AD22057*

FEATURES

Gain of $\times \mathbf{2 0}$ Alterable from $\times \mathbf{1}$ to $\times \mathbf{1 6 0}$ Input Offset Voltage Over Temperature $\pm \mathbf{2 m V}$
Low Long-Term Drift of Gain and Offset Voltage
Input CMR from Ground to $6 \times\left(\mathrm{V}_{\mathrm{s}}-1 \mathrm{~V}\right)$
Output Span 20 mV to ($\mathrm{V}_{\mathrm{s}}-0.25$) V
1, 2, 3 Pole Low-Pass Filtering Available
Accurate Midscale Offset Capability
Differential Input Resistance $400 \mathrm{k} \Omega$
Drives $1 \mathrm{k} \Omega$ Load to +4 V Using $\mathrm{V}_{\mathrm{s}}=+5 \mathrm{~V}$
Supply Voltage: +3 V to +36 V
Transient Spike Protection and RFI Filters Included
Peak Input Voltage (40 ms): 60 V
Reversed Supply Protection: -34 V
Operating Temperature Range: $-\mathbf{4 0}{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
APPLICATIONS
Current Sensing
Motor Control
Interface for Accelerometers, Pressure Transducers, Position Indicators, Strain Gages, and Other Low Level Signal Sources

FUNCTIONAL BLOCK DIAGRAM

This range is achieved by the use of a special resistive attenuator at the input, laser-trimmed to a very high differential balance. Low initial offset voltage and offset voltage drift are specified, and long-term stability of gain and offset voltage is also provided.
Provisions are included for optional low-pass filtering and gain adjustment. An accurate midscale offset feature allows bipolar signals to be amplified.

GENERAL DESCRIPTION

The AD22057 is a single supply difference amplifier for the amplification and low-pass filtering of small differential voltages from sources having a large common-mode voltage.

Supply voltages of between +3 V and +36 V can be used. The input common-mode range extends from below ground to 24 V using a +5 V supply with excellent rejection of this commonmode voltage.
*Patents pending.

Figure 1. Typical Application Circuit for a Current Sensor Interface

REV. 0

Parameter	Comments	Test Conditions	Min	Typ	Max	Units
```INPUTS (PINS 1 AND 8) \\ +CMR \\ CMR \\ \(\mathrm{CMRR}_{\text {LF }}\) \\ \(\mathrm{CMRR}_{\mathrm{HF}}\) \\ \(\mathrm{R}_{\text {INCM }}\) \\ \(\mathrm{R}_{\text {MATCH }}\) \\ \(\mathrm{R}_{\text {INDIFF }}\)```	Positive Common-Mode Range Negative Common-Mode Range Common-Mode Rejection Ratio Common-Mode Rejection Ratio Common-Mode Input Resistance Matching of Input Resistances Differential Input Resistance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{f} \leq 10 \mathrm{~Hz} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$   Pin 1 or Pin 8 to Pin 2   Pin 1 to $\operatorname{Pin} 8$	$\begin{aligned} & -1.0 \\ & 80 \\ & 80 \\ & 200 \\ & \\ & 350 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \\ & 250 \\ & \pm 05 \\ & 450 \end{aligned}$	$+24$ $300$	$\begin{array}{\|l} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~dB} \\ \mathrm{~dB} \\ \mathrm{k} \Omega \\ \% \\ \mathrm{k} \Omega \\ \hline \end{array}$
PREAMPLIFIER $\mathrm{G}_{\mathrm{CL}}$   $\mathrm{V}_{\mathrm{O}}$   $\mathrm{R}_{\mathrm{O}}$	Closed-Loop Gain ${ }^{1}$   Output Voltage Range (Pin 3)   Output Resistance ${ }^{2}$		$\begin{aligned} & 9.7 \\ & +0.01 \\ & 97 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 100 \end{aligned}$	$\begin{aligned} & 103 \\ & +4.8 \\ & 103 \end{aligned}$	$\begin{array}{\|l} \mathrm{V} / \mathrm{V} \\ \mathrm{~V} \\ \mathrm{k} \Omega \end{array}$
```OUTPUT BUFFER G V RO```	Closed-Loop Gain ${ }^{1}$   Output Voltage Range   Output Resistance (Pin 5)	$\begin{aligned} & \mathrm{R}_{\mathrm{LOAD}} \geq 10 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{O}} \geq 0.1 \mathrm{~V} \mathrm{dc} \end{aligned}$	$\begin{aligned} & 1.94 \\ & +0.02 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.06 \\ & +4.8 \end{aligned}$	$\begin{array}{\|l} \mathrm{V} / \mathrm{V} \\ \mathrm{~V} \\ \Omega \\ \hline \end{array}$
```OVERALL SYSTEM \(G_{C L}\) \(\mathrm{V}_{\text {OS }}\) OFS IOSC \(\mathrm{BW}_{-3 \mathrm{~dB}}\) SR \(\mathrm{N}_{\mathrm{SD}}\)```	Gain ${ }^{1}$   Gain Drift   Initial Offset Voltage ${ }^{3}$   Offset Drift   Midscale Offset (Pin 7) Scaling ${ }^{4}$   Input Resistance   Short-Circuit Output Current   -3 dB Bandwidth   Slew Rate   Noise Spectral Density ${ }^{3}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}} \geq 0.1 \mathrm{~V} \text { dc } \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \text { to } \mathrm{T}_{\mathrm{MAX}} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \text { to } \mathrm{T}_{\mathrm{MAX}} \end{aligned}$   Pin 7 to Pin 2 $\begin{aligned} & \mathrm{V}_{\mathrm{O}}=+1 \mathrm{~V} \text { dc } \\ & \mathrm{f}=100 \mathrm{~Hz} \text { to } 10 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 19.9 \\ & -62.5 \\ & -1 \\ & -12.5 \\ & 0.49 \\ & 2.5 \\ & 7 \\ & 20 \end{aligned}$	20.0 0.03 0.50 3.0 11 30 0.2 0.2	$\begin{aligned} & 20.1 \\ & +62.5 \\ & 1 \\ & +12.5 \\ & 0.51 \\ & \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{V} / \mathrm{V} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{mV} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \mathrm{~V} / \mathrm{V} \\ & \mathrm{k} \Omega \\ & \mathrm{~mA} \\ & \mathrm{kHz} \\ & \mathrm{~V} / \mu \mathrm{s} \\ & \mu \mathrm{~V} / \sqrt{\mathrm{Hz}} \end{aligned}$
$\begin{aligned} & \text { POWER SUPPLY } \\ & \mathrm{V}_{\mathrm{S}} \\ & \mathrm{I}_{\mathrm{S}} \\ & \hline \end{aligned}$	Operating Range   Quiescent Supply Current ${ }^{5}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \text { to } \mathrm{T}_{\mathrm{MAX}} \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V} \end{aligned}$	3	$\begin{aligned} & 5 \\ & 200 \end{aligned}$	$\begin{aligned} & 36 \\ & 500 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mu \mathrm{~A} \end{aligned}$
TEMPERATURE RANGE $\mathrm{T}_{\mathrm{OP}}$	Operating Temperature Range		-40		+105	${ }^{\circ} \mathrm{C}$
PACKAGE	$\begin{aligned} & \text { Plastic Mini-DIP (N-8) } \\ & \text { SOIC (R-8) } \end{aligned}$			$\begin{aligned} & \text { AD22057N } \\ & \text { AD22057R } \end{aligned}$		

## NOTES

${ }^{1}$ Specified for default mode i.e., with no external components. The overall gain is trimmed to $\pm 1 \%$ while the individual gains of Al and A 2 may be subject to a maximum $\pm 3 \%$ tolerance. Note that the actual gain in a particular application can be modified by the use of external resistor networks.
${ }^{2}$ The actual output resistance of A1 is only a few ohms, but access to this output, via Pin 3 , is always through a $100 \mathrm{k} \Omega$ resistor, which is trimmed to $\pm 3 \%$.
${ }^{3}$ Referred to the input (Pins 1 and 8).
${ }^{4}$ The midscale offset scaling factor determines the fraction of voltage applied to Pin 7 which appears at the output. For example, with Pin 7 tied to Pin 6 and $V_{S}=+5 \mathrm{~V}$, the output will be offset to $+2.5 \mathrm{~V} \pm 50 \mathrm{mV}$. The designer should be aware that the impedance at Pin $7, \mathrm{OFS}$, is $4 \mathrm{k} \Omega$. Care should be taken so that the steady-state voltage at this pin does not cause the package to dissipate too much power. It is recommended that the continuous $\mathrm{V}_{\mathrm{S}}$ stay below +20 V when it is connected to the OFS pin.
${ }^{5}$ With $\mathrm{V}_{\mathrm{DM}}=0 \mathrm{~V}$. Differential mode signals are referred to as $\mathrm{V}_{\mathrm{DM}}$, while $\mathrm{V}_{\mathrm{CM}}$ refers to common-mode voltages.
All min and max specifications are guaranteed, although only those marked in boldface are tested on all production units at final test.
Specifications subject to change without notice.

## ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . +3 V to +36 V
Peak Input Voltage ( 40 ms ) . . . . . . . . . . . . . . . . . . . . . . . . 60 V
Reversed Continuous Supply Voltage . . . . . . . . . . . . . . -34 V
Operating Temperature . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Output Short Circuit Duration . . . . . . . . . . . . . . . . Indefinite
Lead Temperature (Soldering, 60 sec ) . . . . . . . . . . . . . $+300^{\circ} \mathrm{C}$
${ }^{1}$ Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; the functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ORDERING GUIDE

Model	Temperature   Range	Package   Description	Package   Option
AD22057N	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	Plastic Mini-DIP	N-8
AD22057R	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	SOIC	R-8

## PIN CONFIGURATIONS

Plastic Mini-DIP (N-8)
SOIC (R-8)


## CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD22057 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

## OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).
Plastic Mini-DIP (N-8)


SOIC (R-8)


