

# **Single Supply Sensor Interface Amplifier**

#### **FEATURES**

Gain of ×20 Alterable from ×1 to ×160 Input Offset Voltage Over Temperature ±2 mV Low Long-Term Drift of Gain and Offset Voltage Input CMR from Ground to  $6 \times (V_s-1 \text{ V})$ Output Span 20 mV to (V<sub>S</sub>-0.25) V 1, 2, 3 Pole Low-Pass Filtering Available **Accurate Midscale Offset Capability** Differential Input Resistance 400 k $\Omega$ Drives 1 k $\Omega$  Load to +4 V Using  $V_S = +5$  V Supply Voltage: +3 V to +36 V

Transient Spike Protection and RFI Filters Included

Peak Input Voltage (40 ms): 60 V Reversed Supply Protection: -34 V

Operating Temperature Range: -40°C to +125°C

**APPLICATIONS Current Sensing Motor Control** 

Interface for Accelerometers, Pressure Transducers, Position Indicators, Strain Gages, and Other Low Level Signal Sources

### **GENERAL DESCRIPTION**

The AD22057 is a single supply difference amplifier for the amplification and low-pass filtering of small differential voltages from sources having a large common-mode voltage.

Supply voltages of between +3 V and +36 V can be used. The input common-mode range extends from below ground to 24 V using a +5 V supply with excellent rejection of this commonmode voltage.

#### \*Patents pending.

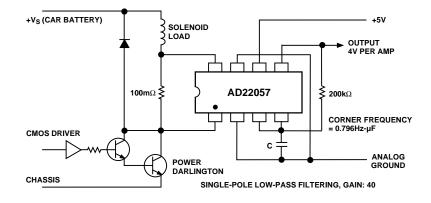
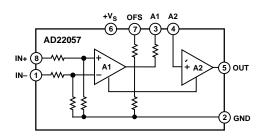




Figure 1. Typical Application Circuit for a Current Sensor Interface

#### FUNCTIONAL BLOCK DIAGRAM



This range is achieved by the use of a special resistive attenuator at the input, laser-trimmed to a very high differential balance. Low initial offset voltage and offset voltage drift are specified, and long-term stability of gain and offset voltage is also provided.

Provisions are included for optional low-pass filtering and gain adjustment. An accurate midscale offset feature allows bipolar signals to be amplified.

otherwise under any patent or patent rights of Analog Devices.

## $\textbf{AD22057-SPECIFICATIONS} \ \ (@ \ \textbf{T}_{A} = + \ 25^{\circ}\textbf{C}, \ \textbf{V}_{S} = +5 \ \textbf{V}, \ \textbf{V}_{CM} = \textbf{0}, \ unless \ otherwise \ noted)$

| Parameter             | Comments                                     | Test Conditions                                                                        | Min         | Тур      | Max   | Units         |
|-----------------------|----------------------------------------------|----------------------------------------------------------------------------------------|-------------|----------|-------|---------------|
| INPUTS (PINS 1 AND 8) |                                              |                                                                                        |             |          |       |               |
| +CMR                  | Positive Common-Mode Range                   |                                                                                        |             |          | +24   | V             |
| CMR                   | Negative Common-Mode Range                   | $T_A = T_{MIN}$ to +85°C                                                               | -1.0        |          |       | V             |
| $CMRR_{LF}$           | Common-Mode Rejection Ratio                  | f ≤ 10 Hz                                                                              | 80          | 90       |       | dB            |
| $CMRR_{HF}$           | Common-Mode Rejection Ratio                  | f = 1  kHz                                                                             | 80          | 90       |       | dB            |
| $R_{INCM}$            | Common-Mode Input Resistance                 | Pin 1 or Pin 8 to Pin 2                                                                | 200         | 250      | 300   | kΩ            |
| R <sub>MATCH</sub>    | Matching of Input Resistances                |                                                                                        |             | $\pm 05$ |       | %             |
| R <sub>INDIFF</sub>   | Differential Input Resistance                | Pin 1 to Pin 8                                                                         | 350         | 450      |       | kΩ            |
| PREAMPLIFIER          |                                              |                                                                                        |             |          |       |               |
| $G_{\mathrm{CL}}$     | Closed-Loop Gain <sup>1</sup>                |                                                                                        | 9.7         | 10.0     | 103   | V/V           |
| $V_{O}$               | Output Voltage Range (Pin 3)                 |                                                                                        | +0.01       |          | +4.8  | V             |
| $R_{O}$               | Output Resistance <sup>2</sup>               |                                                                                        | 97          | 100      | 103   | kΩ            |
| OUTPUT BUFFER         |                                              |                                                                                        |             |          |       |               |
| G <sub>CL</sub>       | Closed-Loop Gain <sup>1</sup>                | $R_{LOAD} \ge 10 \text{ k}\Omega$                                                      | 1.94        | 2.0      | 2.06  | V/V           |
| $V_{O}$               | Output Voltage Range                         | TCLOAD = TO KEE                                                                        | +0.02       | 2.0      | +4.8  | V             |
| $R_{O}$               | Output Resistance (Pin 5)                    | $V_0 \ge 0.1 \text{ V dc}$                                                             | . 0.02      | 0.2      | . 1.0 | $\Omega$      |
| OVERALL SYSTEM        |                                              |                                                                                        |             |          |       |               |
| G <sub>CL</sub>       | Gain <sup>1</sup>                            | $V_O \ge 0.1 \text{ V dc}$                                                             | 19.9        | 20.0     | 20.1  | V/V           |
| GCL                   | Gain Drift                                   | $T_A = T_{MIN}$ to $T_{MAX}$                                                           | -62.5       | 20.0     | +62.5 | ppm/°C        |
| $V_{OS}$              | Initial Offset Voltage <sup>3</sup>          | IA - I MIN to I MAX                                                                    | -02.5<br>-1 | 0.03     | 102.5 | mV            |
| VOS                   | Offset Drift                                 | $T_A = T_{MIN}$ to $T_{MAX}$                                                           | -1          | 0.03     | +12.5 | μV/°C         |
| OFS                   | Midscale Offset (Pin 7) Scaling <sup>4</sup> | IA - IMIN to IMAX                                                                      | 0.49        | 0.50     | 0.51  | V/V           |
| 013                   | Input Resistance                             | Pin 7 to Pin 2                                                                         | 2.5         | 3.0      | 0.51  | $k\Omega$     |
| IOSC                  | Short-Circuit Output Current                 | 1 111 7 10 1 111 2                                                                     | 7           | 11       | 25    | mA            |
| BW <sub>-3 dB</sub>   | -3 dB Bandwidth                              | $V_O = + 1 \text{ V dc}$                                                               | 20          | 30       | 23    | kHz           |
| SR                    | Slew Rate                                    | v <sub>0</sub> = + 1 v dc                                                              | 20          | 0.2      |       | V/µs          |
| N <sub>SD</sub>       | Noise Spectral Density <sup>3</sup>          | f = 100 Hz to 10 kHz                                                                   |             | 0.2      |       | $\mu V/\mu S$ |
| POWER SUPPLY          |                                              |                                                                                        |             |          |       |               |
|                       | Operating Range                              | $T_A = T_{MIN}$ to $T_{MAX}$                                                           | 3           | 5        | 36    | v             |
| $V_S$                 | Quiescent Supply Current <sup>5</sup>        | $T_A = T_{MIN} \text{ to } T_{MAX}$<br>$T_A = +25^{\circ}\text{C}, V_S = +5 \text{ V}$ | ,           | 200      | 500   | μA            |
| Is                    | Quiescent Supply Current                     | $I_A = +25 ^{\circ}C, V_S = +5 V$                                                      |             | 200      | 300   | μΑ            |
| TEMPERATURE RANGE     |                                              |                                                                                        | 4.5         |          |       |               |
| $T_{OP}$              | Operating Temperature Range                  |                                                                                        | -40         |          | +105  | °C            |
| PACKAGE               | Plastic Mini-DIP (N-8)                       |                                                                                        |             | AD22057N |       |               |
|                       | SOIC (R-8)                                   |                                                                                        |             | AD22057R |       |               |

#### NOTES

-2-

All min and max specifications are guaranteed, although only those marked in **boldface** are tested on all production units at final test.

Specifications subject to change without notice.

REV. 0

<sup>&</sup>lt;sup>1</sup>Specified for default mode i.e., with no external components. The overall gain is trimmed to  $\pm 1\%$  while the individual gains of Al and A2 may be subject to a maximum  $\pm 3\%$  tolerance. Note that the actual gain in a particular application can be modified by the use of external resistor networks.

<sup>&</sup>lt;sup>2</sup>The actual output resistance of A1 is only a few ohms, but access to this output, via Pin 3, is always through a 100 kΩ resistor, which is trimmed to  $\pm 3\%$ .

<sup>&</sup>lt;sup>4</sup>The midscale offset scaling factor determines the fraction of voltage applied to Pin 7 which appears at the output. For example, with Pin 7 tied to Pin 6 and  $V_S = +5$  V, the output will be offset to +2.5 V ± 50 mV. The designer should be aware that the impedance at Pin 7, OFS, is 4 kΩ. Care should be taken so that the steady-state voltage at this pin does not cause the package to dissipate too much power. It is recommended that the continuous  $V_S$  stay below +20 V when it is connected to the OFS pin.

 $<sup>^{5}</sup>$ With  $V_{DM}$  = 0 V. Differential mode signals are referred to as  $V_{DM}$ , while  $V_{CM}$  refers to common-mode voltages.

AD22057

## ABSOLUTE MAXIMUM RATINGS<sup>1</sup>

| Supply Voltage +3 V to +36 V                            |
|---------------------------------------------------------|
| Peak Input Voltage (40 ms)                              |
| Reversed Continuous Supply Voltage34 V                  |
| Operating Temperature40°C to +125°C                     |
| Storage Temperature $-65^{\circ}$ C to $+150^{\circ}$ C |
| Output Short Circuit Duration Indefinite                |
| Lead Temperature (Soldering, 60 sec) +300°C             |

<sup>1</sup>Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; the functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## **ORDERING GUIDE**

| Model    | Temperature     | Package          | Package |
|----------|-----------------|------------------|---------|
|          | Range           | Description      | Option  |
| AD22057N | -40°C to +105°C | Plastic Mini-DIP | N-8     |
| AD22057R | -40°C to +105°C | SOIC             | R-8     |

#### **PIN CONFIGURATIONS**

#### Plastic Mini-DIP (N-8)

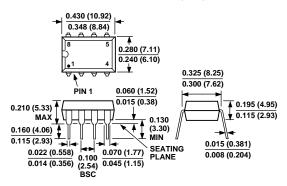
SOIC (R-8)

|       |                                         | l |                 |
|-------|-----------------------------------------|---|-----------------|
| IN- 1 | •                                       | 8 | IN+             |
| GND 2 | AD22057N                                | 7 | OFS             |
| A1 3  | TOP VIEW (Not to Scale)                 | 6 | +V <sub>S</sub> |
| A2 4  | (************************************** | 5 | OUT             |
|       |                                         |   |                 |

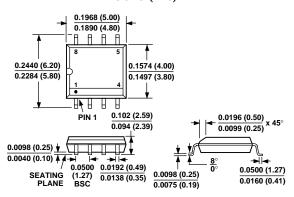
|       |                            | 1                 |
|-------|----------------------------|-------------------|
| IN- 1 | •                          | 8 IN-             |
| GND 2 | AD22057R                   | 7 OFS             |
| A1 3  | TOP VIEW<br>(Not to Scale) | 6 +V <sub>S</sub> |
| A2 4  |                            | <b> 15</b> OUT    |
|       |                            |                   |

#### CAUTION\_

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD22057 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.




REV. 0 -3-


#### **OUTLINE DIMENSIONS**

Dimensions shown in inches and (mm).

## Plastic Mini-DIP (N-8)



## SOIC (R-8)



-4-