)

J. Strawn, *Digital Audio Engineering, An Anthology*, (© 1985, Kaufmann, Los Altos)

Yamamoto, *MIDI Guidebook*, 4th. ed., (© 1987, 1989, Roland Corp.)

Multimedia PC Capabilities

The AD1821 is MPC-2 and MPC-3 compliant. This compliance is achieved through the AD1821's flexible mixer and the embedded chip resources.

Music Synthesis

The AD1821 includes an embedded music synthesizer that emulates industry standard OPL3 FM synthesizer chips and delivers 20 voice polyphony. The internal synthesizer generates digital music data at 22.05 kHz and is summed into the DACs digital data stream prior to conversion. To sum synthesizer data with the ADC output, the ADC must be programmed for a 22.05 kHz sample rate.

The synthesizer is a hardware implementation of Eusynth-1+ code that was developed by Euphonics, a research and development company that specializes in audio processing and electronic music synthesis.

Wavetable MIDI Inputs

The AD1821 has a dedicated analog input for receiving an analog wavetable synthesizer output. Alternatively, a wavetable synthesizer's I²S formatted digital output can be directly connected to one of the AD1821's I²S serial ports. Digital wavetable data from the AD1821's I²S port may be summed with other digital data streams being handled by the AD1821 and then sent to the 16-bit $\Sigma\Delta$ DAC.

MIDI

The primary interface for communicating MIDI data to and from the host PC is the compatible MPU-401 interface that operates in UART mode. The MPU-401 interface has two built-in FIFOs: a 64 byte receive FIFO and a 16 byte transmit FIFO.

Game Port

An IBM-compatible game port interface is provided on chip. The game port supports up to two joysticks via a 15-pin D-sub connector. Joystick registers supporting the Microsoft Direct Input standard are included as part of the register map. The AD1821 may be programmed to automatically sample the game port and save the value in the Joystick Position Data Register. When enabled, this feature saves up to 10% CPU MIPS by off-loading the host from constantly polling the joystick port.

Volume Control

The registers that control the Master Volume output stage are accessible through the parallel port. Master Volume output can also be controlled through a 2-pin hardware interface. One pin is used to increase the gain, the other pin attenuates the output and both pins together entirely mute the output. Once muted, any further activity of these pins will unmute the AD1821's output.

Plug and Play Configuration

The AD1821 is fully Plug and Play configurable. For motherboard applications, the built-in Plug and Play protocol can be disabled with a software key providing a back door for the BIOS to configure the AD1821's logical devices. For information on the Plug and Play mode configuration process, see the *Plug and Play ISA Specification Version 1.0a (May 5, 1994).* All the AD1821's logical devices comply with Plug and Play resource definitions described in the specification.

The AD1821 may alternatively be configured using an optional Plug and Play Resource ROM. When the EEPROM is present, some additional AD1821 muxed-pin features become available. For example, pins that control an external modem logical device are muxed with the DSP serial port. Some of these pin option combinations are mutually exclusive (see Appendix A for more information).

REFERENCES

The AD1821 also complies with the following related specifications; they can be used as an additional reference to AD1821 operations beyond the material in this data sheet.

Plug and Play ISA Specification, Version 1.0a, © 1993, 1994, Intel Corp. & Microsoft Corp., One Microsoft Way, Redmond, WA 98052

Multimedia PC Level 2 Specification, © 1993, Multimedia PC Marketing Council, 1730 M St. NW, Suite 707, Washington, DC 20036

MIDI 1.0 Detailed Specification & Standard MIDI Files 1.0, © 1994, MIDI Manufacturers Association, PO Box 3173 La Habra, CA 90632-3173

Recommendation G.711-Pulse Code Modulation (PCM) Of Voice Frequencies (µ-Law & A-Law Companding), The International Telegraph and Telephone Consultative Committee IX Plenary Assembly Blue Book, Volume III - Fascicle III.4, General Aspects Of Digital Transmission Systems; Terminal Equipment's, Recommendations G.700 - G.795, (Geneva, 1988), ISBN 92-61-03341-5

IMA Digital Audio Doc-Pac (IMA-ADPCM), © 1992, Interactive Multimedia Association, 48 Maryland Avenue, Suite 202, Annapolis, MD 21401-8011

SERIAL INTERFACES

I²S Serial Ports

The two I²S serial ports on the AD1821 accept serial data in the following formats: Right-Justified, I²S-Justified and Left-Justified.

Figure 9 shows the right-justified mode. LRCLK is HI for the left channel and LO for the right channel. Data is valid on the rising edge of the BCLK. The MSB is delayed 16-bit clock periods from an LRCLK transition, so that when there are 64 BCLK periods per LRCLK period, the LSB of the data will be right-justified to the next LRCLK transition.

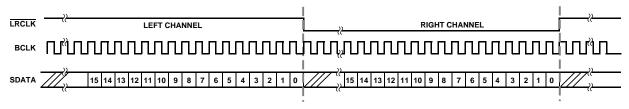


Figure 9. Serial Interface Right-Justified Mode

Figure 10 shows the I²S-justified mode. LRCLK is LO for the left channel and HI for the right channel. Data is valid on the rising edge of BCLK. The MSB is left-justified to an LRCLK transition, but with a single BCLK period delay.

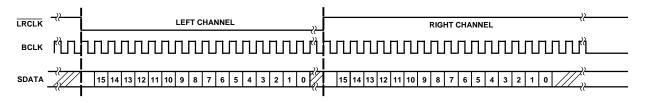


Figure 10. Serial Interface I²S-Justified Mode

Figure 11 shows the left-justified mode. LRCLK is HI for the left channel and LO for the right channel. Data is valid on the rising edge of BCLK. The MSB is left-justified to an LRCLK transition, with no MSB delay.

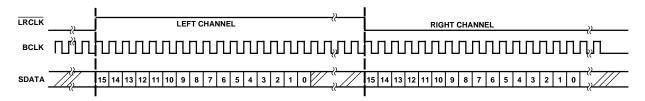


Figure 11. Serial Interface Left-Justified Mode

Bidirectional DSP Serial Interface

The AD1821 SoundComm[®] Controller transmits and receives both data and control/status information through its DSP serial interface port (SPORT). The AD1821 is always the bus master and supplies the frame sync and the serial clock. The AD1821 has four pins assigned to the SPORT: SDI, SDO, SDFS, and SCLK. The SPORT has two operating modes: monitor and intercept. The SPORT always monitors the various data streams being processed by the AD1821. In intercept mode, any of the digital data streams can be manipulated by the DSP before reaching the final ADC or DAC stages.

The SDI and SDO pins handle the serial data input and output of the AD1821. Communication in and out of the AD1821 requires that bits of data be transmitted after a rising edge of SCLK and sampled on the falling edge of SCLK. The SCLK frequency is always 11 MHz (or 1/3 or XTALI).

DSP Serial Port Interface time slots are mapped as shown in Table I.

Time Slot	SDI Pin	SDO Pin
0	Control Word Input	Status Word Output
1	Control Register Data Input	Control Register Data Output
2	* SS/SB ADC Right Input (to ISA)	SS/SB ADC Right Output (from Codec)
3	* SS/SB ADC Left Input (to ISA)	SS/SB ADC Left Output (from Codec)
4	* SS/SB DAC Right Input (to Codec)	SS/SB DAC Right Output (from ISA)
5	* SS/SB DAC Left Input (to Codec)	SS/SB DAC Left Output (from ISA)
6	* FM DAC Right Input (to Codec)	FM DAC Right Output (from FM Synth Block)
7	* FM DAC Left Input (to Codec)	FM DAC Left Output (from FM Synth Block)
8	* I ² S (1) DAC Right Input (to Codec)	I ² S (1) DAC Right Output (from I ² S Port [1])
9	* I ² S (1) DAC Left Input (to Codec)	I ² S (1) DAC Left Output (from I ² S Port [1])
10	* I ² S (0) DAC Right Input (to Codec)	I ² S (0) DAC Right Output (from I ² S Port [0])
11	* I ² S (0) DAC Left Input (to Codec)	I ² S (0) DAC Left Output (from I ² S Port [0])

Table I.	DSP	Port	Time	Slot	Мар
----------	-----	------	------	------	-----

*This data is ignored by the AD1821 unless the channel pair is in intercept mode (see below). SS = Sound System Mode

SB = Sound System Mode SB = SoundBlaster Mode

At start-up (after pin reset), there are exactly 12 time slots per frame. The frame rate will be 57,291 and 2/3 Hz (11 MHz sclk/ (16 bits \times 12 slots)). Interfacing with an Analog Devices 21xx family DSP can be achieved by putting the ADSP-21xx in 24 slot per frame mode, where the first 12 and second 12 slots in the ADSP-21xx frame are identical.

The frame rate can be changed from its default by a write to the DFS(2:0) bits in register 33. Rate choices are: Maximum (57,291 and 2/3 Hz default), SS capture rate, SS playback rate, FM rate, I^2 S Port (1) rate, or I^2 S Port (0) rate. When the frame rate is less than 57,261 and 2/3 Hz, extra SCLK periods are added to fill up the time. The number of SCLK periods added will vary somewhat from frame to frame.

To control the sample data flow of each channel through the DSP Port, valid input, valid output and request bits are located in the control and status words. If the specified channel sample rate is equal to the frame rate, these bits may be ignored since they will always be set to "1".

By default, the DSP serial port allows only codec sample data I/O to be monitored. Intercept modes must be enabled to make substitutions in sample data flow to and from the codec. There are five bits in SS register 33, which enable intercept mode for SS capture, SS playback, FM playback, I²S Port (1) playback and I²S Port (0) playback.

Control Word Input (Slot 0 SDI)

	15	14	13	12	11	10	9	8
	FCLR	RES	RES	SSCVI	SSPVI	FMVI	IS1VI	ISOVI
_	7	6	5	4	3	2	1	0
	ALIVE	R/W			IA[5:0]			

IA [5:0]	Indirect Register Address. Sound System Indirect Register Address defines the address of indirect registers shown in Table VI.
R/W	Read/Write request. Either a read from or a write to an SS indirect register occurs every frame. Setting this bit ini- tiates an SS indirect register read while clearing this bit initiates an SS indirect register write.
ALIVE	DSP port alive bit. When set, this bit indicates to the power-down timer that the DSP port is active. When cleared, this bit indicates that the DSP port is inactive.
ISOVI	I ² S Port 0 Substitution Data Input Valid Flag. This bit is ignored if: (1) Intercept mode is not enabled for the I ² S port 0 channel pair, or (2) The AD1821 did not request data from the I ² S port 0 channel pair in the previous frame. Otherwise, setting this bit indicates that slots 10 and 11 contain valid right and left I ² S Port 0 substitution data. When this bit is cleared, data in slots 10 and 11 is ignored.
IS1VI	I^2S Port 1 Substitution Data Input Valid Flag. This bit is ignored if: (1) Intercept mode is not enabled for I^2S port 1 channel pair or (2) The AD1821 did not request data from the I^2S port channel pair in the previous frame. Otherwise, setting this bit indicates that Slots 8 and 9 contain valid right and left I^2S Port 1 substitution data. When this bit is cleared, data in slots 8 and 9 is ignored.
FMVI	FM Synthesis Substitution Data Input Valid Flag. This bit is ignored if: (1) Intercept mode is not enabled for the FM synthesis channel pair or (2) The AD1821 did not request data from the FM synthesis channel pair in the previous frame (see the FMRQ Bit 9 in the status word output). Otherwise, setting this bit to 1 indicates that slots 6 and 7 contain valid right and left FM synthesis channel substitution data. When this bit is reset to 0, data in slots 6 and 7 is ignored.

- SSPVI SS/SB Playback Substitution Data Input Valid Flag. This bit is ignored if: (1) Intercept mode is not enabled for SS/SB playback or (2) The AD1821 did not request data for SS/SB playback in the previous frame (see the SSPRQ bit in the Status Word Output). Otherwise, setting this bit indicates that Slots 4 and 5 contain valid right and left SS/SB playback substitution data. If in "capture rate equal to playback rate" mode, setting this bit also indicates that valid capture substitution data is being sent to the AD1821. If not in modem mode, right and left channel capture substitution data is accepted in Slots 2 and 3 respectively. If in modem mode, only mono capture substitution data is accepted in slots 2 and 3. When this bit is cleared, data in all slots controlled by this bit, as defined above, is ignored.
- SSCVI SS/SB Capture Substitution Data Input Valid Flag. This bit is ignored if: (1) Intercept mode is not enabled for SS/ SB capture or (2) The AD1821 did not request data for SS/SB capture in the previous frame (see the SSCRQ bit in the Status Word Output). Otherwise, setting this bit indicates that valid SS/SB capture substitution data is being sent to the AD1821. If not in modem mode, or DSP port or ISA bus based, right and left channel capture data is accepted in Slots 2 and 3 respectively. If in modem mode, only mono capture substitution data is accepted in Slot 3, because Slot 2, which is mapped to the right capture channel, is being used for modem. This mono data will, however, be sent to both left and right ISA SS/SB capture channels. When this bit is cleared, data in Slots 3 and 2 is ignored.
- RES Reserved: To ensure future compatibility write "0" to all reserved bits.
- FCLR DSP Port Clear Status Flag. When this bit is set, (write 1), the PNPR and PDN flag bits in the status word (Bits 15 and 14 of slots 0 SDO) are cleared. When this bit is cleared, (writing a 0), it has no effect on PNPR and PDN and preserves them in the previous states.

Status Word Output (Slot 0 SDO)

15	14	13	12	11	10	9	8
PDN	PNPR	RES	SSCVO	SSPVO	FMVO	IS1VO	IS0VO
7	6	5	4	3	2	1	0
MB1	MB0	RES	SSCRQ	SSPRQ	FMRQ	IS1RQ	IS0RQ

ISORQ I²S Port (0) Input Request Flag. This bit is set if intercept mode is enabled for I²S Port (0) and its four-word stereo input buffer is not full.

- IS1RQ I²S Port (1) Input Request Flag. This bit is set if intercept mode is enabled for I²S Port (1) and its four-word stereo input buffer is not full.
- FMRQ FM Synthesis Input Request Flag. This bit is set if intercept mode is enabled for FM synthesis and its four-word stereo input buffer is not full.
- SSPRQ SS/SB Capture Input Request Flag. This bit is set if intercept mode is enabled for SS/SB playback and its fourword stereo input buffer is not full.
- SSCRQ SS/SB Capture Input Request Flag. This bit is set if intercept mode is enabled for SS/SB capture and its four-word stereo input buffer is not full.
- MB0 Mailbox 0 Status Flag. This bit is set if the most recent action to SS indirect register 42 (DSP port Mail Box 1) was a write, and is cleared if the most recent action was a read. The status of this bit is also reflected in SS indirect register 33. It may be used as a handshake bit to facilitate communication between a DSP on the DSP port and a host CPU on the ISA bus.
- MB1 Mailbox 1 Status Flag. This bit is set if the most recent action to SS indirect register 43 (DSP port Mail Box 1) was a write and is cleared if the most recent action was a read. The status of this bit is also reflected in SS indirect register 33. It may be used as a handshake bit to facilitate communication between a DSP on the DSP port and a host CPU on the ISA bus.
- ISOVO I²S Port 0 Valid Out. This bit is set if Slots 10 and 11 contain valid right and left I²S Port 0 data.
- IS1V1 I²S Port 1 Valid Out. This bit is set if Slots 8 and 9 contain valid right and left I²S Port 1 data.
- FMVO FM Synthesis Valid Out. This bit is set if Slots 6 and 7 contain valid left and right FM synthesis data.
- SSPVO SS/SB Playback Valid Out. This bit is set if Slots 4 and 5 contain valid right and left SS/SB playback data.
- SSCVO SS/SB Capture Valid Out. This bit is set if valid SS/SB capture data is being transmitted. If not in a modem mode, Slots 2 and 3 will contain valid right and left SS/SB capture data. If in modem mode, only Slot 3 will contain valid left SS/SB capture data as Slot 2 and the ADC right channel are used by the modem.

- PNPR Plug and Play Reset flag. This bit is set by an AD1821 reset (RESETB pin asserted LOW) or by a Plug and Play reset command. This bit is cleared by the assertion of the FCLR bit in the control word. While this bit is set, all attempts to write an SS indirect register via the DSP port will be ignored and fail. This is to ensure that Plug and Play resets are immediately applied to the application running on the DSP, without requiring them to continuously poll the Plug and Play reset status bit. During the frame in which this bit is cleared (by asserting FCLR), an attempt to write an SS indirect register will succeed. If the FCLR bit is continuously asserted, writes to indirect registers via the DSP port will always be enabled. A Plug and Play reset command will set this PNPR bit HIGH during at least one frame.
 PDN Power-Down flag. This bit is set by an AD1821 reset (RESETB pin asserted LOW), or by an AD1821 power-
- PDN Power-Down flag. This bit is set by an AD1821 reset (RESETB pin asserted LOW), or by an AD1821 powerdown. Before an AD1821 power-down sequence shuts down the DSP port, at least one frame will be sent with this bit set. This bit can be cleared by the assertion of the FCLR (DSP port status clear) bit in the control word, providing the AD1821 is no longer in power-down.

The SDFS pin is used for the serial interface frame synchronization. New frames are marked by a one SCLK duration HI pulse, driven out on SDFS, one serial clock period before the frame begins. Upon initializing, there are exactly 12 time slots per frame and 16 bits per time slot. The frame rate is 57,291 and 2/3 Hz (11 MHz SCLK /(16 bits \times 12 slots). The frame rate can also be changed from the default value by reprogramming the rate in registers. The frame rate can run at the default rate or be programmed to match the modem sample rate, ADC capture rate, DAC playback rate, music sample rate, I²S(1) sample rate or I²S(0) sample rate. When the frame rate is not equivalent to the sample rate, Valid Out, Request In and Valid In bits are used to control the sample data flow. When the frame rate is equivalent to the sample rate, Valid and Request bits can be ignored.

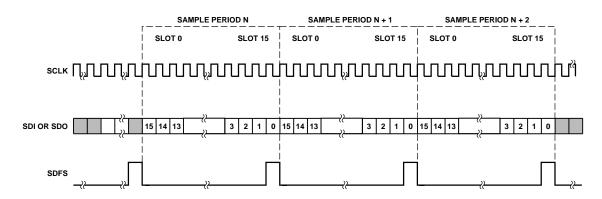


Figure 12. DSP Serial Interface (Default Frame Rate)

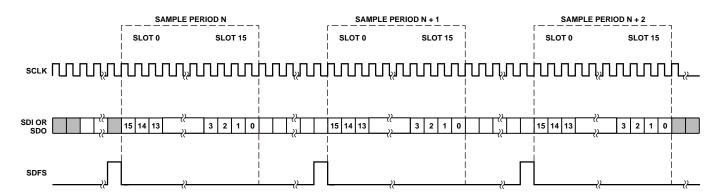


Figure 13. DSP Serial Interface (User Programmed Frame Rate)

Figure 14 illustrates the flexibility of the DSP Serial Port interface. This port can monitor or intercept any of the digital streams managed by the AD1821. Any ADC or DAC data stream can be intercepted by the port, shipped to an external DSP or ASIC manipulated, and returned to any DAC summing path or to the ADC.

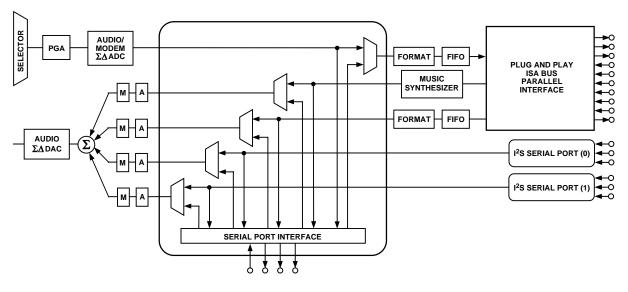


Figure 14. DSP Serial Port

ISA INTERFACE AD1821 Chip Registers

Table II, Chip Register Diagram, details the AD1821 direct register set available from the ISA Bus. Prior to any accesses by the host, the PC I/O addressable ports must be configured using the Plug and Play Resources.

Table II	. Chip	Register	Diagram
----------	--------	----------	---------

Register Type-Register Name	Register PC I/O Address
Plug and Play	
ADDRESS	0x279
WRITE DATA	0xA79
READ_DATA	Relocatable in Range 0x203 - 0x3FF
Sound System Codec	
CODEC REGISTERS	0x(SS Base+0 - SS Base+15)
	Relocatable in Range 0x100 - 0x3FF
	See Table V
SoundBlaster Pro	
Music0: Address (w), Status (r)	0x(SB Base) Relocatable in Range 0x010 - 0x3F0
Music0: Data (w)	0x(SB Base+1)
Music1: Address (w)	0x(SB Base+2)
Music1: Data (w)	0x(SB Base+3)
Mixer Address (w)	0x(SB Base+4)
Mixer Data (w)	0x(SB Base+5)
Reset (w)	0x(SB Base+6 or 7)
Music0: Address (w)	0x(SB Base+8)
Music0: Data (w)	0x(SB Base+9)
Input Data (r)	0x(SB Base+A or +B)
Status (r), Output Data (w)	0x(SB Base+C or +D)
Status (r)	0x(SB Base+E or +F)

Register Type-Register Name	Register PC I/O Address
AdLib	
Music0: Address (w), Status (r)	0x(Adlib Base) Relocatable in Range 0x100 – 0x3F8
Music0: Data (w)	0x(Adlib Base+1)
Music1: Address (w)	0x(Adlib Base+2)
Music1: Data (w)	0x(Adlib Base+3)
MIDI MPU-401	
MIDI Data (r/w)	0x(MIDI Base) Relocatable in Range 0x100 – 0x3F8
MIDI Status (r), Command (w)	0x(MIDI Base+1)
Game Port	
Game Port I/O	0x(Game Base +0 to Game Base +7) Relocatable in Range
0x100 – 0x3F8	

AD1821 Plug and Play Device Configuration Registers

The AD1821 may be configured according to the Intel/Microsoft Plug and Play Specification using the internal ROM. Alternatively, the PnP configuration sequence may be bypassed using the "Alternate Key Sequence" described in Appendix A.

The operating system configures/reconfigures AD1821 Plug and Play Logical Devices after system boot. There are no "boot-devices" among the Plug and Play Logical Devices in the AD1821. Non-Plug and Play BIOS systems configure the AD1821's Logical Devices after boot using drivers. Depending on BIOS implementations, Plug and Play BIOS systems may configure the AD1821's Logical Devices before POST or after Boot. See the *Plug and Play ISA Specification Version 1.0a* for more information on configuration control. To complete this configuration, the system reads resource data from the AD1821's on-chip resource ROM and from any other Plug and Play cards in the system, and then arbitrates the configuration of system resources with a heuristic algorithm. The algorithm maximizes the number of active devices and the acceptability of their configurations.

The system considers all Plug and Play logical device resource data at the same time and makes a conflict-free assignment of resources to the devices. If the system cannot assign a conflict-free resource to a device, the system does not configure or activate the device. All configured devices are activated.

The system's Plug and Play support selects all necessary drivers, starts them and maintains a list of system resources allocated to each logical device. As an option, system resources can be reassigned at runtime with a Plug and Play Resource Manager. The custom setup created using the manager can be saved and used automatically on subsequent system boots.

Plug and Play Device IDs (embedded in the logical device's resource data) provide the system with the information required to find and load the correct device drivers. One custom driver, the AD1821 Sound System driver from Analog Devices, is required for correct operation. In the other cases (MIDI, Game Port), the system can use generic drivers. Table III lists the AD1821's Logical Devices and compatible Plug and Play device drivers.

Logical Device Number	Emulated Device	Compatible (Device ID)	Device ID
0	Sound System MIDI MPU401 Compatible	 PNPB006	ADS7180 ADS7181
2	Game/Joystick Port	PNPB02F	ADS7182

Table III. Logical Devices and Compatible Plug and Play Device Drivers

The configuration process for the logical devices on the AD1821 is described in the *Plug and Play ISA Specification Version 1.0a (May 5, 1994)*. The specification describes how to transfer the logical devices from their start-up *Wait For Key* state to the *Config* state and how to assign I/O ranges, interrupt channels and DMA channels. See Appendix A for an example setup program and specific Plug and Play resource data.

Table IV describes in detail the I/O Port Address Descriptors, DMA Channels, Interrupts for the functions required for the AD1821 Logical Device groups.

LDN	PnP Function	Description
0	I/O Port Address Descriptor (0x60-0x61)	The SoundBlaster Pro address range is from 0x100 to 0x3F0. The typical address is 0x220. The range is 16 bytes long and must be aligned to a 16 byte memory boundary.
0	I/O Port Address Descriptor (0x62-0x63)	The Adlib address range is from $0x100$ to $0x3F8$. The typical address is $0x388$. The range is 4 bytes long and must be aligned to an 8 byte memory boundary.
0	I/O Port Address Descriptor (0x64-0x65)	The Codec address range is from 0x100 to 0x3F8. The range is 16 bytes long and must be aligned to a 16 byte memory boundary.
0	Interrupt Request Level Select (0x70-0x71)	This IRQ is shared between the SB Pro device and the Codec. These devices require one of the following IRQ channels: 5, 7, 9, 11, 12 or 15. Typically, the IRQ is set to 5 or 7 for this device.
0	DMA Playback Channel Select (0x74)	This 8-bit channel is shared between the SB Pro device and the Codec for playback. These devices require one of the following DMA channels: 0, 1, 3. Typically, DMA channel 1 is set.
0	DMA Capture Channel Select (0x75)	This the DMA channel used for capturing Codec data. The Codec operates in single channel mode if a separate DMA channel for capture and playback is not assigned. The following DMA channels may be programmed: 0, 1, 3. DMA Channel 4 indicates single channel mode.
1	I/O Port Address Descriptor (0x60-0x61)	The MPU-401 compatible device address range is 0x100 to 0x3FE. Typical configurations use 0x330. The range is 2 bytes long and must be aligned to a 2 byte memory boundary.
1	Interrupt Request Level Select (0x70-0x71)	The MIDI device requires one of the following IRQ channels: 5, 7, 9, 11, 12 or 15.
2	I/O Port Address Descriptor (0x60-0x61)	The Game Port address range is from 0x100 to 0x3F8. The typical address is 0x200. The range is 8 bytes long and must be aligned to an 8 byte memory boundary.

Table IV. Logical Device Configuration

NOTE

DMA channel 4 indicates single-channel mode.

Sound System Direct Registers

The AD1821 has a set of 16 programmable Sound System Direct Registers and 36 Indirect Registers. This section describes all the AD1821 registers and gives their address, name and initialization state/reset value. Following each register table is a list (in ascending order) of the full register name, its usage and its type: (RO) Read Only, (WO) Write Only, (STKY) Sticky, (RW) Read Write and Reserved (res). Table V is a map of the AD1821 direct registers.

Direct										
Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
SSBASE + 0	CRDY	VBL		INADR[5:0]						
SSBASE + 1	PI	CI	TI	VI	DI	RI	GI	SI		
SSBASE + 2				Indirect SS I	Data [7:0]					
SSBASE + 3				Indirect SS I	Data [15:8]					
SSBASE + 4	R	ES	PUR	COR	ORR	[1:0]		ORL [1:0]		
SSBASE + 5	PFH	PDR	PLR	PUL	CFH	CDR	CLR	CUL		
SSBASE + 6				PIO Playbac	k/Capture [7:	0]				
SSBASE + 7				RESEF	RVED					
SSBASE + 8	TRD	DAZ	PFM	T [1:0]	PC/L	PST	PIO	PEN		
SSBASE + 9	R	ES	CFM	T [1:0]	PC/L	CST	CIO	CEN		
SSBASE + 10				RESE	RVED					
SSBASE + 11				RESE	RVED					
SSBASE + 12				JOYSTICK	DATA [7:0]					
SSBASE + 13	JRDY	JWRP	JSEL	L [1:0]		JMSK	X [3:0]			
SSBASE + 14				JAZ	XIS [7:0]					
SSBASE + 15				JAZ	XIS [15:8]					

Table V. Sound System Direct Registers

[Base+0]	Chip/	Mode	n Sta	tus/Indire	ct Address					
Г	7 CRDY	<u>, </u>	6 VBL	5	4	3 INADR[5	2	1	0	RESET = [0x00]
L		I	,							
NADR [5:0]	(RW)	All re	gister	s data mus		n in pairs, lov				t Registers shown in Table VIII bading the Indirect SS Data
VBL		wheth	ner PÇ LRCI I2	FP Pins 1 LK respect S0_DATA	and 2 (TQ	FP Pins 99 ar _LRCLK				the AD1821, this bit determine VOL_DN or I2S0_DATA and
CRDY	(RO)	AD18 0 1	A	eady. The D1821 no D1821 rea	t ready	sserts this bit	when AD	821 can ac	ccept data.	
[Base+1]	Intern	upt S	tatus							
Г	7 PI		6 CI	5 TI	4 VI	3 DI	2 RI	1 GI	0 SI	RESET = [0x00]
SI			dBlast No ir	ter generat iterrupt	ted Interrup	ot.				
GI	(RW)		No ir	nterrupt	·	0" to Clear). le to Digital (data ready		
RI	(RW)	Ring 0 1	No ir	iterrupt	•)" to Clear). e to a Hardv	vare Ring p	in being as	serted	
DI	(RW)		No ir	nterrupt	-	" to Clear). e to a write t	to the DIT	bit in indire	ect register	[33] bit <13>
VI	(RW)		No ir	nterrupt	-	e "0" to Clea e to Hardwa		Button bei	ng pressed	
TI	(RW)	Write	e "0" t No ir	to Ĉlear). Iterrupt		tes there is a the timer cou	-	pending fro	om the time	r count registers. (Sticky,
CI	(RW)	(Sticl	ky, Wi No ir	rite "0" to nterrupt	Clear).	cates that the			ding from t	he capture DMA count register
PI	(RW)	regist	er. (S No ir	ticky, Writ iterrupt	te "0" to C				nding from	the playback DMA count
[Base+2]	Indir	ect SS	Data	Low Byte	•					
—	7	(3	5	4 Indirect SS	3	2	1	0	DECET _ [0VV]
			D :		Indirect SS	Data [7:0]				RESET = [0xXX]
[Base+3]	Indir			High Byt		0	C	1	0	
	1	()	5 Ind	4 irect SS Da	3 ta [15:8]	2	1	0	RESET = $[0xXX]$
Indirect SS	Indire	ect Sou	ind Sv	stem Data	a. Data in t	his register is	written to	the Sound	System Ind	irect Register specified by the

Indirect SSIndirect Sound System Data. Data in this register is written to the Sound System Indirect Register specified by the
address contained in INDAR [5:0], Sound System Direct Register [Base+0]. Data is written when the Indirect SS
Data High Byte value is loaded.

[Base+4] PIO Debug

1	7		5 4 UR COR	
All bits in				nat clears all bits to 0.
ORL/ORR [1:0]	-	Overrange Left/ channels and ar "sticky," i.e., th	Right detect. e cleared to 0 e largest outp	t. These bits record the largest output magnitude on the ADC right and left 00 after any write to this register. The peak amplitude as recorded by these bits is tput magnitude recorded by these bits will persist until these bits are explicitly ed by powering down the chip.
			ORL/ORR	R Over/Under Range Detection
			00	Less than -1 dB Underrange
			01	Between -1 dB and 0 dB Underrange
			10	Between 0 dB and 1 dB Overrange
	<i>(</i> — —)		11	Greater than 1 dB Overrange
COR	(RO)	capture FIFO fi	ills. When CO	dec sets (1) this bit when capture data is not read within one sample period after the OR is set, the FIFO is full and the codec discards any new data generated. The iately after a 4 byte capture sample is read.
PUR	(RO)	ter the playback	t FIFO emptie t is set, the pla	codec sets (1) this bit when playback data is not written within one sample period af- ties. The codec clears (0) this bit immediately after a 4 byte playback sample is writ- playback channel has "run out" of data and either plays back a mid-scale value or
[Base+5]	PIO St	atus		
	7 PFF	6 H PDR		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
CUL	(RO)			
COL	(RO)	or lower byte of 0 Lower byte	the channel. te ready	ple. This bit indicates whether the PIO capture data ready is for the upper l. ny 8-bit mode
CLR	(RO)	or the right cha 0 Right cha	nnel ADC.	This bit indicates whether the PIO capture data waiting is for the left channel ADC
CDR	(RO)			O Capture Data register contains data ready for reading by the host. This bit should be
		used only when 0 ADC is st	direct programate direct programate direct programate direct program direct direct program di program direct program direct pr	rammed I/O data transfers are desired (FIFO has at least 4 bytes before full). reread the information eady for next host data read
CFH	(RO)			TFO has at least 32 bytes before full.)
PUL	(RO)	lower byte of th	e channel.	pple. This bit indicates whether the PIO playback data needed is for the upper or
		0 Lower by 1 Upper by		any 8-bit mode
PLR	(RO)	Playback Left/R DAC or the rig 0 Right cha	Cight Sample. ' ht channel Da nnel needed	e. This bit indicates whether the PIO playback data needed is or the left channel DAC.
	<i>(</i> — —)		nel or mono	
PDR	(RO)	when direct pro 0 DAC data	grammed I/O a is still valid.	PIO Playback data register is ready for more data. This bit should only be used O data transfers are desired (FIFO can take at least 4 bytes). I. Do not overwrite ady for next host data write value
PFH	(RO)			FIFO can take at least 32-bytes, 8 groups of 4-bytes.
		-		· ·

									AD1821
ase+6]	PIO D	ata							
Γ	7	6	5 PIO Play	4 back/Capture	3 e [7:0]	2	1	0	RESET = [0x00]
L			· · · ·	•					
IO Playbacl Capture [7:0				(PIO) Data F ick Register a					pped to the same address. Writes ıre Register.
		next appro Once all re	priate byte i	n the sample have been re	. The exa	ct byte may	/ be detern	nined by re	e following read will be from the bading the PIO Status Register. the last byte of the sample
		write will b	e to the cor		he sample	e. Once all	bytes have l	been writte	achine so that the following n, subsequent byte writes will be
Note: All wri	ites to th	* 2 sample * 2 sample	of 16-bit st s of 16-bit m s of 8-bit st	ereo	PCM, μ-				
Base+7]	Reserve	ed							
г	7	6	5	4	3	2	1	0	
				Reserved	[7:0]				RESET = [0xXX]
Base+8]	Playba	c k Configur a 6	tion 5	4	3	2	1	0	
[TRD	DAZ	PFMT		PC/L	PST	PIO	PEN	RESET = [0x00]
PEN	(RW)	0 Di	nable. This sable able	bit enables o	r disables	s programm	ed I/O dat	a playback	
PIO	(RW)	0 DI	ed Input/Ou MA transfers O transfers o	only	t determi	nes whethe	r the playb	ack data is	transferred via DMA or PIO.
PST	(RW)	streams. In put. For m 0 M	n stereo, the		rnates sai	nples betw	een chann	els to prov	for the input audio data vide left and right channel in-
PC/L	(RW)	or a nonlin mat is defin 0 Lin		ded format fo					representation of the audio signa A or the type of companded for-
PFMT [1:0]	(RW)	Playback F Figure 15.	ormat. Use	these bits to	select the	e playback o	lata format	for output	t data according to Table VI and
DAZ	(RW)	DAC zero. 0 Re	This bit for peat last sar rce DAC to		to zero.				
FRD	(RW)	cated by th abled and t 0 Tr	e SS Codec	Status regist CEN bits are est Enable	er's INT				during a Codec interrupt (indi- Codec DMA transfers were en-

After setting format bits, sample data into the AD1821 must be ordered according to Figure 15, Table VI.

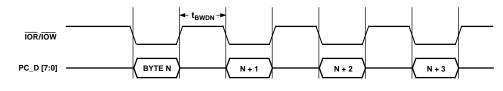


Figure 15. Codec Transfers

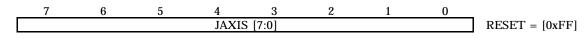
Byte 0 Byte 3 Byte 2 Bvte 1 MSB LSB MSB LSB MSB LSB FMT1 FMT0 C/L MSB LSB ST Format 0 000 Sample 3 Sample 2 Sample 1 Sample 0 Mono Linear. 8-Bit 8 Bits 8 Bits 8 Bits 8 Bits Unsigned Left Channel Left Channel Left Channel Left Channel 000 Sample 1 Sample 1 Sample 0 Sample 0 1 Stereo Linear. 8-Bit 8 Bits 8 Bits 8 Bits 8 Bits **Right Channel** Left Channel **Right Channel** Left Channel Unsigned Sample 3 Sample 1 Sample 0 0 001 Mono Sample 2 8 Bits 8 Bits µ-Law, 8-Bit 8 Bits 8 Bits Left Channel Companded Left Channel Left Channel Left Channel 1 001 Stereo Sample 1 Sample 1 Sample 0 Sample 0 µ-Law, 8-Bit 8 Bits 8 Bits 8 Bits 8 Bits Companded **Right Channel** Left Channel **Right Channel** Left Channel 0 010 Sample 1 Sample 1 Sample 0 Sample 0 Mono Upper 8 Bits Lower 8 Bits Upper 8 Bits Linear 16-Bit Lower 8 Bits Left Channel Little Endian Left Channel Left Channel Left Channel 010 1 Stereo Sample 0 Sample 0 Sample 0 Sample 0 Linear 16-Bit Upper 8 Bits Lower 8 Bits Upper 8 Bits Lower 8 Bits Little Endian Right Channel **Right Channel** Left Channel Left Channel 0 011 Mono Sample 3 Sample 2 Sample 1 Sample 0 A-Law, 8-Bit 8 Bits 8 Bits 8 Bits 8 Bits Companded Left Channel Left Channel Left Channel Left Channel 1 011 Stereo Sample 1 Sample 1 Sample 0 Sample 0 A-Law, 8-Bit 8 Bits 8 Bits 8 Bits 8 Bits Companded **Right Channel** Left Channel **Right Channel** Left Channel 0 100 Reserved 1 100 Reserved 0 101 Reserved 1 101 Reserved 0 110 Mono Sample 1 Sample 1 Sample 0 Sample 0 Lower 8 Bits Lower 8 Bits Upper 8 Bits Upper 8 Bits Linear, 16-Bit Left Channel Left Channel Left Channel Left Channel **Big Endian** 0 110 Sample 0 Sample 0 Stereo Sample 0 Sample 0 Linear, 16-Bit Lower 8 Bits Upper 8 Bits Lower 8 Bits Upper 8 Bits **Big Endian** Right+ Channel Left Channel Left Channel Left Channel 0 111 Reserved 1 111 Reserved

Table VI. Codec Transfers

[Base+9]	Captu	re Configur	ration						
_	7	6	5	4	3	2	1	0	_
	R	ES	CFMT	[1:0]	CC/L	CST	CIO	CEN	RESET = [0x00]
CEN	(RW)	Capture E 0 Disa 1 Enal	ble	s bit enable	s or disab	oles data capti	ure.		
CIO	(RW)	Capture P 0 DM 1 PIO	A	l I/O. This	bit deteri	nines whethe	r the capt	ure data is	transferred via DMA or PIO.
CST	(RW)	In stereo,	the Codec a captures sa no	alternates s	amples b	etween chann			the input audio data streams. d right channel input. For mon
CC/L	(RW)	nal or a no format is o 0 Line		mpanded f	ormat for				representation of the audio sig r PCM or the type of compande
CFMT [1:0]	(RW)	Capture F Figure 15.		these bits	to select	the format for	r capture o	data accord	ing to the following Table VI a
		riguit 15.							
Base+10]	Reser								
Base+10]	Reser 7		5	4	3	2	1	0	_
Base+10]		ved		4 RESEF		2	1	0	RESET = [0xXX]
C		ved 6				2	1	0	RESET = [0xXX]
C	7 Reserv	ed	5		RVED		1		RESET = [0xXX]
C	7	ved 6			RVED	2	1	0	RESET = $[0xXX]$ RESET = $[0xXX]$
E Base+11]	7 Reserv 7	ed 6	5	RESEF	RVED		1		_
E Base+11]	7 Reserv 7	ved 6 ed 6 k RAW DA	5 5 TA	RESEF 4 RESEF	3 RVED	2	1	0	_
E Base+11]	7 Reserv 7	ed 6	5 5 TA 5	RESEF	3 RVED 3 3		1		_
E Base+11] Base+12]	7 Reserv 7 Joystic 7	ved 6 ed 6 k RAW DA' 6	5 5 TA 5 Joys	RESEF 4 RESEF 4 tick Data [1	3 2VED 3 7:0]	2		0] RESET = [0xXX]] RESET = [0xF0]
[Base+11] [Base+12] [oystick Data	7 Reserv 7 Joystic 7 (RO)	ved 6 ed 6 k RAW DA' 6	5 5 TA 5 Joys	RESEF 4 RESEF 4 tick Data [1	3 2VED 3 7:0]	2		0] RESET = [0xXX]] RESET = [0xF0]
[Base+11] [Base+12] [oystick Data	7 Reserv 7 Joystic 7 (RO) Joystic	ved 6 ed 6 k RAW DA' 6 Joystick D	5 5 TA 5 Joys Data. Joystic	RESEF 4 RESEF 4 tick Data ['	3 RVED 3 7:0] entical to	2 2 0 0x201): Wri		0 0 5 register ar] RESET = [0xXX]] RESET = [0xF0]
[Base+11] [Base+12] [oystick Data	7 Reserv 7 Joystic 7 (RO) Joystic	ved 6 ed 6 k RAW DA 6 Joystick E k Control	5 5 TA 5 Joys Data. Joystic	RESEF 4 RESEF 4 tick Data [í ck Data (id	3 RVED 3 7:0] entical to	2 2 0 0x201): Wri	ites to this 1	0 0 5 register ar] RESET = [0xXX]] RESET = [0xF0]
[Base+11] [Base+12] [oystick Data [Base+13]	7 Reserv 7 Joystic 7 (RO) Joystic 7	ved 6 ed 6 k RAW DA' 6 Joystick E k Control 6 JWRP	5 TA 5 Joys Data. Joystic 5 JSEL	RESEF 4 RESEF tick Data [7 k Data (id 4 [1:0]	3 RVED 3 7:0] entical to 3	2 2 0 0x201): Wri 2	ites to this <u>1</u> [3:0]	0 0 5 register ar 0	RESET = [0xXX] RESET = [0xF0] e ignored. RESET = 0xF0
[Base+11] [Base+12] [oystick Data [Base+13]	7 Reserv 7 Joystic 7 (RO) Joystic 7 JRDY	ved 6 ed 6 k RAW DA' 6 Joystick E k Control 6 JWRP	5 TA 5 Joys Data. Joystic 5 JSEL	RESEF 4 RESEF tick Data [7 k Data (id 4 [1:0]	3 RVED 3 7:0] entical to 3 lculated l	2 2 0 0x201): Wri 2 JMSK pased on axes	ites to this <u>1</u> [3:0]	0 0 5 register ar 0	RESET = [0xXX] RESET = [0xF0] e ignored. RESET = 0xF0
[Base+11] [Base+12] [oystick Data [Base+13]	7 Reserv 7 Joystic 7 (RO) Joystic 7 JRDY	ved 6 ed 6 k RAW DA' 6 Joystick E k Control 6 JWRP	5 TA 5 Joys Data. Joystic 5 JSEL	RESEF 4 RESEF tick Data [7 ck Data (id 4 [1:0] RDY bit ca	3 2VED 3 7:0] entical to 3 lculated l	2 2 0 0x201): Wri 2 JMSK	ites to this <u>1</u> [3:0]	0 0 5 register ar 0	RESET = [0xXX] RESET = [0xF0] e ignored. RESET = 0xF0
[Base+10] [Base+11] [Base+12] Joystick Data [Base+13] JMSK [3:0]	7 Reserv 7 Joystic 7 (RO) Joystic 7 JRDY	ved 6 ed 6 k RAW DA' 6 Joystick E k Control 6 JWRP	5 TA 5 Joys Data. Joystic 5 JSEL	RESEF 4 RESEF 4 tick Data [/ ck Data (id 4 [1:0] RDY bit ca	3 RVED 3 7:0] entical to 3 lculated l 1 x	2 2 0 0x201): Wri 2 JMSK based on axes Enable AX	ites to this <u>1</u> [3:0]	0 0 5 register ar 0	RESET = [0xXX] RESET = [0xF0] e ignored. RESET = 0xF0

JSEL [1:0]

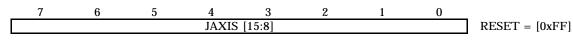
(RW) Joystick Select. Selects one of four joystick axis register sets according to the following table:


00	Read AX (16 Bits) from [Base+14] & [Base+15]
01	Read AY (16 Bits) from [Base+14] & [Base+15]
10	Read BX (16 Bits) from [Base+14] & [Base+15]
11	Read BY (16 Bits) from [Base+14] & [Base+15]

JWRP (RW) Joystick Wrapmode. Continuous Joystick sampling mode—sampling automatically restarted every ~16 ms.

JRDY (RO) Joystick Ready. Sampling complete, joystick data ready for reading.

Note: Sampling must be started manually if JWRP is set before any sampling cycles are run. To start sampling after setting the JWRP bit, write to the joystick port [Base+14].


[Base+14] Joystick Position Data Low Byte

JAXIS [7:0] (RO) Joystick Axis Low Byte.

Note: Axis to be read through this register is selected by the JSEL bits in the control register. A write to this register starts a sampling cycle.

[Base+15] Joystick Position Data High Byte

JAXIS [15:8] (RO) Joystick Axis High Byte.

Note: Axis to be read through this register is selected by the JSEL bits in the control register. A write to this register starts a sampling cycle.

Sound System Indirect Registers

Writing Indirect Registers

All Indirect Registers "MUST" be written in pairs: low byte followed by high byte. The Indirect Address Register [SSBASE+0] holds the address for a register pair, the Indirect Low Data Byte [SSBASE+2] is used to write low data byte and the Indirect High Data Byte [SSBASE+3] is used to write the high data byte. The low data byte is held in the temporary register until the upper byte is written.

Programming Example

"Write Sample Rate for Voice Playback at 11,000 Hz (0x2AF8)"

- 1) Write [SSBASE+0] with 0x02 ; indirect register for voice playback sample rate
- 2) Write [SSBASE+2] with 0xF8
- ; low byte of 16-bit sample rate register

3) Write [SSBASE+3] with 0x2A ; high byte of 16-bit sample rate register

Reading Indirect Registers

All indirect registers can be individually read. The Sound System Indirect Address Register [SSBASE+0] holds the address for a register pair, the Indirect Low Data Byte [SSBASE+2] is used to read low data byte and Indirect High Data Byte [SSBASE+3] is used to read the High data byte.

Programming Example

"Read Sample Rate for Voice Playback set to 11,000 Hz (0x2AF8)"

- 1) Write [SSBASE+0] with 0x02 ; indirect register for voice playback sample rate
- 2) Read [SSBASE+2]
- ; low byte of 16-bit sample rate register set to 0xF8
- 3) Read [SSBASE+3]
- ; high byte of 16-bit sample rate register set to $0x^2A$

ISR Saves and Restores

For Interrupt Service Routines, ISRs, it is necessary to save and restore the Indirect Address and the Low Byte Temporary Data holding registers inside the ISR.

Programming Example

"Save/Restore during an ISR" Beginning of ISR: 1) Read [SSBASE+0] ; save Indirect Address register to TMP IA 2) Write [SSBASE+0] with 0x00; ; indirect Register for Low Byte Temporary Data 3) Read [SSBASE+2] ; save Low Byte Temporary data to TMP LBT ; ISR routine 4) ISR Code 5) Write [SSBASE+2] with TMP_LBT ; restore Low Byte Temporary data TMP_LBT 6) Write [SSBASE+0] with TMP_IA ; restore Indirect Address Register to TMP_IA 7) Return from Interrupt ; return from ISR

Address	Register Name	Reset/ Default State
00	Low Byte TMP	0xXX
01	Interrupt Enable and External Control	0x0102
02	Voice Playback Sample Rate	0x1F40
03	Voice Capture Sample Rate	0x1F40
04	Voice Attenuation	0x8080
05	FM Attenuation	0x8080
06	I ² S(1) Attenuation	0x8080
07	I ² S(0) Attenuation	0x8080
08	Playback Base Count	0x0000
09	Playback Current Count	0x0000
10	Capture Base Count	0x0000
11	Capture Current Count	0x0000
12	Timer Base Count	0x0000
13	Timer Current Count	0x0000
14	Master Volume Attenuation	0x0000
15	CD Gain/Attenuation	0x8888
16	Synth Gain/Attenuation	0x8888
17	Video Gain/Attenuation	0x8888
18	Line Gain/Attenuation	0x8888
19	Mic/PHONE-IN Gain/Attenuation	0x8888
20	ADC Source Select and ADC PGA	0x0000
32	Chip Configuration	0x00F0
33	DSP Configuration	0x0000
34	FM Sample Rate	0x5622
35	I ² S(1) Sample Rate	0xAC44
36	I ² S(0) Sample Rate	0xAC44
37	Reserved	0x0000
38	Programmable Clock Rate	0xAC44
39	3D Phat [™] Stereo Control/PHONE_OUT Gain Attenuation	0x8000
40	Reserved	0x0000
41	Hardware Volume Button Modifier	0xXX1B
42	DSP Mailbox 0	0x0000
43	DSP Mailbox 1	0x0000
44	Power-Down and Timer Control	0x0000
45	Version ID	0x0000
46	Reserved	0x0000

Table VII. Indirect Register Map and Reset/Default States

Table VIII. Sound System Indirect Registers

			(High	n Byte)		-	-		-	-		(Low	Byte)			
ADDRESS	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
00 (0x00)				RE									D [7:0]			
01 (0x01)	PIE	CIE	TIE	VIE	DIE	RIE	JIE	SIE			RE				XC1	XC0
02 (0x02)				VPSR									R [7:0]			
03 (0x03)		0		VCSR	. ,					1		VCSI	R [7:0]			
04 (0x04)	LVM	RES				[5:0]			RVM	RES				A [5:0]		
05 (0x05)	LFMM	RES				A [5:0]			RFMM	RES				A [5:0]		
06 (0x06)	LS1M	RES				A [5:0]			RS1M	RES				A [5:0]		
07 (0x07)	LS0M	RES				A [5:0]			RS0M	RES				A [5:0]		
08 (0x08)				PBC									[7:0]			
09 (0x09)				PCC									[7:0]			
10 (0x0A)				CBC									[7:0]			
11 (0x0B)				CCC									2 [7:0]			
12 (0x0C)				TBC	. ,								[7:0]			
13 (0x0D)				TCC						1		TCC	2 [7:0]			
14 (0x0E)	LMVM		ES			LMVA [4:0	-		RMVM	RI	-			RMVA [4:		
15 (0x0F)	LCDM		ES			LCDA [4:0			RCDM	R				RCDA [4:	,	
16 (0x10)	LSYM		ES			LSYA [4:0]			RSYM	RI				RSYA [4:		
17 (0x11)	LVDM		ES			LVDA [4:0]		RVDM	RI				RVDA [4:	-	
18 (0x12)	LLM		ES			LLA [4:0]			RLM	RI				RLA [4:0	-	
19 (0x13)	MCM	M20	RES			MCA [4:0]			PIM	RI	-			PIA [3:0	1	RES
20 (0x14)	LAGC		LAS [2:0]				[3:0]		RAGC		RAS [2:0]				G [3:0]	
32 (0x20)	WSE	CDE	RES	CNP			ES			COF				1 [1:0]		0 [1:0]
33 (0x21)	DS1	DS0	DIT	RF	-	ADR	I1T	I0T	CPI	PBI	FMI	I1I	I01		DFS [2:0]	
34 (0x22)				FSMR									R [7:0]			
35 (0x23)				S1SR									2 [7:0]			
36 (0x24)				SOSR									2 [7:0]			
37 (0x25)				RI									ES			
38 (0x26)				PCR	. ,					r		PCR	[7:0]			
39 (0x27)	3DDM	R	ES			[3:0]		RES	POM	RI	ES			POA [4:0)]	
40 (0x28)				RE	-					1		R	ES			
41 (0x29)				RE					VMU	VUP	VDN			BM [4:0]	
42 (0x2A)				MB0R									R [7:0]			
43 (0x2B)	ļ,		1	MB1R		1	r			r		MB1	R [7:0]			
44 (0x2C)	CPD	RES	PIW	PIR	PAA	PDA	PDP	PTB	3D	PD3D	GPSP			RES		
45 (0x2D)				VER [15:8]									[7:0]			
46 (0x2E)				RES								R	ES			

[00] I	NDIRE	CT LOV	N BYTI	Е ТМР									DEFAU	ULT =	[0xXX]
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
		RI	ES								LBTI	D [7:0]			

LBTD [7:0] Low Byte Temporary Data holding latch for register pair writes; Written on any write to [SSBase + 2],

Read from [SSBase + 2] when the indirect address is 0x00.

[01] I	INTERF	RUPT E	ENABLE AND EXTERNAL CONTROL										DEFAU	U LT = [0x0102]
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
PIE	CIE	TIE	VIE	DIE	RIE	JIE	SIE			RI	ES			XC1	XC0
XC0]	RW								on the X to be dis				llso mux	ed with
XC1]	RW		ernal Cor g-In Inte		The stat	te of this	bit is re	flected o	on the X	CTL1 p	in. XCT	TL1 may	y also be	used for
SIE]	RW	Sour 0 1		oundBla	ster Inte	ble; errupt di errupt ei								
JIE]	RW	Joys 0 1		ystick I	nterrupt	disabled enabled								

												AD	821
RIE	RW	Ring Int 0	errupt Enabl Ring Inter		bled								
		1	Ring Inter	-	oled								
DIE	RW	-	errupt Enabl										
		0 1	DSP Inter DSP Inter										
VIE	RW	-	Interrupt Er	-		, softwar	e increm	nents/dec	rement	s BUTT	TON MC	DIFIE	R via
		interrup	t routine and	pushing	buttons	s only set							
		0 1	Volume In Volume In										
TIE	RW		nterrupt Enal	-	nabicu								
		0	Timer Inte	errupt dis	abled								
all	DUU	1	Timer Inte	-	abled								
CIE	RW	Capture 0	Interrupt En Capture Ir		lisahled								
		1	Capture Ir	nterrupt e									
PIE	RW		Interrupt E	nable;	1. 11	,							
		0 1	Playback I Playback I										
[00] 14		-	5	•	onubicu	-					DEFAI	TT [4	-1240]
[UZ] V 7	OICE PLAY 6 5	BACK SAN 4	APLE RATE 3 2	L 1	0	7	6	5	4	3	DEFAU 2	LI = [0 1	JX I F 40 j
<i>'</i>	0 0	VPSR [1		- 1	U	<u>т</u>	0	5		R [7:0]	~	1	
	5:0] Voice F default	playback sam	ple rate is 8 l		rate can	be prog	rammed	from 4 k	Hz to 5		in 1 hertz DEFAUL		
7	6 5	4	3 2	1	0	7	6	5	4	3	2	1	0
		VCSR [1	5:8]						VCSI	R [7:0]			
VCSR [1	15:0] Voice (Ignored is 8 kH	l if CNP bit	ple Rate. Th in SS [32] =										
[04] V	OICE ATTE	NUATION]	DEFAU	LT = [()x8080]
7	6 5	4	3 2	1	0	7	6	5	4	3	2	1	0
LVM	RES		LVA [5:0]			RVM	RES]	RVA [5:0	J	
RVA [5:	0] Right V 0 dB to	∕oice Attenu –94.5 dB.	ation for Play	yback cha	annel. T	The LSB	represer	nts –1.5	dB, 000	000 =	0 dB and	d the ra	nge is
RVM	Right V	oice Mute.	0 = Unmut	ed, 1 = N	Auted.								
LVA [5:		oice Attenua 9 –94.5 dB	tion for Playl	oack char	nnel. Tł	ne LSB r	epresent	s –1.5 d	B, 0000	00 = 0	dB and	the ran	ge is

LVM Left Voice Mute. 0 = Unmuted, 1 = Muted.

[05]]	FM AT	ΓENUA	TION]	DEFAU	LT = [()x8080]
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
LFMM	RES			LFMA	A [5:0]			RFMM	RES			R	FMA [5:	D]	

RFMA [5:0] Right F Music Attenuation for the internal Music Synthesizer. The LSB represents -1.5 dB, 000000 = 0 dB and the range is 0 dB to -94.5 dB.

RFMM Right F Music Mute. 0 = Unmuted, 1 = Muted.

LFMA [5:0] Left F Music Attenuation for the internal Music Synthesizer. The LSB represents -1.5 dB, 000000 = 0 dB and the range is 0 dB to -94.5 dB.

LFMM Left F Music Mute. 0 = Unmuted, 1 = Muted.

[06] I	² S(1) A	TTENU	ATION]	DEFAU	LT = [0)x8080]
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
LS1M	RES			LS1A	[5:0]			RS1M	RES			R	S1A [5:0)]	

RS1A [5:0] Right $I^2S(1)$ Attenuation register. The LSB represents -1.5 dB, 000000 = 0 dB and the range is 0 dB to -94.5 dB.

RS1M LS1A [5:0]	Left I ² S		ation re	egister. '	The LSI	B repres	ents –1.	5 dB, 00	00000 =	0 dB an	d the r	ange is 0 dB	to –	94.5 dB.
LS1M	Left I ² S	(1) Mute.	0 = U	nmuted	, 1 = M	uted.								
[07] I ² S(0)	ATTENU	J ATION										DEFAULT	` = [(Dx8080]
7 6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
LS0M RES			LS0A	[5:0]			RS0M	RES				RS0A [5:0]		
RS0A [5:0] RS0M		S(0) Atter S(0) Mute					esents –1	.5 dB, 0	00000 =	0 dB an	d the ra	ange is 0 dB	to -9	4.5 dB.
LS0A [5:0]	•						onts _1	5 dB 00	0000 -	0 dB an	d tha r	ange is 0 dB	to -	94 5 dB
LSOM		(0) Mute.						, uD, 00	- 00000	o ub an	u uic i	ange is o ub	10	04.0 uD.
[08] PLAY				muteu	, 1 – 11	utcu.						DEFAULT] = [Dx0000]
7 6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
		PBC [15:8]							PBC	[7:0]			
PBC [15:0]	loads the (PEN) is transferr an intern Count s	e same da s deassert ed via a I rupt and r	ta into f ed. Whe DMA cy eload th ays be p	the Play en PEN ycle. Th 1e Playb program	back Cu is assert e next tr ack Cur med to	urrent C ted, the ransfer, rrent Co Numbe	ount reg Playbacl after zer ount with r Bytes d	ister. Yo Curren o is read the val ivided b	ou must nt Count ched in t ue in the by four, 1	load thi t decrem he Playb Playba ninus o	s regist nents on oack Cu ck Base ne ((Nu	value to this er when Play nce for every urrent Count count. Th umber Bytes	ybacl / fou t, wi e Pla	k Enable r bytes Il generate yback Base
[09] PLAY	BACK C	IIDDENI		NT								DEFAULT	= [Dx00001
7 6	5 DACK C	4	3	2	1	0	7	6	5	4	3	2	1	0
		PCC [_	-		-		PCC			_	
[10] CAP	TURE BA 5	4	3	2	1	0	7	6	5	4 CBC	3	DEFAULT 2	r = [1	0 x0000] 0
		CBC [[15:8]							CBC	[7:0]			
CBC [15:0] [11] CAP1 7 6	loads the is deasse via a DN and relo always b DMA bu	e same da orted. Who AA cycle. ad the Ca e program uffer must	ta into t en CEN The ne pture C nmed to t be divi	the Čapt I is assen xt transf Current (Numbo sible by	ture Cur ted, the fer, after Count w er Bytes	rrent Co Captur zero is vith the divided	ount regi re Curren reached value in l by four	ster. Lo nt Coun in the C the Cap , minus	bading m at decren Capture oture Bas one ((N	nust be d nents on Current e Count	lone wl ce for e Count t. The (lue to this re- nen Capture every four by , will genera Capture Bas – –1). The ci DEFAULT 2	Ena vtes te an e Co rcula	ble (CEN) transferre interrupt unt should ir software
		CCC [15:8]							CCC	[7:0]			
CCC [15:0]		Current EN is dea			Contain	is the cu	ırrent C	apture]	DMA Co	ount. Re	ading a	and Writing	mus	t be done
[12] TIME		COUNT										DEFAULT		
7 6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
		TBC [15:8]							TBC	[7:0]			
TBC [15:0]	into the asserted or 100 m every tim	Timer Cu the Time (s) is prog	urrent C er Curre rammed The nex	Count re ent Cou l via the kt count,	gister. L nt regist PTB bit after ze	oading er decre in SS [4 ro is rea	must be ements o 44]. Whe ched in t	done w nce for n TE is he Time	hen Tim every sp asserted, er Curren	er Enab ecified t the Tim t Count	le (TE) ime per ner Cur register	r also loads) is deasserto riod. The tir rent Count o r, will genera gister.	ed. V ne pe lecre	/hen TE is eriod (10 μ ments once

-32-

[13] TIM 7 6		RENT CO	UNT 3	2	1	0	7	6	5	4	3	DEFAU 2	LT = [0 1)x0000] 0
	0	TCC [~		0	T .	0	0	TCC		~	1	
TCC [15:0]		DMA Curr easserted.	ent Cou	ınt regist	er. Con	tains t	he curren	t time	r count. I	Reading	and V	Vriting mus	st be do	ne when
[14] MAS	STER VO	LUME A	FTENU	ATION								DEFAU	LT = [0	x0000]
7 6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
LMVM	RES		LM	IVA [4:0]			RMVM	F	RES			RMVA [4:0]	
RMVA [4:0	-46.5 dl Volume	B. This reg attenuation	gister is a n level. S	dded wit See Hardv	h the H ware Vo	ardwa lume l	re Volume Button Mo	Butto	n Modifi	er value t	o proc	e range is 0 luce the fin more detail	al DAC	Master
RMVM	0	laster Volu						- 15		. 15			15	
LMVA [4:0] LMVM	–46.5 dl Volume	B. This reg	gister is a n level. S	dded wit See Hardv	h the H ware Vo	ardwa lume 1	re Volume Button Mo	Butto	n Modifie	er value t	o proc	range is 0 d luce the fina more detail	al DAC	Master
[15] CD C	GAIN/ATT	ENUATI	ON									DEFAUI	LT = [02	x8888]
7 6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
LCDM	RES		LC	DA [4:0]			RCDM	F	RES			RCDA [4:0]	
RCDM LCDA [4:0] LCDM [16] SYN 7 6	Left CD Left CD	Mute. 0	ion. The Unmu	e LSB re ited, 1 =	present	s –1.5	dB, 0000	0 = + 6	12 dB an 5	d the rar 4	nge is 3	+12 dB to DEFAUI 2		
LSYM	RES		LS	YA [4:0]			RSYM	F	RES			RSYA [4:0]		
RSYA [4:0] RSYM LSYA [4:0] LSYM [17] VID	Right SY Left SY Left SY	YNTH Mu NTH Atte NTH Mut	ute. 0 = enuation. te. 0 = U	Unmute . The LS	d, 1 = B repre	Muteo esents	1.					nge is +12 d ge is +12 dl DEFAUI	3 to -34	l.5 dB.
7 6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
LVDM	RES			DA [4:0]			RVDM		RES			RVDA [4:0]]	
RVDA [4:0] RVDM LVDA [4:0] LVDM	Right V Left VI Left VI	ID Mute. D Attenua D Mute. 0	0 = Unn ntion. Th = Unmu	nute, 1 = ne LSB r	= Mutec epresen	l. ts –1.5					U	s +12 dB to	-34.5 c	lB.
[18] LINE				9	1	0	7	6	5	Λ	2	DEFAUI 2	LT = [02 1	
7 6 LLM	5 RES	4	3 LI	2 LA [4:0]	1	0	7 RLM	6 F	5 RES	4	3	Z RLA [4:0]	1	0
RLA [4:0] RLM LLA [4:0] LLM	Right Li Right Li Left LIN	ine Mute.	uation. T 0 = Un ation. Th	The LSB muted, 1 ne LSB re	l = Mut epresent	ted. s –1.5	5 dB, 000	00 = +	12 dB an		U	+12 dB to - 12 dB to -3		

[19] MIC/P 7 6	HONE_IN GAIN/ATTENUATION DEFAULT = [0x8888] 5 4 3 2 1 0
MCM M20	RES MCA [4:0] PIM RES PIA [3:0] RES
PIA [3:0] PIM MCA [4:0] M20 MCM	PHONE_IN Attenuation. The LSB represents -3 dB, 0000 = 0 dB and the range is 0 dB to -45 dB. PHONE_IN Mute. Microphone Attenuation. The LSB represents -1.5 dB, 00000 = +12 dB and the range is ±12 dB to -34.5 dB. Microphone 20 dB Gain. The M20-bit enables the Microphone +20 dB gain stage. Microphone Mute.
[20] ADC S	OURCE SELECT AND ADC PGA DEFAULT = [0x0000]
7 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	LAS [2:0] LAG [3:0] RAGC RAS [2:0] RAG [3:0]
RAG [3:0]	Right ADC Gain Control ADC source select and Gain. For Gain, LSB represents $+1.5$ dB, $0000 = 0$ dB and the range is 0 dB to $+22.5$ dB.
RAGC LAG [3:0]	Right Automatic Gain Control (AGC) Enable, $0 =$ Enabled, $1 =$ Disabled. Left ADC Gain Control ADC source select and Gain. For Gain, LSB represents +1.5 dB, $0000 = 0$ dB and the range is 0 dB to +22.5 dB.
LAGC	Left Automatic Gain Control (AGC) Enable, 0 = Enabled, 1 = Disabled.
RAS [2:0] 000 001 010 011 100 101	ADC Right Input SourceLAS [2:0]ADC Left Input SourceR_LINE000L_LINER_OUT001L_OUTR_CD010L_CDR_SYNTH011L_SYNTHR_VID100L_VIDMono Mix101MICDecember110PLONE IN
110 111	Reserved110PHONE_INReserved111Reserved
[32] CHIP (7 6 WSE CDE	DEFAULT = [0x00F0] 5 4 3 2 1 0 7 6 5 4 3 2 1 0 5 4 3 2 1 0 7 6 5 4 3 2 1 0 RES CNP RES IME IMR COF [3:0] I ² SF1 [1:0] I ² SF0 [1:0]
I ² SF0 [1:0] I ² SF1 [1:0]	I ² S Port Configuration for serial data type. 00 Disabled 01 Right Justified 10 I ² S Justified 11 Left Justified
COF [3:0]	Clock Output Frequency. Programmable clock output on PCLKO pin is determined using the following formula $PCLKO = 256 \times PCR/2^{COF}$ where $COF = 0:11$ and PCR is the value of the Programmable Clock Rate Register, SS [38]. If $COF > 11$, then PCLKO is disabled.
CNP	Capture not equal to Playback. 0 = Capture equals Playback. The capture sample rate is determined by the playback sample rate in SS [02]. 1 = Capture not equal to Playback.
CDE	CD Enable, Set to "1" when a CD player is connected to I^2S (0).
WSE	Sound System Enable. 0 = SoundBlaster Mode. 1 = Sound System Mode under Windows.
	Note: When in SoundBlaster Mode, the Codec ADC and DAC channels will be used solely for converting SoundBlaster data.

[33] D		ONFIGU											DEFAU	LT = [0x	
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
DS1	DS0	DIT	RES	S	ADR	I1T	I0T	CPI	PBI	FMI	I1I	IOI	I	OFS [2:0]	J
DFS [2:1	0]	DSP Fran 000—Ma 001—I ² S 010—I ² S 011—Mu 100—Sou 101—Sou 111—Res	ximum F (0) Samp (1) Samp usic Synth und Syste und Syste	Frame H le Rate le Rate nesizer em Play	Rate Sample Sample Sample	Rate mple Ra	ate	me Syno	e accord	ing to th	e follow	ving sou	irce.		
IC		$I^2S(0)$ Da		ept. 0 =	= Disabl	e. 1 = I	ntercept	I ² S(0) I	Data En	abled.					
1I		$I^{2}S(1)$ Da		-			-								
'MI		FM Musi									usic Da	ta Enab	oled.		
BI		Playback	v			-			-						
CPI		Capture 1		-											
TC		$I^2S(0)$ Ta													
1T		$I^2S(1)$ Ta													
DR		Audio Re							port to	be re-ini	tialized.				
DIT		DSP Inte	•	-					-						
OS0		DSP Mai										rite.			
S1		DSP Mai	ilbox 1 St	atus. 0	= last a	ccess in	dicates 1	read, 1 =	alast ac	cess indi	cates wi	rite.			
[34] F	M SA	MPLE R	ATE										DEFAU	LT = [0x	5622
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
		FN	ISR [15:8	8]							FMS	R [7:0]			
MSR [15:0]	F Music	Sample R	Rate reg	gister. Tl	ne samp	ole rate c	an be pi	ogramn	ned from	a 4 kHz	to 27.6	kHz in 1	hertz inc	rem
[35] I ²	S(1) S	SAMPLE	RATE									Ι	DEFAUL	$\Gamma = [0xA]$	C44
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
		S1	SR [15:8	3]							S1SF	R [7:0]			
1SR [1	5:0]	I ² S(1) Sa Programi									kHz to	55.2 kl	Hz in 1 he	ertz incre	men
[36] I ²	² S(0) S	SAMPLE	RATE									J	DEFAUL	$\mathbf{T} = [0\mathbf{x}A]$	AC4 4
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
		S0	SR [15:8	3]							SOSF	R [7:0]			
0SR [1	5:0]	I ² S(0) Sa Programi	mple Rat ning this	e regist registe	ter. The r has no	sample effect ι	rate can Inless I ² S	be progr SF0 [1:0	ammed] is ena	from 4 k bled.	Hz to 55	5.2 kHz	z in 1 hert	z increme	ents.
[27] D	RESER	RVED											DEFAU	LT = [0]	x000
[3/] 1	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
[37] K 7		RES									RES				
		ILLO													
		nes.													
7 [38] P		RAMMAI					_	_	_	_			DEFAUL		
7	PROG 6	RAMMAI 5	4	3	2 2	1	0	7	6	5	4	3	DEFAUL 2	T = [0x <i>A</i> 1	4 C4 4 0
7 [38] P		RAMMAI 5		3		1	0	7	6	5					
7 [38] P 7	6	RAMMAI 5 Program increm	4 CR [15:8 mmable (3] Clock F s regist	2 Rate regi er is onl	ster. Th y valid y	e clock when the	rate can e COF b	be prog vits in SS	grammed S [32] ar	PCR from 2	3 2 [7:0] 5 kHz t		1 in 1 hert	0 tz
7 [38] P 7 CR [15	6 5:0]	RAMMAI 5 Program increm	4 CR [15:8 mmable (ents. Thi PCR/2 ^{COI}	3] Clock F s regist ^F . See S	2 Rate regi er is onl SS [32] f	ster. Th y valid or deter	ne clock when the rmining	rate can e COF b the valu	be prog vits in SS	grammed S [32] ar	PCR from 2	3 2 [7:0] 5 kHz t	2 to 50 kHz ultiplier fa	1 in 1 hert	0 tz ELKC
7 [38] P 7 CR [15	6 5:0] 5 D Ph a 6	RAMMAI 5 Prograt increm 256 × I	4 CR [15:8 mmable (ents. Thi PCR/2 ^{COI}	3] Clock F s regist ^F . See S	2 Rate regi er is onl SS [32] f PHONI 2	ster. Th y valid or deter	ne clock when the rmining	rate can e COF b the valu	be prog its in S e of CO 6	grammed S [32] ar	PCR from 2	3 2 [7:0] 5 kHz t	2 to 50 kHz ultiplier fa	1 in 1 hert actor. PC JLT = [0: 1	0 tz ELKC

POM 3DD [3	3:0]	PHONE-OUT Mute. 0 = Unmuted, 1 = Muted. 3D Depth Phat [™] Stereo Enhancement Control. The LSB represents 6 2/3% phase expansion, 0000 = 0% and the range is 0% to 100%.												0% and	
3DDM					0					s writing ™* Stere	•	-	-		
[40] H	RESER	VED											DEFAU	JLT = [0	Dx0000]
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
			RI	ES							R	ES			
[41]]	HARD	WARE V	OLUM	E BUT	гол м	ODIFII	ER					DF	EFAULT	Г = [0x Х	(X1B]
[41] 1 7	HARD 6	WARE V 5	OLUM 4	E BUT 3	ГО N М 2	ODIFII	E R 0	7	6	5	4	D 3	EFAULT 2	Γ = [0xX 1	XX1B] 0
[41]] 7				3		ODIFII 1		7 VMU	6 VUP	5 VDN	4	3		1	-

Pins. This register is summed with the Master Volume attenuation to produce the actual Master Volume DAC attenuation. A momentary grounding of greater than 50 ms on the VOL_UP pin will cause a decrement (decrease in Attenuation) in this register. Holding the pin LO for greater than 200 ms will cause an auto-decrement every 200 ms. This is also true for a momentary grounding of the VOL_DN pin. A momentary grounding of both the VOL_UP and VOL_DN causes a mute and no increment or decrement to occur.

When Muted, an unmute is possible by a momentary grounding of both the VOL_UP and VOL_DN pins together, a momentary grounding of VOL_UP (this also causes a volume increase), a momentary grounding of VOL_DN (this also causes a volume decrease) or a write of "0" to the VI bit in SS [BASE+1].

[42] D	DSP MA	AILBOX	0									Γ	DEFAU	LT = [0:	x0000]
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
	MB0R [15:8]										MB0F	R [7:0]			
MB0R [[15:0]	This re	egister is	used to	send da	ita and o	control i	nformati	on to ar	nd from	the DSF	P.			
[43] D	DSP MA	AILBOX	1									Γ	DEFAU	LT = [0	x0000]
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
			MB1R	[15:8]							MB1F	R [7:0]			

MB1R [15:0] This register is used to send data and control information to and from the DSP.

[44] I	4] POWER-DOWN AND TIMER CONTROL											DEFAU	LT = [0x0000]	
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
CPD	RES	PIW	PIR	PAA	PDA	PDP	PTB	3D	PD3D	GPSP			RES		

The AD1821 supports a timeout mechanism used in conjunction with the Timer Base Count and Timer Current Count registers to generate a power-down interrupt. This interrupt allows software to power down the entire chip by setting the CPD bit. This power-down control feature lets users program a time interval from 1 ms to approximately 1.8 hours in 1 ms increments. Five power-down count reload enable bits are used to reload the Timer Current Count from the Timer Base Count when activity is seen on that particular channel.

Programming Example: Generate Interrupt if No ISA Reads or Writes occur within 15 Minutes.

1) Write [SSBASE+0] with 0x0C ; Write Indirect address for TIMER BASE COUNT "register 12"

2) Write [SSBASE+2] with 0x28 ; Write TIMER BASE COUNT with (15 min × 60 sec/min × 10) = 0x2328 mili-Seconds

3) Write [SSBASE+3] with 0x23 ; Write High byte of TIMER BASE COUNT

4) Write [SSBASE+0] with 0x2C ; Write Indirect address for POWER-DOWN and TIMER CONTROL register

5) Write [SSBASE+2] with 0x00 ; Write Low byte of POWER-DOWN and TIMER CONTROL register

6) Write [SSBASE+3] with 0x30 ; Set Enable bits for PIW & PIR

7) Write [SSBASE+0] with 0x01 ; Write Indirect address for INTERRUPT CONFIG register

8) Write [SSBASE+2] with 0x82 ; Set the TE (Timer Enable) bit

9) Write [SSBASE+3] with 0x20 ; Set the TIE (Timer Interrupt Enable) bit

GPSP	 Game Port Speed Select. Selects the operating speed of the game port. O Slow Game Port 1 Fast Game Port
PD3D	Power-Down 3D. Turns off internal Phat™ Stereo circuitry. 0 On 1 Off
3D	 3D Analog Mixer Bypass. Allows the analog output of the D/A converters to bypass the Phat[™] Stereo Circuit. Enables ultimate flexibility for mixing and any combination of 3D enhanced analog signals or non-3D enhanced signals with the DAC output. 0 3D Phat[™] Stereo Enabled for DAC Output 1 3D Phat[™] Stereo Bypassed for DAC Output
PTB PDP	Power-Down Time Base. 1 = timer set to 100 ms, 0 = timer set to 10 μ s. Power-down count reload on DSP Port enabled; "1" = Reload count if DSP Port enabled. DSP Port is enabled when Slot 0 of SDI of the DSP Serial Port Input is Alive (Bit 7 = 1).
PDA	Power-down count reload on Digital Activity; "1" = Reload count on Digital Activity. Digital Activity is defined as any activity on (I^2SO , I^2SI , FM or PLAYBACK).
PAA	Power-down count reload on Analog Activity; "1" = Reload count on Analog Activity. Analog Activity is defined as any analog input unmuted (LINE, CD, SYNTH, MIC, MONO) or MASTER VOLUME unmuting.
PIR	Power-down count reload on ISA Read; "1" = Reload count on ISA read. ISA Read is defined as a read from any active logical device inside the AD1821.
PIW	Power-down count reload on ISA Write; "1" = Reload count on ISA write. ISA Write defined as a write to any active logical device inside the AD1821.
CPD	Chip Power-Down 1 Power-Down; 0 Power-Up
For Pow	ver-up, software should poll the [SSBASE+0] CRY bit for "1" before writing or reading any logical device.
[45] V	VERSION ID DEFAULT = [0x0000]
7	6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
	VER [15:8] VER [7:0]

	VER [15:8]							VER [7:0]							
[46] R	[46] RESERVED											Ι	DEFAU	LT = [0:	x0000]
7	7 6 5 4 3 2 1							7	6	5	4	3	2	1	0
			RES								RES				

Test register. Should never be written or read under normal operation.

SB Pro; AdLib Registers

The AD1821 contains sets of ISA Bus registers (ports) that correspond to those used by the SoundBlaster Pro audio card from Creative Labs and the AdLib audio card from AdLib Multimedia. Table IX lists the ISA Bus SoundBlaster Pro registers. Table X lists the ISA Bus AdLib registers. Because the AdLib registers are a subset of those in the SoundBlaster card, you can find complete information on using both of these registers in the *Developer Kit for SoundBlaster Series, 2nd ed.* © 1993, Creative Labs, Inc., 1901 McCarthy Blvd., Milpitas, CA 95035.

Table IX.	SoundBlaster	Pro ISA	Bus	Registers
-----------	--------------	----------------	-----	-----------

Register Name	ISA Bus Address
Music0: Address (w), Status (r)	0x(SB Base) Relocatable in range 0x010 – 0x3F0
Music0: Data (w)	Ox(SB Base+1)
Music1: Address (w)	0x(SB Base+2)
Music1: Data (w)	0x(SB Base+3)
Mixer Address (w)	0x(SB Base+4)
Mixer Data (w)	0x(SB Base+5)
Reset (w)	0x(SB Base+6)
Music0: Address (w)	0x(SB Base+8)
Music0: Data (w)	0x(SB Base+9)
Input Data (r)	0x(SB Base+A)
Status (r), Output Data (w)	0x(SB Base+C)
Status (r)	0x(SB Base+E)

Register Name	ISA Bus Address					
Music0: Address (w), Status (r)	0x(Adlib Base) Relocatable in range 0x008 - 0x3F8					
Music0: Data (w)	0x(Adlib Base+1)					
Music1: Address (w)	0x(Adlib Base+2)					
Music1: Data (w)	0x(Adlib Base+3)					

Table X. AdLib ISA Bus Registers

MIDI and MPU-401 Registers

The AD1821 contains a set of ISA Bus registers (ports) that correspond to those used by the ISA bus MIDI audio interface cards. Table XI lists the ISA Bus MIDI registers. These registers support commands and data transfers described in *MIDI 1.0 Detailed Specification and Standard MIDI Files 1.0*, © 1994, MIDI Manufacturers Association, PO Box 3173 La Habra, CA 90632-3173.

Table XI. MIDI ISA Bus Registers

Register Name	Address					
MIDI Data (r/w)	0x(MIDI Base) Relocatable in range 0x008 to 0x3F8					
MIDI Status (r), Command (w)	0x(MIDI Base+1)					

0x(MIDI Base+1)

BIT	7	6	5	4	3	2	1	0
STATE	1	0	0	0	0	0	0	0
NAME	DRR	DSR			RESEF	RVED		

DSR (R)	Data Send Ready. When read, this bit indicates that you can (0) or cannot (1) write to the MIDI Data register. (Full = 1, Empty = 0)
DRR (R)	Data Receive Ready. When read, this bit indicates that you can (0) or cannot (1) read from the MIDI Data register. (Unreadable = 1, Readable = 0)
CMD [7:0] (W)	MIDI Command. Write MPU-401 commands to bits [7:0] of this register.

NOTES

The AD1821 supports *only* the MIDI 0xFF (reset) and 0x3F (pass-through mode) commands. The controller powers setup for intelligent MIDI mode, but must be put in pass-through mode. To start MIDI operations, send a reset command (0xFF) and then send a pass-through mode command (0x3F). The MIDI data register contains an acknowledge byte (0xFE) after each command transfer.

All commands return an ACK byte in "smart" mode.

Status commands (0xAx) return ACK and a data byte; all other commands return ACK.

All commands except reset (0xFF) are ignored in UART mode. No ACK bytes are returned.

"Smart" mode data transfers are not supported.

Game Port Registers

The AD1821 contains a Game Port ISA Bus Register that corresponds to the game port described in the PnP specification.

Table XII. Game Port ISA Bus Registers

Register Name	Address				
Game Port I/O	0x(Game Port Base+0 to Game Port Base+7 Relocatable in the range 0x100 to 0x3F8				

APPENDIX A AD1821JS and AD1821JS-M

Contains the internal ROM code on the AD1821JS. Consult the Reference Design Guide for external EEPROM Code.

AD1821JS PLUG AND PLAY INTERNAL ROM

Note: All addresses are depicted in hexidecimal notation. Vendor ID: ADS7180 Serial Number: FFFFFFF Checksum: B6 PNP Version: 1.0, vendor version: 11 **ASCII string: Analog Devices** Logical Device ID: ADS7180 not a boot device, implements PNP register(s) 31 Start dependent function, best config IRQ: channel(s) 5 7 type(s) active-high, edge-triggered DMA: channel(s) 1 Type F, count-by-byte, nonbus-mastering, 8-bit only DMA: channel(s) 0 1 3 Type F, count-by-byte, nonbus-mastering, 8-bit only I/O: 16-bit decode, range [0220,0240] mod 20, length 10 I/O: 16-bit decode, range [0388,0388] mod 08, length 04 I/O: 16-bit decode, range [0500,0560] mod 10, length 10 Start dependent function, acceptable config IRQ: channel(s) 5 7 10 type(s) active-high, edge-triggered DMA: channel(s) 0 1 3 Type F, count-by-byte, nonbus-mastering, 8-bit only DMA: channel(s) 0 1 3 Type F, count-by-byte, nonbus-mastering, 8-bit only I/O: 16-bit decode, range [0220,0240] mod 20, length 10 I/O: 16-bit decode, range [0388,0388] mod 08, length 04 I/O: 16-bit decode, range [0500,0560] mod 10, length 10 Start dependent function, acceptable config IRQ: channel(s) 5 7 9 10 11 15 type(s) active-high, edge-triggered DMA: channel(s) 0 1 3 Type F, count-by-byte, nonbus-mastering, 8-bit only DMA: channel(s) 0 1 3

Type F, count-by-byte, nonbus-mastering, 8-bit only

I/O: 16-bit decode, range [0220,02E0] mod 20, length 10 I/O: 16-bit decode, range [0388,03B8] mod 08, length 04 I/O: 16-bit decode, range [0500,0560] mod 10, length 10 Start dependent function, suboptimal config IRQ: channel(s) 5 7 10 type(s) active-high, edge-triggered DMA: channel(s) 0 1 3 Type F, count-by-byte, nonbus-mastering, 8-bit only DMA: NULL I/O: 16-bit decode, range [0220,02E0] mod 20, length 10 I/O: 16-bit decode, range [0388,03B8] mod 08, length 04 I/O: 16-bit decode, range [0500,0560] mod 10, length 10 End all dependent functions Logical Device ID: ADS7181 not a boot device, implements PNP register(s) 31 Compatible Device ID: PNPB006 Start dependent function, best config IRQ: channel(s) 5 7 9 11 type(s) active-high, edge-triggered I/O: 16-bit decode, range [0300,0330] mod 30, length 02 Start dependent function, acceptable config IRQ: channel(s) 5 7 9 10 11 15 type(s) active-high, edge-triggered I/O: 16-bit decode, range [0300,0420] mod 30, length 02 End all dependent functions Logical Device ID: ADS7182 not a boot device, implements PNP register(s) 31 Compatible Device ID: PNPB02F Start dependent function, best config I/O: 16-bit decode, range [0200,0200] mod 08, length 08 Start dependent function, acceptable config I/O: 16-bit decode, range [0200,0208] mod 08, length 08 End all dependent functions

End:

Contains the internal ROM code on the AD1821JS-M. Consult the Reference Design Guide for external EEPROM Code.

AD1821JS-M PLUG AND PLAY INTERNAL ROM

Vendor ID: ADS7181 Serial Number: FFFFFFF Checksum: 2F PNP Version: 1.0, vendor version: 20 **ASCII string: Analog Devices** Logical Device ID: ADS7180 not a boot device, implements PNP register(s) 31 Start dependent function, best config IRQ: channel(s) 5 7 type(s) active-high, edge-triggered DMA: channel(s) 1 Type F, count-by-byte, nonbus-mastering, 8-bit only DMA: channel(s) 0 1 3 Type F, count-by-byte, nonbus-mastering, 8-bit only I/O: 16-bit decode, range [0220,0240] mod 20, length 10 I/O: 16-bit decode, range [0388,0388] mod 08, length 04 I/O: 16-bit decode, range [0500,0560] mod 10, length 10 Start dependent function, acceptable config IRQ: channel(s) 5 7 10 type(s) active-high, edge-triggered DMA: channel(s) 0 1 3 Type F, count-by-byte, nonbus-mastering, 8-bit only DMA: channel(s) 0 1 3 Type F, count-by-byte, nonbus-mastering, 8-bit only I/O: 16-bit decode, range [0220,0240] mod 20, length 10 I/O: 16-bit decode, range [0388,0388] mod 08, length 04 I/O: 16-bit decode, range [0500,0560] mod 10, length 10 Start dependent function, acceptable config IRQ: channel(s) 5 7 9 10 11 15 type(s) active-high, edge-triggered DMA: channel(s) 0 1 3 Type F, count-by-byte, nonbus-mastering, 8-bit only

DMA: channel(s) 0 1 3

Type F, count-by-byte, nonbus-mastering, 8-bit only

I/O: 16-bit decode, range [0220,02E0] mod 20, length 10 I/O: 16-bit decode, range [0388,03B8] mod 08, length 04 I/O: 16-bit decode, range [0500,0560] mod 10, length 10 Start dependent function, suboptimal config IRQ: channel(s) 5 7 9 10 11 15 type(s) active-high, edge-triggered DMA: channel(s) 0 1 3 Type F, count-by-byte, nonbus-mastering, 8-bit only DMA: NULL I/O: 16-bit decode, range [0220,02E0] mod 20, length 10 I/O: 16-bit decode, range [0388,03B8] mod 08, length 04 I/O: 16-bit decode, range [0500,0560] mod 10, length 10 End all dependent functions Logical Device ID: ADS7181 not a boot device, implements PNP register(s) 31 Compatible Device ID: PNPB006 Start dependent function, best config IRQ: channel(s) 5 7 9 11 type(s) active-high, edge-triggered I/O: 16-bit decode, range [0300,0330] mod 30, length 02 Start dependent function, acceptable config IRQ: channel(s) 5 7 9 10 11 15 type(s) active-high, edge-triggered I/O: 16-bit decode, range [0300,0420] mod 30, length 02 End all dependent functions Logical Device ID: ADS7182 not a boot device, implements PNP register(s) 31 Compatible Device ID: PNPB02F Start dependent function, best config I/O: 16-bit decode, range [0200,0200] mod 08, length 08 Start dependent function, acceptable config I/O: 16-bit decode, range [0200,0208] mod 08, length 08 End all dependent functions

End:

APPENDIX B

PLUG AND PLAY KEY AND "ALTERNATE KEY" SEQUENCES

One additional feature of the AD1821 is an alternate programming method used, for example, if a BIOS wants to assume control of the AD1821 and present DEVNODES to the OS (rather than having the device participate in Plug and Play enumeration). The following technique may be used.

Instead of the normal 32 byte Plug and Play key sequence, an alternate 126 byte key is used. After the 126 byte key, the AD1821 device will transition to the Plug and Play "config" state. It can then be programmed as usual using the standard Plug and Play ports. After programming, the AD1821 should be sent to the Plug and Play "WFK" (wait for key) state. Once the AD1821 has seen the alternate key, it will no longer parse for the Plug and Play key (and therefore never participate in Plug and Play enumeration). It can be reprogrammed by reissuing the alternate key again.

Both the Plug and Play key and the alternate key are sequences of writes to the Plug and Play address register, 0x279. Below are the ISA data values of both keys.

This is the standard Plug and Play sequence:

6a b0	b5 58	da 2c	ed 16	f6 8b	fb 45	7d a2	be d1	df e8	6f 74	37 3a	1b 9d	0d ce	86 e7	c3 73	61 39
This is the longer, 126-byte alternate key. It is generated by the function:															39
	$f[n+1] = (f[n] >> 1) (((f[n] \land (f[n] >> 1)) \& 0x01) << 6) f[0] = 0x01$														
01	40	20	10	08	04	02	41	60	30	18	0c	06	43	21	50
28	14	0a	45	62	71	78	3c	1e	4f	27	13	09	44	22	51
68	34	1a	4d	66	73	39	5c	2e	57	2b	15	4a	65	72	79
7c	3e	5f	2f	17	0b	05	42	61	70	38	1c	0e	47	23	11
48	24	12	49	64	32	59	6c	36	5b	2d	56	6b	35	5a	6d
76	7b	3d	5e	6f	37	1b	0d	46	63	31	58	2c	16	4b	25
52	69	74	3a	5d	6e	77	3b	1d	4e	67	33	19	4c	26	53
29	54	2a	55	6a	75	7a	7d	7e	7f	3f	1f	0f	07		

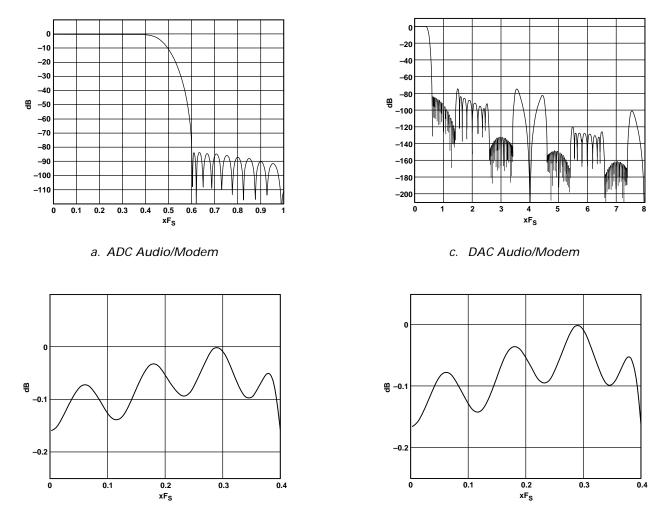
PROGRAMMING EXTERNAL EEPROMS

The PnP EEPROM can be written only in the "Alternate Key State"; this prevents accidental EEPROM erasure when using standard PnP setup. The procedure for writing an EEPROM is:

- 1) Enter PnP configuration state and fully reset the part by writing 0x07 to PnP register 0x02. This step can be eliminated if the part has not been accessed since power-up, a previous full PnP reset or assertion of the ISA bus RESET signal.
- 2) Send the alternate initiation key to the PnP address port. EEPROM writes are disabled if the standard PnP key is used.
- 3) Enter isolation state and write a CSN to enter configuration state. Do not perform any isolation reads.
- 4) Poll PnP register 0x05 until it equals 0x01 and wait at least 336 microseconds (ensures that EEPROM is idle).
- 5) Write the second byte of your serial identifier to PnP register 0x20.
- 6) Read PnP register 0x04.
- 7) Wait for at least 464 microseconds, plus the EEPROM's write cycle time (up to 10 ms for a Xicor X24C02).
- 8) Repeat steps 4 through 7 for each byte in your PnP ROM, starting with the third byte of the serial identifier and ending with the final checksum byte. You must then continue to write filler bytes until 512 bytes, minus one more than the number of flag bytes, have been written. Finally, write the flag byte(s) (described above) and the first byte of the serial identifier.
- 9) Fully reset the part by writing 0x07 to PnP register 0x02.

The AD1821 will now act according to the contents of the EEPROM.

NOTES

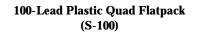

Programming will not work if more than one part uses the same alternate initiation key in the system.

If a 256-byte EEPROM is used, it is not necessary to wait 10 ms after writing bytes 255 to 511, because the EEPROM will ignore them anyway.

You can skip over bytes that you don't care to write by just performing a ROM read instead of a ROM write followed by a ROM read.

REFERENCE DESIGNS AND DEVICE DRIVERS

Reference designs and device drivers for the AD1821 are available via the Analog Devices Home Page on the World Wide Web at http://www.analog.com. Reference designs may also be obtained by contacting your local Analog Devices Sales representative or authorized distributor.


b. ADC Audio/Modem Passband

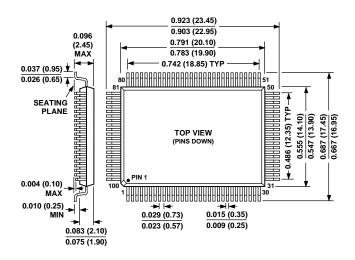

d. DAC Audio/Modem Passband

Figure 16. AD1821 Frequency Response Plots (Full-Scale Line-Level Input, 0 dB Gain). The Plots Do Not Reflect the Additional Benefits of the On-Chip Analog Filters. Out-of-Band Images Will Be Attenuated by an Additional 31.4 dB at 100 kHz.

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

