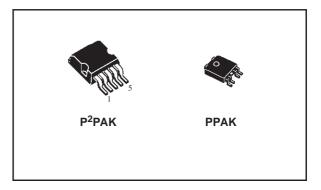


ST1534A

500mA SMART LDO

FEAURES

- GLITCH FREE TRANSITION BETWEEN INPUT SOURCES
- INTERNAL LOGIC SELECTS INPUT SOURCE
- GATE DRIVE FOR EXTERNAL PMOS BYPASS SWITCH
- 5V DETECTOR WITH HYSTERESIS
- 1% 3.3V REGULATED OUTPUT VOLTAGE
- 500mA GUARANTEED OUTPUT CURRENT
- OPERATING TEMPERATURE RANGE FROM 0°C TO 85°C
- AVAILABLE IN P²PAK AND THE SMALLER PPAK PACKAGES

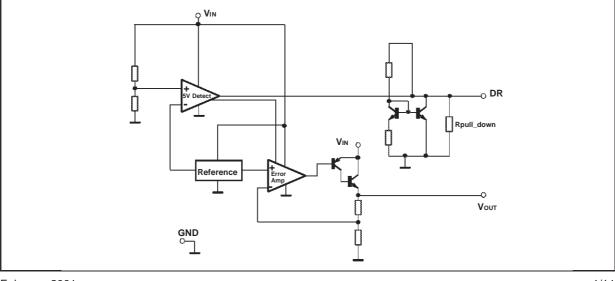

APPLICATIONS

- NETWORK INTERFACE CARDS
- PCMCIA/PCI INTERFACE CARDS
- DESKTOP COMPUTERS
- POWER SUPPLY WITH MULTIPLE INPUT SOURCES

DESCRIPTION

The ST1534A is lintended for application such as power managed PCI and network interface cards (NICs), where operations from 3.3V VAUX supply

SCHEMATIC DIAGRAM



may be required when the 5V supply has been shut down.

During regular operation, 3.3V power for the PCI card is provided by the internal LDO regulator, generated from 5V supply. When the 5V V_{AUX} is available, theIC connects this supply directly to its output using an external P-Channel FET. This ensures an uninterrupted 3.3V out even if VIN falls out of specification.

When both supplies are available simultaneously, the drive pin DR will be pulled high, turning off the PMOS switch.

The device is available in the popular 5 leads $\mathsf{P}^2\mathsf{PAK}$ and PPAK

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
VI	DC Input Voltage	-0.3 to 7	V
V _{SHDN}	Shutdown Input Voltage	-0.3 to 7	V
Ι _Ο	Output Current	Internally limited	mA
T _{stg}	Storage Temperature Range	-40 to +125	°C
T _{op}	Operating Junction Temperature Range	0 to +85	°C

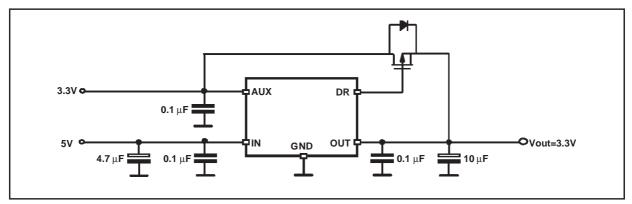
Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

THERMAL DATA

Symbol	Parameter	PPAK	P ² PAK	Unit
R _{thj-case}	Thermal Resistance Junction-case	8	3	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	100	50	°C/W

CONNECTION DIAGRAM (top view)

PIN DESCRIPTION


Pin N°	Symbol	Name and Function
1	AUX	Auxliary Input port typically 3.3V
2	IN	Input port typically 5V
3	GND	Ground
4	OUT	LDO 3.3V Output Port
5	DR	Drive Output for external P-Channel MOSFET pass element

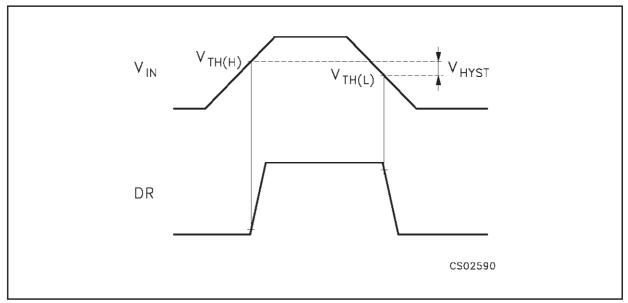
ORDERING INFORMATION

ТҮРЕ	РРАК	P ² PAK
ST1534A	ST1534APT	ST1534AP2T

57

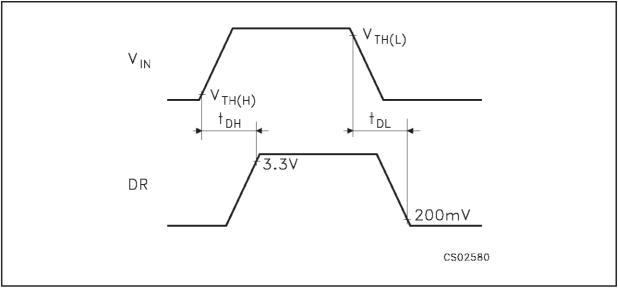
TYPICAL APPLICATION CIRCUIT

ELECTRICAL CHARACTERISTICS (T_j = 25°C, V_I=5V, V_{AUX}=3.3V, I_O=10mA, C_O = 2.2 μ F, unless otherwise specified)


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
VI	Input Voltage Range		4.5	5	5.5	V
I _{IN}	Input Supply Current	$V_1 \ge 4.5V$ $I_O = 0mA$ $V_{AUX} = 0V$		11		mA
		$V_1 \ge 4.5V$ $I_0 = 0mA$ $V_{AUX} = 3.3V$		11		mA
		$V_{I} < 4.1V$ $I_{O} = 0mA$ $V_{AUX} = 0V$		2		mA
		$V_{I} < 4.1V$ $I_{O} = 0mA$ $V_{AUX} = 3.3V$		2		mA
I _{AUX}	Auxliary Supply Current	$V_1 = 0 V$		2.2		mA
		$V_1 = 5V$		200		μA
3.3V VOI	TAGE REGULATOR BLOC	K		1		
Vo	Output Voltage	$T_j = 0$ to 85 °C	3.18	3.3	3.42	V
ΔV_O	Line Regulation	V ₁ = 4.5 to 5.5V		0.04	0.5	%
ΔV_{O}	Load Regulation	$I_{O} = 0$ to 500mA		0.1	1	%
V _d	Dropout Voltage	$I_{O} = 500 \text{ mA}$ $T_{j} = 0 \text{ to } 85 ^{\circ}\text{C}$			1.15	V
Ι _Ο	Output Current Limit	$T_j = 0$ to 85 °C	550			mA
5V DETE	CT BLOCK					
V_{THL}	Low Threshold Voltage	V_{I} falling, $I_{O} = 500 \text{ mA } T_{j} = 0 \text{ to } 85 \ ^{\circ}\text{C}$	4.15		4.3	V
V _{HYST}	Hysteresis		70		200	mV
DRIVE O	UTPUT BLOCK					
V_{DR}	Drive Output Voltage	$V_1 = 4.5 \text{ to } 5.5 \text{V}$ $I_{DR} = 200 \mu\text{A}$	3.6	V _{IN} -0.8		V
		V _I < 4.15V I _{DR} = 200 μA		100	200	mV
I _{DR}	Drive Current	Sinking: $V_1 = 4.15V$ $V_{DR} = 1V$	7	20		mA
		Sourcing: $V_I = 4.5V$ $V_I - V_{DR} = 2V$	7	25		mA
t _{DH}	Drive High Delay (Note 1 and 2)	$\label{eq:CDR} \begin{array}{l} C_{DR} = 1.2 nF, V_{IN} \mbox{ ramping up, measured} \\ \mbox{from } V_I = V_{TH(H)} \mbox{ to } V_{DR} = 3.3 V \\ T_j = 0 \mbox{ to } 85 \ ^{\circ}\mbox{C} \end{array}$		2	5	μs
t _{DL}	Drive Low Delay (Note 1 and 2)	$C_{DR} = 1.2$ nF, V_{IN} ramping down, measured from $V_I = V_{TH(L)}$ to $V_{DR} = 200$ mV $T_j = 0$ to 85 °C		3	6	μs

Note 1: Guaranteed by design Note 2: See timing diagram

57


ST1534A

5V DETECT THRESHOLDS

 V_{IN} rise and fall times (10% to 90%) to be > 100 μs

TIMING DIAGRAM

57

 V_{IN} rise and fall times (10% to 90%) to be > 100 \mu s

TYPICAL CHARACTERISTICS (unless otherwise specified $T_i = 25^{\circ}C$)

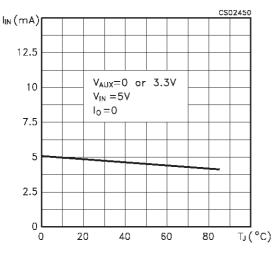


Figure 2 : Aux Current vs Temperature

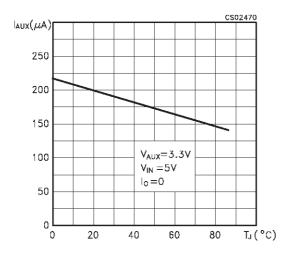


Figure 3 : Drive Current vs Temperature

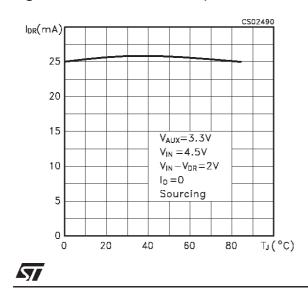


Figure 4 : Aux Current vs Temperature

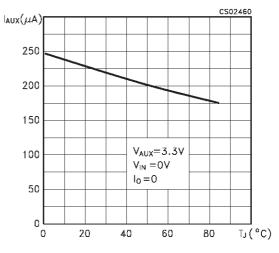


Figure 5 : Drive Output Voltage vs Temperature

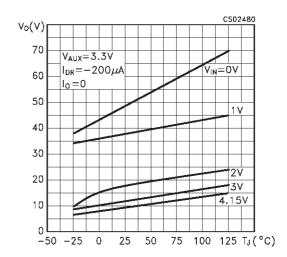
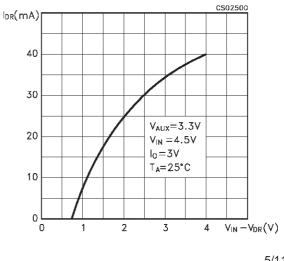



Figure 6 : Drive Current vs VIN-VDR

5/11

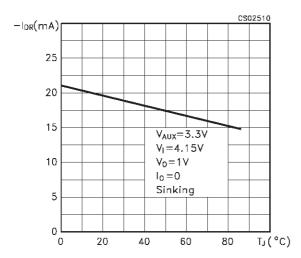


Figure 7 : Drive Current vs Temperature

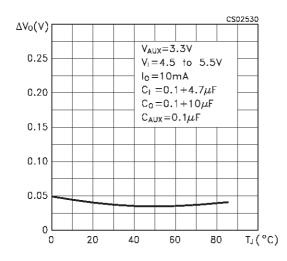


Figure 9 : Output Voltage vs Input Voltage

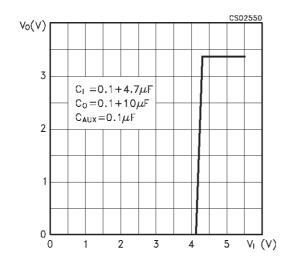


Figure 10 : Output Voltage vs Temperature

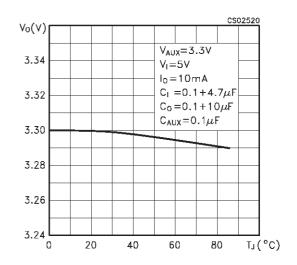


Figure 11 : Load Regulation vs Temperature

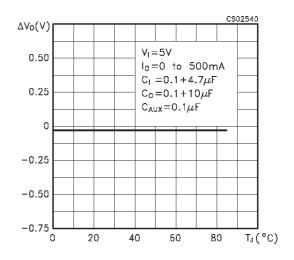


Figure 12 : Threshold Voltage vs Temperature

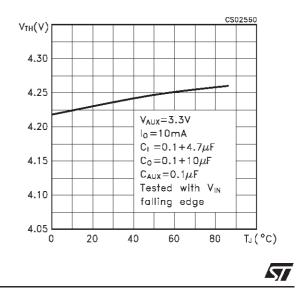
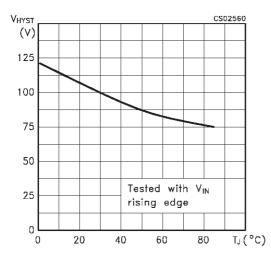
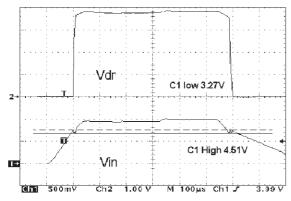
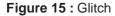
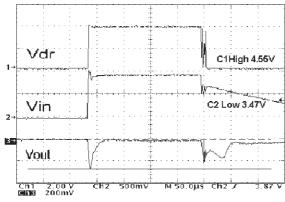
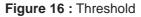
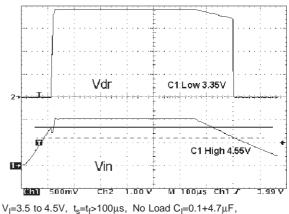


Figure 13 : Hysteresis vs Temperature

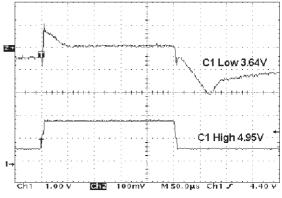




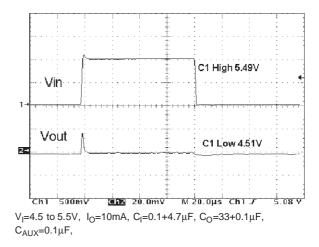

Figure 14 : Threshold

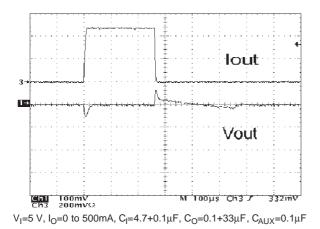

 $V_I{=}3.5$ to 4.5V, $t_s{=}t_f{>}100\mu s,\ I_O{=}500mA,\ C_I{=}0.1{+}4.7\mu F,\ C_O{=}33{+}0.1\mu F$



57


 $V_I\!\!=\!\!3.5$ to 5V, $~I_O\!\!=\!\!500\text{mA},~C_O\!\!=\!\!33\!+\!0.1\mu\text{F},$ with P-Channel


 $V_{l}{=}3.5$ to 4.5V, $t_{s}{=}t_{f}{>}100\mu s,~No~Load~C_{l}{=}0.1{+}4.7\mu F,~C_{O}{=}33{+}0.1\mu F$



 $V_I\!\!=\!\!3.5$ to 5V, $~I_O\!\!=\!\!500mA,~C_O\!\!=\!\!33\!+\!0.1\mu F,$ with P-Channel

Figure 18 : Line Transient

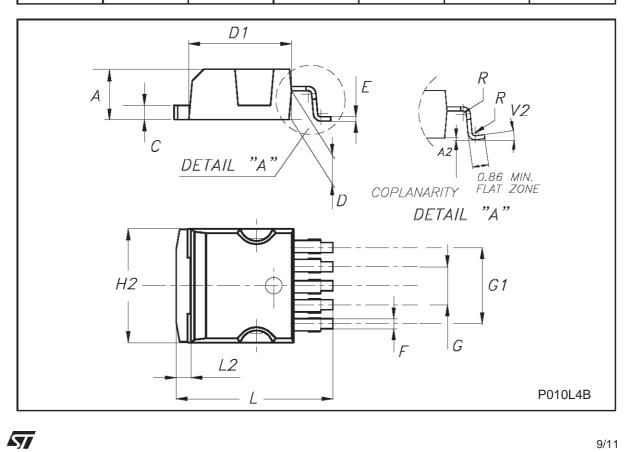
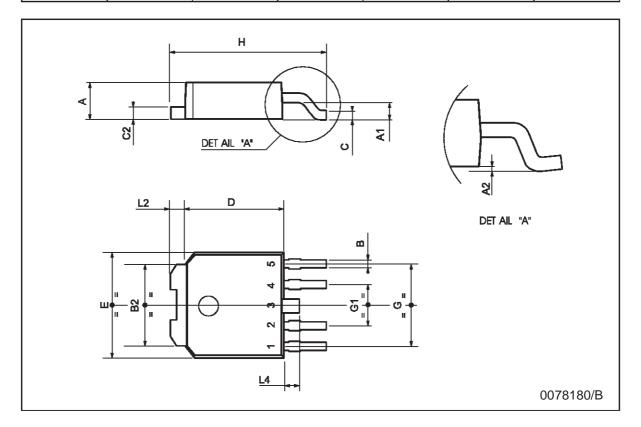


Figure 19 : Load Transient

DIM.	mm			inch			
Biiii.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	4.30		4.80	0.169		0.188	
A2	0.03		0.23	0.001		0.009	
С	1.17		1.37	0.046		0.053	
D	2.40		2.80	0.094		0.110	
D1	8.95		9.35	0.352		0.368	
E	0.35		0.55	0.013		0.021	
F	0.80		1.05	0.031		0.041	
G	3.20		3.60	0.126		0.142	
G1	6.60		7.00	0.260		0.275	
H2			10.40			0.409	
L	13.59		14.39	0.535		0.566	
L2	1.27		1.40	0.05		0.055	
R		0.30					
V2	0 °		8 °				


PENTAWATT SMD (P2PAK) MECHANICAL DATA

9/11

DIM.		mm		inch			
Dini.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	2.2		2.4	0.086		0.094	
A1	0.9		1.1	0.035		0.043	
A2	0.03		0.23	0.001		0.009	
В	0.4		0.6	0.015		0.023	
B2	5.2		5.4	0.204		0.212	
С	0.45		0.6	0.017		0.023	
C2	0.48		0.6	0.019		0.023	
D	6		6.2	0.236		0.244	
E	6.4		6.6	0.252		0.260	
G	4.9		5.25	0.193		0.206	
G1	2.38		2.7	0.093		0.106	
Н	9.35		10.1	0.368		0.397	
L2		0.8	1		0.031	0.039	

57

10/11

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2000 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com

