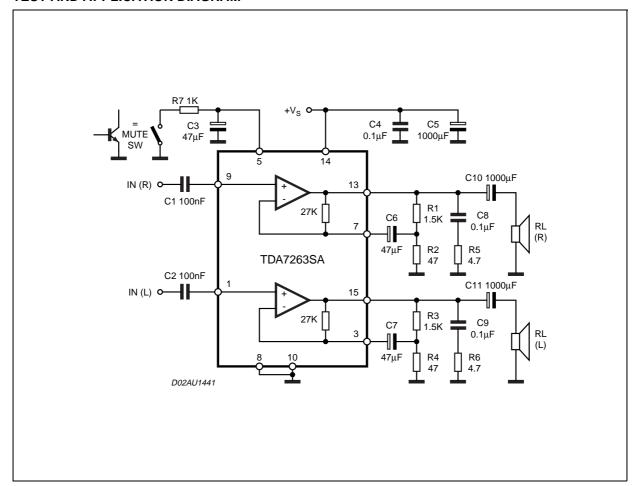


12 + 12W STEREO AMPLIFIER WITH MUTING

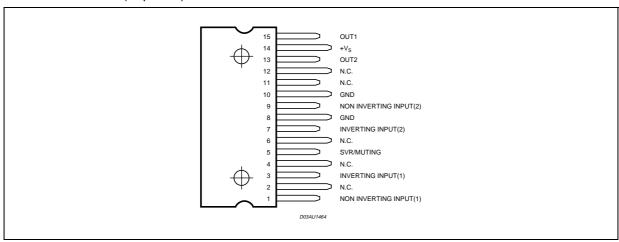
- WIDE SUPPLY VOLTAGE RANGE
- HIGH OUTPUT POWER 12+12W @ $V_S=28V$, $R_L=8\Omega$, THD=10%
- MUTE FACILITY (POP FREE) WITH LOW CONSUMPTION
- AC SHORT CIRCUIT PROTECTION
- THERMAL OVERLOAD PROTECTION


DESCRIPTION

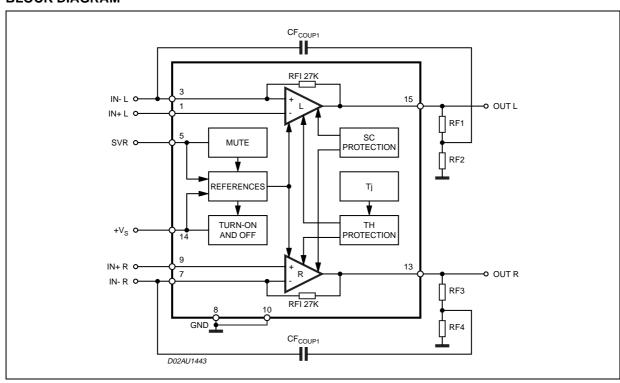
The TDA7263SA is class AB dual audio power amplifier assembled in the Clipwatt package, specially designed for high quality sound application as HI-FI music centers and stereo TV sets.

Pin to pin compatible with the TDA7253L, $\mathsf{TDA7263L}$

TEST AND APPLICATION DIAGRAM



September 2003 1/8


ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage without Load	35	V
Ιο	Output Peak Current (repetitive f >20Hz)	2.5	А
lo	Output Peak Current (non repetitive, t = 100μs)	3.5	Α
P _{tot}	Total Power Dissipation (T _{case} = 70°C)	20	W
T _{op}	Operating Temperature Range	0 to 70	°C
T_{stg} , T_{j}	Storage & Junction Temperature	-40 to 150	°C

PIN CONNECTION (Top view)

BLOCK DIAGRAM

THERMAL DATA

	Symbol	Parameter	Value	Unit
Ī	R _{th j-case}	Thermal resistance junction to case Max	3.5	°C/W

ELECTRICAL CHARACTERISTCS (Refer to the stereo test and application circuit, $V_S = 28V$; $R_L = 8\Omega$; $G_V = 30dB$; f = 1KHz; $T_{amb} = 25$ °C unless otherwise specified.)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply Voltage		10		32	V
Vo	Quiescent Output Voltage			13.5		V
l _q	Total Quiescent Current			70	95	mA
Po	Output Power (RMS)	d = 10%; T _{amb} = 85°C	10	12		W
		d = 1%		9.5		W
d	Total Harmonic Distortion	P _O = 1W, f = 1kHz		0.02	0.2	%
		f = 100Hz to 10KHz; P _O = 0.1 to 8W			0.5	%
C _T	Cross Talk	$R_S = 10K\Omega$; $f = 1KHz$		70		dB
		$R_S = 10K\Omega$; $f = 10KHz$		60		dB
R _I	Input Resistance		100	200		ΚΩ
fL	Low Frequency Roll-off (-3dB)			40		Hz
fH	High Frequency Roll-off (-3dB)			80		KHz
e _N	Total Input Noise Voltage	A Curve; $R_S = 10K\Omega$		1.5		mV
		$f = 22Hz$ to $22KHz$; $R_S = 10K\Omega$		3	10	V
SVR	Supply Voltage Rejection (each channel)	$R_S = 10K\Omega$; $f = 100Hz$; $V_r = 0.5V$	45	60		dB
Tj	Thermal Shutdown Junction Temperature			145		°C
MUTE FU	NCTION		•			•
VT _{MUTE}	Mute Threshold		1	1.6		V
VT _{PLAY}	Play Threshold			4.5		V
ATT _{AM}	Mute Attenuation		70	100		dB
I _{qMUTE}	Quiescent Current @ Mute			7	10	mA

TYPICAL CHARACTERISTICS (referred to the typical Application Circuit, $V_S = 28V$, $R_L = 8\Omega$, unless otherwise specified)

Figure 1. Output Power vs. Supply Voltage

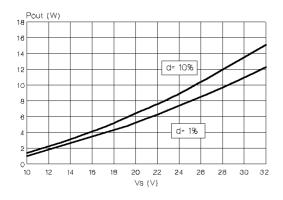


Figure 2. Distortion vs. Output Power

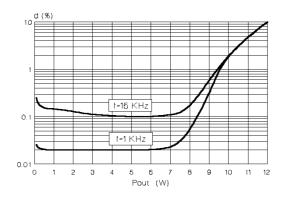


Figure 3. Quiescent Current vs. Supply Voltage

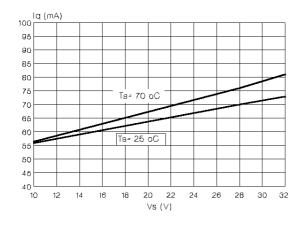


Figure 4. Supply Voltage Rejection vs. Freq.

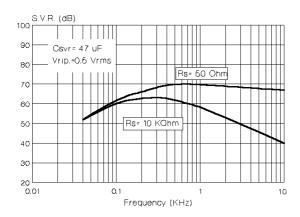


Figure 5. Crosstalk vs. Frequency

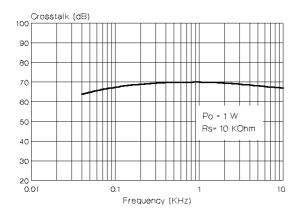


Figure 6. Output Attenuation & Quiescent Current vs. V_{Din5}

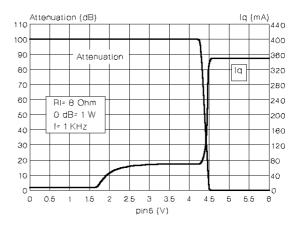
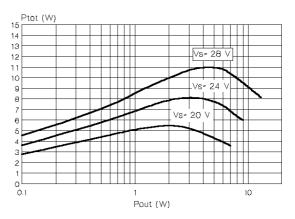



Figure 7. Total Power Dissipation vs. Output Power

BUILT-IN PROTECTION SYSTEMS

Thermal Shut-down

The presence of a thermal limiting circuit offers the following advantages:

- 1 an overload on the output (even if it is permanent), or an excessive ambient temperature can be easily withstood.
- 2 the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no device damage in the case of excessive junction temperature; all that happens is that P_O (and therefore P_O) and I_O are reduced.

Short Circuit (AC Conditions)

The TDA7263SA can withstand accidental short circuits across the speaker made by a wrong connection during normal play operation.

HEAT SINK DIMENSIONING:

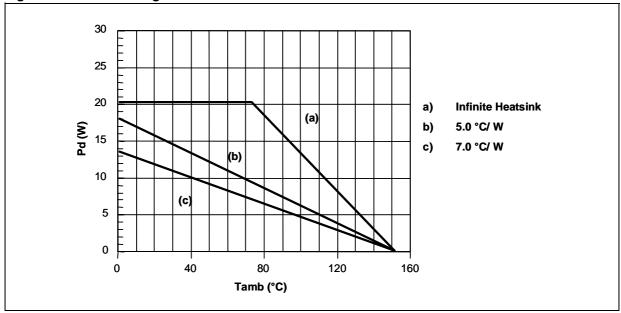
In order to avoid the thermal protection intervention, that is placed approximatively at $T_j = 150$ °C, it is important the dimensioning of the Heat Sinker R_{Th} (°C/W).

The parameters that influence the dimensioning are:

- Maximum dissipated power for the device (P_{dmax})
- Max thermal resistance Junction to case (R_{Th i-c})
- Max. ambient temperature T_{amb max}
- Quiescent current Iq (mA)

Example:

$$V_{CC} = 28V$$
, $R_{load} = 80$ hm, $R_{Th j-c} = 3.5$ °C/W , $T_{amb max} = 50$ °C

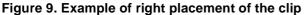

$$P_{dmax} = (N^{\circ} \text{ channels}) \cdot \frac{V_{cc}^{2}}{2\Pi^{2} \cdot R_{load}} + I_{q} \cdot V_{cc}$$

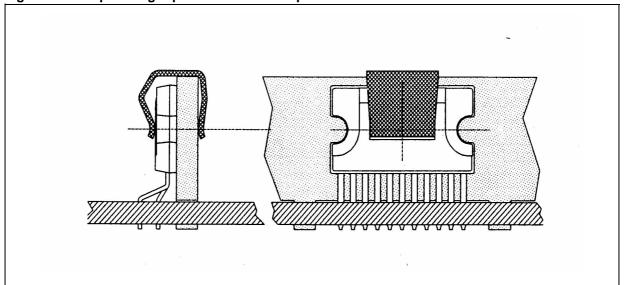
$$P_{dmax} = 2 \cdot (4.9) + 1.9 = 11.3W$$

$$(\text{Heat Sinker}) \ \ R_{\text{Th c-a}} \, = \, \frac{150 - T_{\text{amb max}}}{P_{\text{d max}}} - \, R_{\text{Th j-c}} \, = \, \frac{150 - 50}{11.3} - 3.5 \, = \, 5.3 \, ^{\circ}\text{C/W}$$

In figure 8 is shown the Power derating curve for the device.

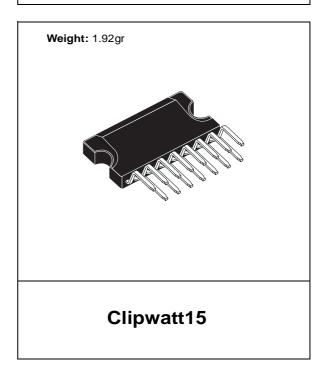
Figure 8. Power derating curve

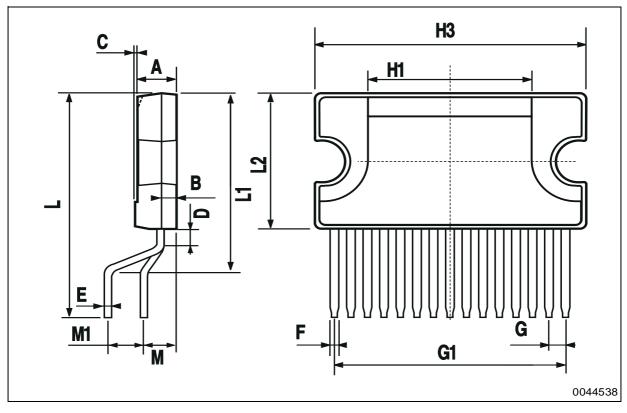

Clipwatt Assembling Suggestions


The suggested mounting method of Clipwatt on external heat sink, requires the use of a clip placed as much as possible in the plastic body center, as indicated in the example of figure 9.

A thermal grease can be used in order to reduce the additional thermal resistance of the contact between package and heatsink.

A pressing force of 7 - 10 Kg gives a good contact and the clip must be designed in order to avoid a maximum contact pressure of 15 Kg/mm2 between it and the plastic body case.


As example , if a 15Kg force is applied by the clip on the package , the clip must have a contact area of 1mm2 at least.



DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			3.2			0.126
В			1.05			0.041
С		0.15			0.006	
D		1.55			0.061	
Е	0.49		0.55	0.019		0.022
F	0.67		0.73	0.026		0.029
G	1.14	1.27	1.4	0.045	0.050	0.055
G1	17.57	17.78	17.91	0.692	0.700	0.705
H1		12			0.480	
H2		18.6			0.732	
НЗ	19.85			0.781		
L		17.95			0.707	
L1		14.45			0.569	
L2	10.7	11	11.2	0.421	0.433	0.441
L3		5.5			0.217	
М		2.54			0.100	
M1		2.54			0.100	

OUTLINE AND MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2003 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States www.st.com