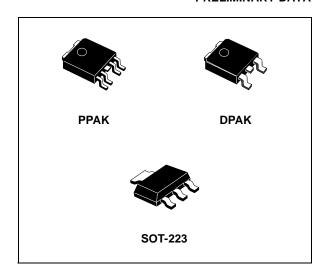
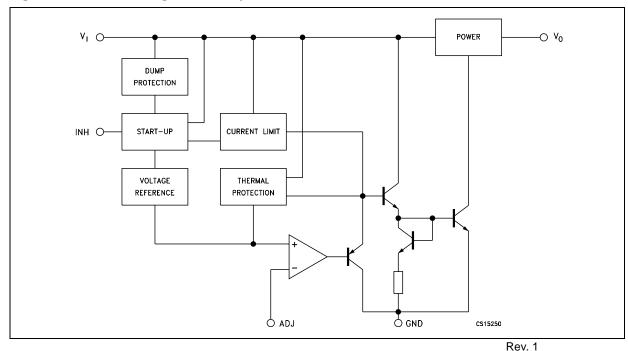


LD29080 SERIES


800mA FIXED AND ADJUSTABLE OUTPUT VERY LOW DROP VOLTAGE REGULATOR

PRELIMINARY DATA

- VERY LOW DROPOUT VOLTAGE (TYP. 0.4V AT 800mA)
- GUARANTEED OUTPUT CURRENT UP TO 800mA
- FIXED AND ADJUSTABLE OUTPUT VOLTAGE (±1% AT 25°C)
- INTERNAL CURRENT AND THERMAL LIMIT
- LOGIC CONTROLLED ELECTRONIC SHUTDOWN


DESCRIPTION

The LD29080 is a high current, high accuracy, low-dropout voltage regulators series. These regulators feature 400mV dropout voltages and very low ground current. Designed for high current loads, these devices also find applications in lower current, extremely low dropout-critical systems, where their tiny dropout voltage and ground current values are important attributes. Typical application are in Power supply switching post

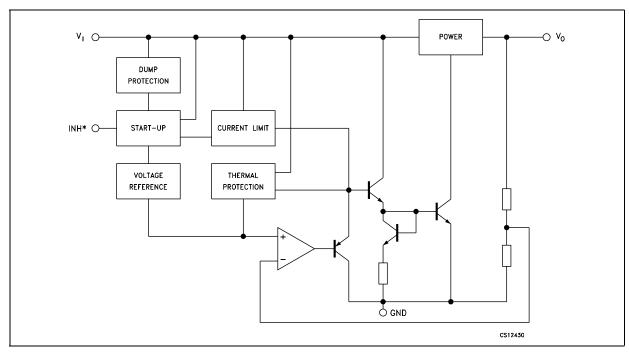

regulation, Series power supply for monitors, Series power supply for VCRs and TVs, Computer Systems and Battery powered systems.

Figure 1: Schematic Diagram For Adjustable Version

October 2004 1/21

Figure 2: Schematic Diagram For Fixed Version

Table 1: Ordering Codes

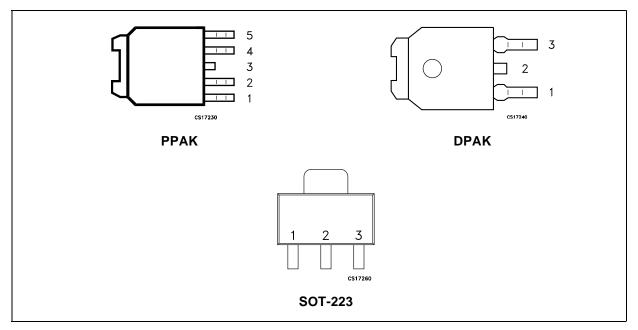
DPAK (*)	PPAK (*)	SOT-223	OUTPUT VOLTAGE
LD29080DT15	LD29080PT15	LD29080S15	1.5 V
LD29080DT18	LD29080PT18	LD29080S18	1.8 V
LD29080DT25	LD29080PT25	LD29080S25	2.5 V
LD29080DT33	LD29080PT33	LD29080S33	3.3 V
LD29080DT50	LD29080PT50	LD29080S50	5.0 V
LD29080DT80	LD29080PT80	LD29080S80	8.0 V (**)
LD29080DT90	LD29080PT90	LD29080S90	9.0 V (**)
	LD29080PT		ADJ

^(*) Available in Tape & Reel with the suffix "R", for the adj version "-R"

Table 2: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _I	DC Input Voltage	30 (*)	V
V _{INH}	Inhibit Input Voltage	14	V
Io	Output Current	Internally Limited	mA
P _D	Power Dissipation	Internally Limited	mW
T _{stg}	Storage Temperature Range	-55 to 150	°C
T _{op}	Storage Temperature Range	-40 to 125	°C

47/

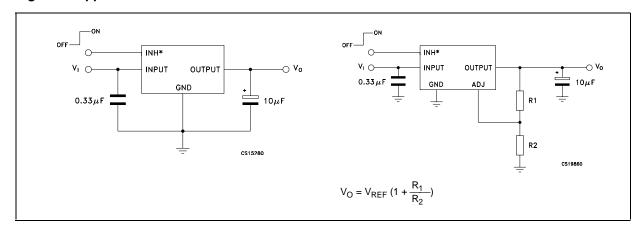

^(**) Available on Request

^(*) Above 14V the device is automatically in shut-down. Absolute Maximum Ratings are those beyond which damage to the device may occur. Functional operation under these condition is not im-

Table 3: Thermal Data

Symbol	Parameter	DPAK	PPAK	SOT-223	Unit
R _{thj-case}	Thermal Resistance Junction-case	8	8	15	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	100	100		°C/W

Figure 3: Pin Connection (top view)


Table 4: Pin Description

Symbol	PPAK	DPAK	SOT-223
V _I	2	1	1
GND	3	2	2
V _O	4	3	3
ADJ/N.C.**	5		
INHIBIT*	1		

^{*} Not internally pulled up; in order to assure the operating condition (device in ON mode), it must be connected to a positive voltage higher than 2V.

** Not connect for fixed version.

Figure 4: Application Circuit

^{*} Only for version with inhibit function.

Table 5: Electrical Characteristics Of LD29080#15 $(I_O = 10 \text{mA} \text{ (Note 4)}, T_J = 25 ^{\circ}\text{C}, V_I = 3.5 \text{V}, V_{INH} = 2 \text{V}, C_I = 330 \text{nF}, C_O = 10 \mu\text{F}, unless otherwise specified)}$

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _I	Operating Input Voltage	I _O = 10mA to 800mA	2.5		13	V
Vo	Output Voltage	$I_O = 10$ mA to 800mA, $V_I = 3$ to 7V	1.485	1.5	1.515	V
		$T_{J} = -40 \text{ to } 125^{\circ}\text{C}$	1.463		1.537	
ΔV_{O}	Load Regulation	I _O = 10mA to 800mA		0.2	1.0	%
ΔV_{O}	Line Regulation	V _I = 3 to 13V		0.06	0.5	%
SVR	Supply Voltage Rejection	$f = 120 \text{ Hz}, V_I = 3.5 \pm 1V, I_O = 400 \text{mA}$	65	75		dB
		(Note 1)				
Iq	Quiescent Current	$I_{O} = 10 \text{mA},$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		2	5	mA
		$I_{O} = 400 \text{mA},$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		8	20	
		$I_{O} = 800 \text{mA},$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		14	35	
		$V_I = 13V$, $V_{INH} = GND$ $T_J = -40$ to 125°C		130	180	μA
I _{sc}	Short Circuit Current	R _L = 0		1.2		Α
V _{IL}	Control Input Logic Low	OFF MODE $T_J = -40 \text{ to } 125^{\circ}\text{C}$			0.8	V
V _{IH}	Control Input Logic High	ON MODE $T_J = -40 \text{ to } 125^{\circ}\text{C}$	2			V
I _{INH}	Control Input Current	$V_{INH} = 13V$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		5	10	μΑ
eN	Output Noise Voltage	B _P = 10Hz to 100KHzI _O = 100mA		60		μV_{RMS}

NOTE 1: Guaranteed by design.

NOTE 2: Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value with V_O+1V applied to V_I.

NOTE 3: Reference Voltage is measured between output and GND pins, with ADJ PIN tied to V_{OUT}.

NOTE 4: in order to avoid any output voltage rise within the whole operating temperature range, due to output leakage current, a minimum load current of 2mA is required.

Table 6: Electrical Characteristics Of LD29080#18

 $(I_O=10 \text{mA (Note 4)}, T_J=25 ^{\circ}\text{C}, V_I=3.5 \text{V}, V_{INH}=2 \text{V}, C_I=330 \text{nF}, C_O=10 \mu\text{F}, unless otherwise specified)}$

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
VI	Operating Input Voltage	I _O = 10mA to 800mA	2.5		13	V
Vo	Output Voltage	$I_O = 10$ mA to 800mA, $V_I = 3$ to 7.3V	1.782	1.8	1.818	V
		$T_{J} = -40 \text{ to } 125^{\circ}\text{C}$	1.755		1.845	
ΔV_{O}	Load Regulation	I _O = 10mA to 800mA		0.2	1.0	%
ΔV_{O}	Line Regulation	V _I = 3 to 13V		0.06	0.5	%
SVR	Supply Voltage Rejection	$f = 120 \text{ Hz}, V_I = 3.8 \pm 1V, I_O = 400 \text{mA}$ (Note 1)	62	72		dB
V_{DROP}	Dropout Voltage	$I_{O} = 150 \text{mA}, T_{J} = -40 \text{ to } 125 ^{\circ}\text{C (Note 2)}$		0.1		V
		$I_O = 400 \text{mA}, T_J = -40 \text{ to } 125 ^{\circ}\text{C (Note 2)}$		0.2		
		$I_O = 800 \text{mA}, T_J = -40 \text{ to } 125 ^{\circ}\text{C (Note 2)}$		0.4	0.7	
Iq	Quiescent Current	$I_{O} = 10 \text{mA},$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		2	5	mA
		$I_{O} = 400 \text{mA},$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		8	20	
		$I_{O} = 800 \text{mA},$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		14	35	
		$V_{I} = 13V$, $V_{INH} = GND$ $T_{J} = -40$ to $125^{\circ}C$		130	180	μΑ
I _{sc}	Short Circuit Current	R _L = 0		1.2		Α
V _{IL}	Control Input Logic Low	OFF MODE $T_J = -40 \text{ to } 125^{\circ}\text{C}$			0.8	V
V _{IH}	Control Input Logic High	ON MODE $T_J = -40 \text{ to } 125^{\circ}\text{C}$	2			V
I _{INH}	Control Input Current	$V_{INH} = 13V$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		5	10	μΑ
eN	Output Noise Voltage	$B_P = 10Hz$ to $100KHzI_O = 100mA$		72		μV_{RMS}

NOTE 1: Guaranteed by design. NOTE 2: Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value with V_O+1V_O

NOTE 2. Disposit voltage is defined as the input-to-output differential when the output voltage grops to 99% of its normal value with V_O+1V applied to V_I.

NOTE 3: Reference Voltage is measured between output and GND pins, with ADJ PIN tied to V_{OUT}.

NOTE 4: in order to avoid any output voltage rise within the whole operating temperature range, due to output leakage current, a minimum load current of 2mA is required.

Table 7: Electrical Characteristics Of LD29080#25

 $(I_O = 10 \text{mA (Note 4)}, T_J = 25 ^{\circ}\text{C}, V_I = 4.5 \text{V}, V_{INH} = 2 \text{V}, C_I = 330 \text{nF}, C_O = 10 \mu\text{F}, unless otherwise specified})$

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
VI	Operating Input Voltage	I _O = 10mA to 800mA			13	V
Vo	Output Voltage	$I_O = 10$ mA to 800mA, $V_I = 3.5$ to 8V	2.475	2.5	2.525	V
		$T_{J} = -40 \text{ to } 125^{\circ}\text{C}$	2.438		2.562	
ΔV_{O}	Load Regulation	I _O = 10mA to 800mA		0.2	1.0	%
ΔV_{O}	Line Regulation	V _I = 3.5 to 13V		0.06	0.5	%
SVR	Supply Voltage Rejection	$f = 120 \text{ Hz}, V_I = 4.5 \pm 1V, I_O = 400 \text{mA}$ (Note 1)	55	70		dB
V_{DROP}	Dropout Voltage	$I_{O} = 150 \text{mA}, T_{J} = -40 \text{ to } 125 ^{\circ}\text{C (Note 2)}$		0.1		V
		I _O = 400mA,T _J = -40 to 125°C (Note 2)		0.2		
		$I_O = 800 \text{mA}, T_J = -40 \text{ to } 125 ^{\circ}\text{C (Note 2)}$		0.4	0.7	
Iq	Quiescent Current	$I_{O} = 10 \text{mA},$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		2	5	mA
		$I_{O} = 400 \text{mA},$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		8	20	
		$I_{O} = 800 \text{mA},$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		14	35	
		$V_I = 13V$, $V_{INH} = GND$ $T_J = -40$ to $125^{\circ}C$		130	180	μA
I _{sc}	Short Circuit Current	$R_L = 0$		1.2		Α
V _{IL}	Control Input Logic Low	OFF MODE $T_J = -40 \text{ to } 125^{\circ}\text{C}$			0.8	V
V _{IH}	Control Input Logic High	ON MODE $T_J = -40 \text{ to } 125^{\circ}\text{C}$	2			V
I _{INH}	Control Input Current	$V_{INH} = 13V$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		5	10	μA
eN	Output Noise Voltage	B _P = 10Hz to 100KHzI _O = 100mA		100		μV_{RMS}

NOTE 1: Guaranteed by design. NOTE 2: Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value with V_O+1V

NOTE 2. Disposit voltage is defined as the input-to-output differential when the output voltage grops to 99% of its normal value with V_O+1V applied to V_I.

NOTE 3: Reference Voltage is measured between output and GND pins, with ADJ PIN tied to V_{OUT}.

NOTE 4: in order to avoid any output voltage rise within the whole operating temperature range, due to output leakage current, a minimum load current of 2mA is required.

Table 8: Electrical Characteristics Of LD29080#33

 $(I_{O} = 10 \text{mA (Note 4)}, T_{J} = 25 ^{\circ}\text{C}, V_{I} = 5.3 \text{V}, V_{INH} = 2 \text{V}, C_{I} = 330 \text{nF}, C_{O} = 10 \mu\text{F}, unless otherwise specified)$

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
VI	Operating Input Voltage	I _O = 10mA to 800mA			13	V
Vo	Output Voltage	$I_O = 10$ mA to 800mA, $V_I = 4.3$ to 8.8V	3.267	3.3	3.333	V
		$T_{J} = -40 \text{ to } 125^{\circ}\text{C}$	3.218		3.382	
ΔV_{O}	Load Regulation	I _O = 10mA to 800mA		0.2	1.0	%
ΔV_{O}	Line Regulation	V _I = 4.3 to 13V		0.06	0.5	%
SVR	Supply Voltage Rejection	$f = 120 \text{ Hz}, V_I = 5.3 \pm 1V, I_O = 400 \text{mA}$ (Note 1)	52	67		dB
V_{DROP}	Dropout Voltage	$I_{O} = 150 \text{mA}, T_{J} = -40 \text{ to } 125 ^{\circ}\text{C (Note 2)}$		0.1		V
		I _O = 400mA,T _J = -40 to 125°C (Note 2)		0.2		
		$I_O = 800 \text{mA}, T_J = -40 \text{ to } 125 ^{\circ}\text{C (Note 2)}$		0.4	0.7	
Iq	Quiescent Current	$I_{O} = 10 \text{mA},$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		2	5	mA
		$I_{O} = 400 \text{mA},$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		8	20	
		$I_{O} = 800 \text{mA},$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		14	35	
		$V_I = 13V$, $V_{INH} = GND$ $T_J = -40$ to $125^{\circ}C$		130	180	μA
I _{sc}	Short Circuit Current	R _L = 0		1.2		Α
V _{IL}	Control Input Logic Low	OFF MODE $T_J = -40 \text{ to } 125^{\circ}\text{C}$			0.8	V
V _{IH}	Control Input Logic High	ON MODE $T_J = -40 \text{ to } 125^{\circ}\text{C}$	2			V
I _{INH}	Control Input Current	$V_{INH} = 13V$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		5	10	μA
eN	Output Noise Voltage	B _P = 10Hz to 100KHzI _O = 100mA		132		μV_{RMS}

NOTE 1: Guaranteed by design. NOTE 2: Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value with V_O+1V_O

NOTE 2. Disposit voltage is defined as the input-to-output differential when the output voltage grops to 99% of its normal value with V_O+1V applied to V_I.

NOTE 3: Reference Voltage is measured between output and GND pins, with ADJ PIN tied to V_{OUT}.

NOTE 4: in order to avoid any output voltage rise within the whole operating temperature range, due to output leakage current, a minimum load current of 2mA is required.

Table 9: Electrical Characteristics Of LD29080#50

 $(I_O = 10 \text{mA (Note 4)}, T_J = 25 ^{\circ}\text{C}, V_I = 7 \text{V}, V_{INH} = 2 \text{V}, C_I = 330 \text{nF}, C_O = 10 \mu\text{F}, unless otherwise specified})$

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
VI	Operating Input Voltage	I _O = 10mA to 800mA			13	V
Vo	Output Voltage	$I_{O} = 10$ mA to 800mA, $V_{I} = 6$ to 10.5V	4.95	5	5.05	V
		$T_{J} = -40 \text{ to } 125^{\circ}\text{C}$	4.875		5.125	
ΔV_{O}	Load Regulation	I _O = 10mA to 800mA		0.2	1.0	%
ΔV_{O}	Line Regulation	V _I = 6 to 13V		0.06	0.5	%
SVR	Supply Voltage Rejection	$f = 120 \text{ Hz}, V_I = 7 \pm 1V, I_O = 400 \text{mA}$ (Note 1)	49	64		dB
V_{DROP}	Dropout Voltage	$I_{O} = 150 \text{mA}, T_{J} = -40 \text{ to } 125 ^{\circ}\text{C (Note 2)}$		0.1		V
		$I_O = 400 \text{mA}, T_J = -40 \text{ to } 125 ^{\circ}\text{C (Note 2)}$		0.2		
		$I_{O} = 800 \text{mA}, T_{J} = -40 \text{ to } 125^{\circ}\text{C (Note 2)}$		0.4	0.7	
Iq	Quiescent Current	$I_{O} = 10 \text{mA},$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		2	5	mA
		$I_{O} = 400 \text{mA},$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		8	20	
		$I_{O} = 800 \text{mA}, T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		14	35	
		$V_I = 13V$, $V_{INH} = GND$ $T_J = -40$ to 125 °C		130	180	μA
I _{sc}	Short Circuit Current	$R_L = 0$		1.2		Α
V _{IL}	Control Input Logic Low	OFF MODE $T_J = -40 \text{ to } 125^{\circ}\text{C}$			0.8	V
V _{IH}	Control Input Logic High	ON MODE $T_J = -40 \text{ to } 125^{\circ}\text{C}$	2			V
I _{INH}	Control Input Current	$V_{INH} = 13V$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		5	10	μΑ
eN	Output Noise Voltage	$B_P = 10Hz \text{ to } 100KHzI_O = 100mA$		320		μV_{RMS}

NOTE 1: Guaranteed by design. NOTE 2: Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value with V_O+1V

NOTE 2. Disposit voltage is defined as the input-to-output differential when the output voltage grops to 99% of its normal value with V_O+1V applied to V_I.

NOTE 3: Reference Voltage is measured between output and GND pins, with ADJ PIN tied to V_{OUT}.

NOTE 4: in order to avoid any output voltage rise within the whole operating temperature range, due to output leakage current, a minimum load current of 2mA is required.

Table 10: Electrical Characteristics Of LD29080#80

 $(I_O = 10 \text{mA (Note 4)}, T_J = 25 ^{\circ}\text{C}, V_I = 10 \text{V}, V_{INH} = 2 \text{V}, C_I = 330 \text{nF}, C_O = 10 \mu\text{F}, unless otherwise specified)}$

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
VI	Operating Input Voltage	I _O = 10mA to 800mA			13	V
Vo	Output Voltage	$I_{O} = 10$ mA to 800mA, $V_{I} = 9$ to 13V	7.92	8	8.08	V
		$T_{J} = -40 \text{ to } 125^{\circ}\text{C}$	7.80		8.20	
ΔV_{O}	Load Regulation	I _O = 10mA to 800mA		0.2	1.0	%
ΔV_{O}	Line Regulation	V _I = 9 to 13V		0.06	0.5	%
SVR	Supply Voltage Rejection	$f = 120 \text{ Hz}, V_I = 9 \pm 1V, I_O = 400 \text{mA}$ (Note 1)	45	59		dB
V_{DROP}	Dropout Voltage	$I_{O} = 150 \text{mA}, T_{J} = -40 \text{ to } 125 ^{\circ}\text{C (Note 2)}$		0.1		V
		$I_O = 400 \text{mA}, T_J = -40 \text{ to } 125 ^{\circ}\text{C (Note 2)}$		0.2		
		$I_O = 800 \text{mA}, T_J = -40 \text{ to } 125 ^{\circ}\text{C (Note 2)}$		0.4	0.7	
Iq	Quiescent Current	$I_{O} = 10 \text{mA},$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		2	5	mA
		$I_{O} = 400 \text{mA},$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		8	20	
		$I_{O} = 800 \text{mA}, T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		14	35	
		$V_I = 13V$, $V_{INH} = GND$ $T_J = -40$ to $125^{\circ}C$		130	180	μA
I _{sc}	Short Circuit Current	$R_L = 0$		1.2		Α
V _{IL}	Control Input Logic Low	OFF MODE $T_J = -40 \text{ to } 125^{\circ}\text{C}$			0.8	V
V _{IH}	Control Input Logic High	ON MODE $T_J = -40 \text{ to } 125^{\circ}\text{C}$	2			V
I _{INH}	Control Input Current	$V_{INH} = 13V$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		5	10	μΑ
eN	Output Noise Voltage	B _P = 10Hz to 100KHzI _O = 100mA		320		μV_{RMS}

NOTE 1: Guaranteed by design. NOTE 2: Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value with V_O+1V_O

NOTE 2. Disposit voltage is defined as the input-to-output differential when the output voltage grops to 99% of its normal value with V_O+1V applied to V_I.

NOTE 3: Reference Voltage is measured between output and GND pins, with ADJ PIN tied to V_{OUT}.

NOTE 4: in order to avoid any output voltage rise within the whole operating temperature range, due to output leakage current, a minimum load current of 2mA is required.

Table 11: Electrical Characteristics Of LD29080#90

 $(I_O=10 \text{mA (Note 4)},\, T_J=25 ^{\circ}\text{C},\, V_I=11 \text{V},\, V_{INH}=2 \text{V},\, C_I=330 \text{nF},\, C_O=10 \mu\text{F},\, unless \, otherwise \, specified)$

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
VI	Operating Input Voltage	I _O = 10mA to 800mA			13	V
Vo	Output Voltage	$I_{O} = 10$ mA to 800mA, $V_{I} = 10$ to 13V	8.91	9	9.09	V
		$T_{J} = -40 \text{ to } 125^{\circ}\text{C}$	8.775		9.225	
ΔV_{O}	Load Regulation	I _O = 10mA to 800mA		0.2	1.0	%
ΔV_{O}	Line Regulation	V _I = 10 to 13V		0.06	0.5	%
SVR	Supply Voltage Rejection	$f = 120 \text{ Hz}, V_I = 11 \pm 1V, I_O = 400 \text{mA}$ (Note 1)	45	58		dB
V _{DROP}	Dropout Voltage	$I_{O} = 150 \text{mA}, T_{J} = -40 \text{ to } 125 ^{\circ}\text{C (Note 2)}$		0.1		V
		$I_O = 400 \text{mA}, T_J = -40 \text{ to } 125^{\circ}\text{C (Note 2)}$		0.2		
		$I_O = 800 \text{mA}, T_J = -40 \text{ to } 125^{\circ}\text{C (Note 2)}$		0.4	0.7	
Iq	Quiescent Current	$I_{O} = 10 \text{mA},$ $T_{J} = -40 \text{ to } 125 ^{\circ}\text{C}$		2	5	mA
		$I_{O} = 400 \text{mA},$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		8	20	
		$I_{O} = 800 \text{mA}, T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		14	35	
		$V_I = 13V$, $V_{INH} = GND$ $T_J = -40$ to 125 °C		130	180	μΑ
I _{sc}	Short Circuit Current	$R_L = 0$		1.2		Α
V _{IL}	Control Input Logic Low	OFF MODE $T_J = -40 \text{ to } 125^{\circ}\text{C}$			0.8	V
V _{IH}	Control Input Logic High	ON MODE $T_J = -40 \text{ to } 125^{\circ}\text{C}$	2			V
I _{INH}	Control Input Current	$V_{INH} = 13V$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		5	10	μΑ
eN	Output Noise Voltage	$B_P = 10Hz$ to $100KHzI_O = 100mA$		360		μV_{RMS}

NOTE 1: Guaranteed by design. NOTE 2: Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value with V_O+1V

NOTE 2. Disposit voltage is defined as the input-to-output differential when the output voltage grops to 99% of its normal value with V_O+1V applied to V_I.

NOTE 3: Reference Voltage is measured between output and GND pins, with ADJ PIN tied to V_{OUT}.

NOTE 4: in order to avoid any output voltage rise within the whole operating temperature range, due to output leakage current, a minimum load current of 2mA is required.

Table 12: Electrical Characteristics Of LD29080#ADJ

 $(I_O = 10 \text{mA (Note 4)}, T_J = 25 ^{\circ}\text{C}, V_I = 3.23 \text{ V}, V_{INH} = 2 \text{V}, C_I = 330 \text{nF}, C_O = 10 \mu\text{F}$ adjust pin tied to output pin, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
VI	Minimum Operating Input Voltage	I _O = 10mA to 800mA	2.5		13	V
ΔV_{O}	Load Regulation	I _O = 10mA to 800mA		0.2	1.0	%
ΔV_{O}	Line Regulation	$V_1 = 2.5 \text{ V to } 13 \text{V}$ $I_0 = 10 \text{mA}$		0.06	0.5	%
V_{REF}	Reference Voltage	$I_O = 10$ mA to 800mA, $V_I = 2.5$ to 6.73V $T_J = -40$ to 125°C (Note 3)	1.2177 1.1993	1.23	1.2423 1.2607	V
SVR	Supply Voltage Rejection	$f = 120 \text{ Hz}, V_I = 3.23 \pm 1V, I_O = 400 \text{mA}$ (Note 1)	45	75		dB
Iq	Quiescent Current	$I_{O} = 10 \text{mA},$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		2	5	mA
		$I_{O} = 400 \text{mA}, T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		8	20	
		$I_{O} = 800 \text{mA}, T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		14	35	
		$V_I = 13V$, $V_{INH} = GND$ $T_J = -40$ to 125°C		130	180	μA
I _{ADJ}	Adjust Pin Current	T _J = -40 to 125°C (Note 1)			1	μΑ
I _{sc}	Short Circuit Current	$R_L = 0$		1.2		Α
V_{IL}	Control Input Logic Low	OFF MODE $T_J = -40 \text{ to } 125^{\circ}\text{C}$			0.8	V
V _{IH}	Control Input Logic High	ON MODE $T_J = -40 \text{ to } 125^{\circ}\text{C}$	2			V
I _{INH}	Control Input Current	$V_{INH} = 13V$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		5	10	μΑ
eN	Output Noise Voltage	$B_P = 10Hz$ to $100KHzI_O = 100mA$		50		μV_{RMS}

NOTE 1: Guaranteed by design.

NOTE 2: Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value with V_O+1V applied to V_I.

NOTE 3: Reference Voltage is measured between output and GND pins, with ADJ PIN tied to V_{OUT}.

NOTE 4: in order to avoid any output voltage rise within the whole operating temperature range, due to output leakage current, a minimum lead output leakage current.

load current of 2mA is required.

TYPICAL CHARACTERISTICS

Figure 5: Output Voltage vs Temperature

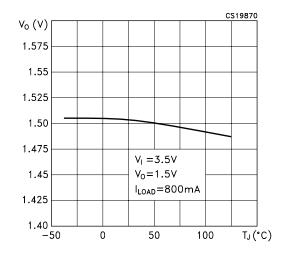


Figure 6: Reference Voltage vs Temperature

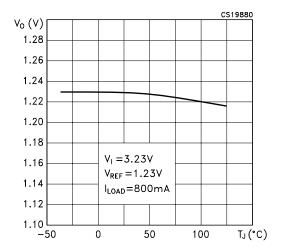


Figure 7: Dropout Voltage vs Temperature

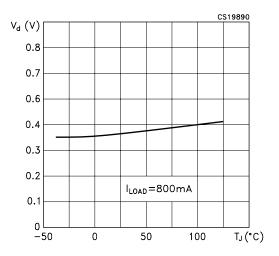


Figure 8: Dropout Voltage vs Output Current

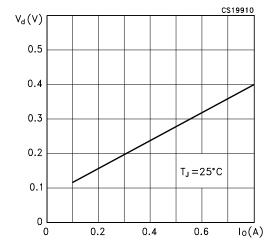


Figure 9: Quiescent Current vs Output Current

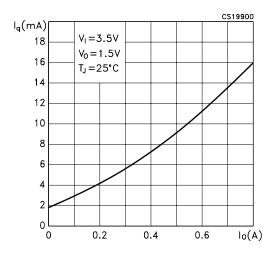


Figure 10: Quiescent Current vs Temperature

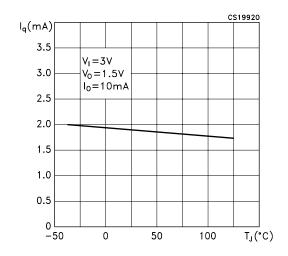


Figure 11: Quiescent Current vs Supply Voltage

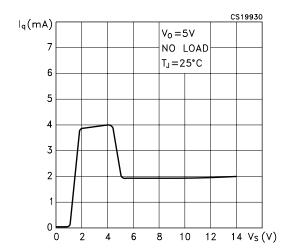
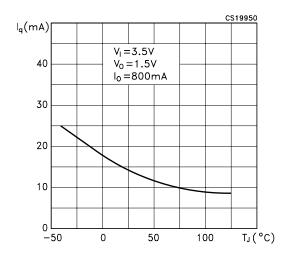



Figure 12: Quiescent Current vs Temperature

47/

Figure 13: Short Circuit Current vs Temperature

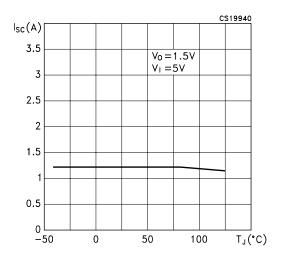
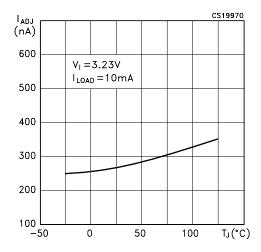



Figure 14: Adjust Pin Current vs Temperature

Figure 15: Supply Voltage Rejection vs Temperature

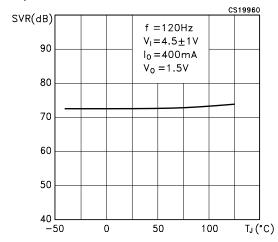


Figure 16: Output Voltage vs Input Voltage

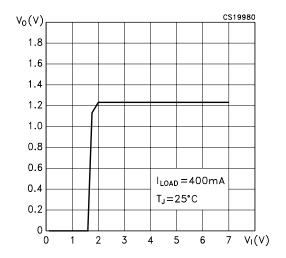


Figure 17: Stability vs C_{OUT}

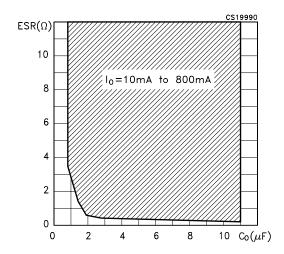
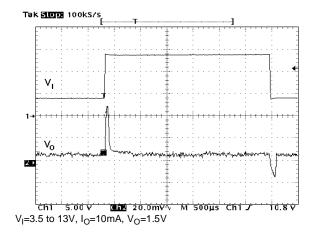
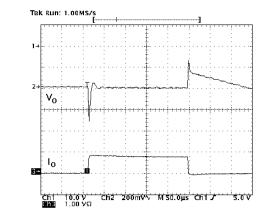
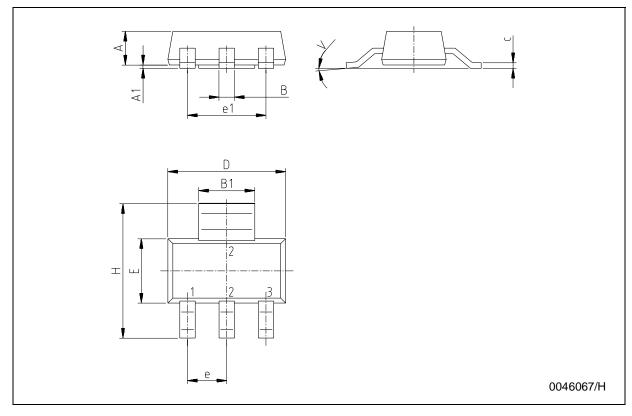


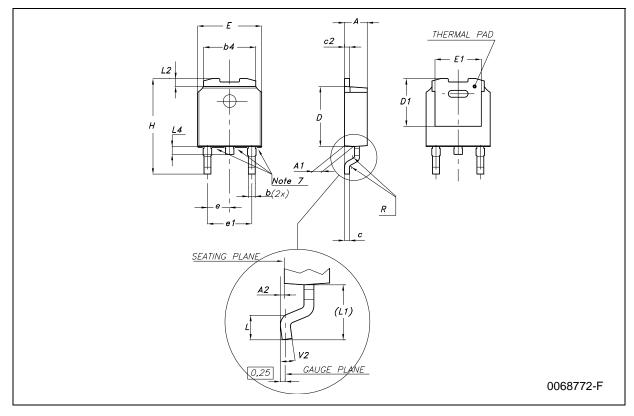
Figure 18: Line Transient

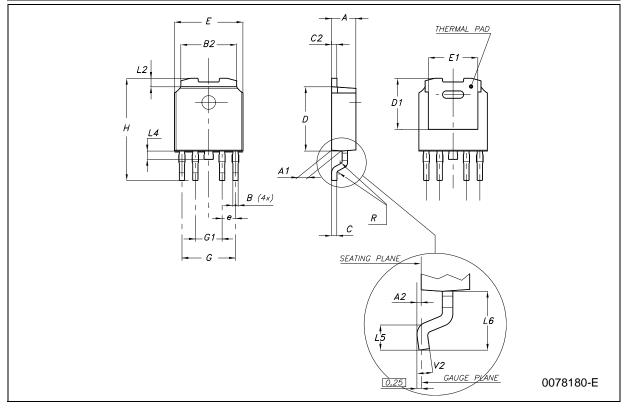

Figure 19: Load Transient

 $V_I = 3.5V$, $V_O = 1.5V$, $I_O = 10$ mA to 0.8A

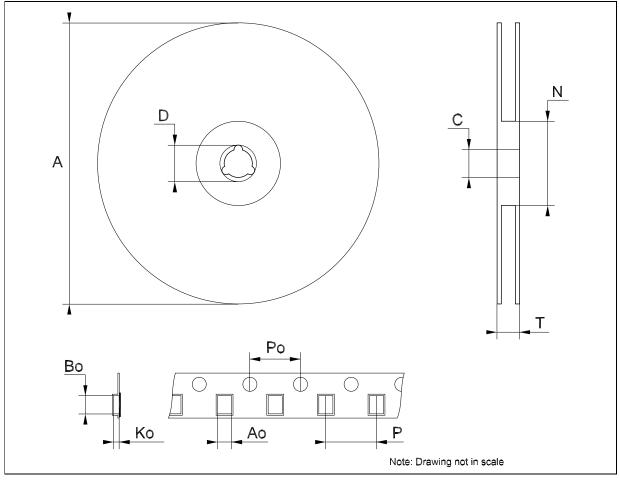
SOT-223 MECHANICAL DATA


DIM.	mm.			mils		
DIWI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			1.8			70.9
A1	0.02		0.1	0.8		3.9
В	0.6	0.7	0.85	23.6	27.6	33.5
B1	2.9	3	3.15	114.2	118.1	124.0
С	0.24	0.26	0.35	9.4	10.2	13.8
D	6.3	6.5	6.7	248.0	255.9	263.8
е		2.3			90.6	
e1		4.6			181.1	
E	3.3	3.5	3.7	129.9	137.8	145.7
Н	6.7	7	7.3	129.9	137.8	145.7
V		_	10°			10°

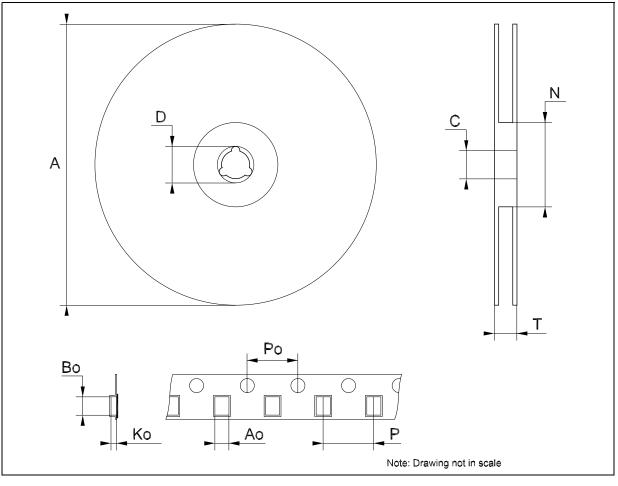
47/


DPAK MECHANICAL DATA

DIM.	mm.			inch			
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α	2.2		2.4	0.086		0.094	
A1	0.9		1.1	0.035		0.043	
A2	0.03		0.23	0.001		0.009	
В	0.64		0.9	0.025		0.035	
B2	5.2		5.4	0.204		0.212	
С	0.45		0.6	0.017		0.023	
C2	0.48		0.6	0.019		0.023	
D	6		6.2	0.236		0.244	
D1		5.1			0.200		
Е	6.4		6.6	0.252		0.260	
E1		4.7			0.185		
е		2.28			0.090		
e1	4.4		4.6	0.173		0.181	
Н	9.35		10.1	0.368		0.397	
L	1			0.039			
(L1)		2.8			0.110		
L2		0.8			0.031		
L4	0.6		1	0.023		0.039	


PPAK MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
A2	0.03		0.23	0.001		0.009
В	0.4		0.6	0.015		0.023
B2	5.2		5.4	0.204		0.212
С	0.45		0.6	0.017		0.023
C2	0.48		0.6	0.019		0.023
D	6		6.2	0.236		0.244
D1		5.1			0.201	
E	6.4		6.6	0.252		0.260
E1		4.7			0.185	
е		1.27			0.050	
G	4.9		5.25	0.193		0.206
G1	2.38		2.7	0.093		0.106
Н	9.35		10.1	0.368		0.397
L2		0.8	1		0.031	0.039
L4	0.6		1	0.023		0.039
L5	1			0.039		
L6		2.8			0.110	


Tape & Reel SOT223 MECHANICAL DATA

DIM.	mm.			inch		
DIIVI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			330			12.992
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
N	60			2.362		
Т			14.4			0.567
Ao	6.73	6.83	6.93	0.265	0.269	0.273
Во	7.32	7.42	7.52	0.288	0.292	0.296
Ко	1.78		2	0.070		0.078
Ро	3.9	4.0	4.1	0.153	0.157	0.161
Р	7.9	8.0	8.1	0.311	0.315	0.319

Tane &	Reel [PAK-F	ΡΔΚΙ	MECHAN	MCΔI	ΠΔΤΔ
I ape &	I/CCI F	<i>/</i> 1 // // // // // // // // // // // // //	$I \cap I \cap I$		NICAL	ν α i α

DIM.		mm.			inch		
DIIVI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А			330			12.992	
С	12.8	13.0	13.2	0.504	0.512	0.519	
D	20.2			0.795			
N	60			2.362			
Т			22.4			0.882	
Ao	6.80	6.90	7.00	0.268	0.272	0.2.76	
Во	10.40	10.50	10.60	0.409	0.413	0.417	
Ko	2.55	2.65	2.75	0.100	0.104	0.105	
Po	3.9	4.0	4.1	0.153	0.157	0.161	
Р	7.9	8.0	8.1	0.311	0.315	0.319	

LD29080 SERIES

Table 13: Revision History

Date	Revision	Description of Changes
15-Oct-2004	1	First Release.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

