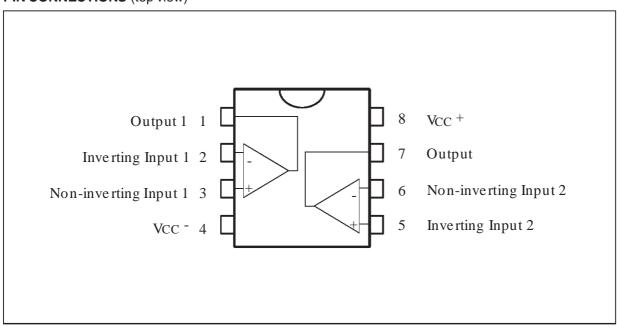


HIGH PERFORMANCE DUAL OPERATIONAL AMPLIFIERS

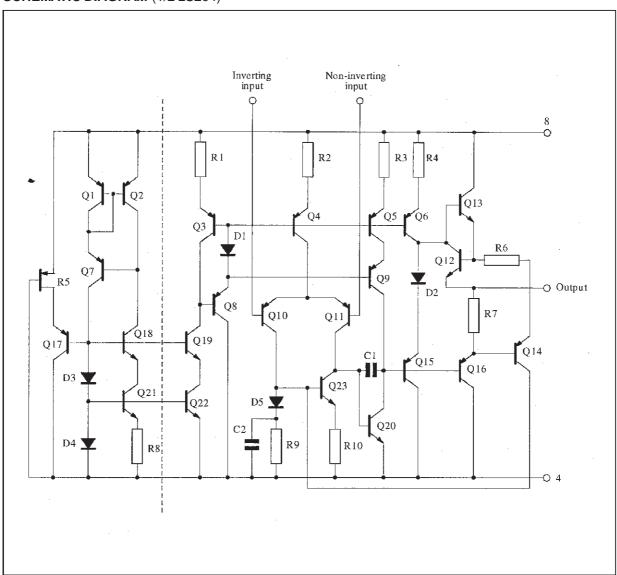
- LOW POWER CONSUMPTION
- SHORT CIRCUIT PROTECTION
- LOW DISTORTION, LOW NOISE
- HIGH GAIN-BANDWIDTH PRODUCT
- HIGH CHANNEL SEPARATION

DESCRIPTION


The LS204 is a high performance dual operational amplifier with frequency and phase compensation built into the chip. The internal phase compensation allows stable operation as voltage follower in spite of its high Gain-Bandwidth Product.

The circuit presents very stable electrical characteristics over the entire supply voltage range, and is particularly intended for professional and telecom applications (active filter, etc).

ORDER CODES


Part Number	Temperature Range	Pacl	kage
I altivalliber	Temperature Name	N	D
LS204C	0, +70°C	•	•
LS204I	-40, +105°C	•	•

PIN CONNECTIONS (top view)

April 1998 1/10

SCHEMATIC DIAGRAM (1/2 LS204)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	±18	V
Vi	Input Voltage	±V _{CC}	
V _{id}	Differential Input Voltage	± (V _{CC} - 1)	
T _{oper}	Operating Temperature Range LS204C LS204I	0 to +70 -40 to +105	°C
P _{tot}	Power Dissipation at T _{amb} = 70°C	500	mW
Tj	Junction Temperature	150	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C

577

ELECTRICAL CHARACTERISTICS ($V_{CC} = \pm 15V$, $T_{amb} = 25^{\circ}C$, unless otherwise specified)

Cumbal	Parameter	Test Conditions		LS204	l	LS204C			Unit
Symbol	Parameter	rest Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Icc	Supply Current			0.7	1.2		0.8	1.5	mA
l _{ib}	Input Bias Current			50	150		100	300	nA
		$T_{min.} < T_{op} < T_{max}$.			300			700	nA
Ri	Input Resistance	f = 1kHz		1			1		ΜΩ
Vio	Input Offset Voltage	$R_s \leq 10k\Omega$		0.5	2.5		0.5	3.5	mV
		$ \begin{array}{l} R_s \leq 10k\Omega \\ T_{min.} < T_{op} < T_{max}. \end{array} $			3.5			5	mV
DV _{io}	Input Offset Voltage Drift	$\begin{array}{l} R_s \leq 10k\Omega \\ T_{min.} < T_{op} < T_{max}. \end{array}$		2			2		μV/°C
I _{io}	Input Offset Current			5	20		12	50	nA
		$T_{\text{min.}} < T_{\text{op}} < T_{\text{max}}.$			40			100	nA
DI _{io}	Input Offset Current Drift	$T_{\text{min.}} < T_{\text{op}} < T_{\text{max}}.$		0.08			0.1		<u>nA</u> ∘C
Ios	Output Short Circuit Current			23			23		mA
A _{vd}	Large Signal Voltage Gain	$ \begin{array}{c} T_{min.} < T_{op} < T_{max}. \\ R_L = 2k\Omega \begin{array}{c} V_{CC} = \pm 15V \\ V_{CC} = \pm 4V \end{array} $	90	100 95		86	100 95		dB
GBP	Gain-Bandwidth Product	f = 100kHz	1.8	3		1.5	2.5		MHz
en	Equivalent Input Noise Voltage	$ f = 1kHz \\ R_s = 50\Omega \\ R_s = 1k\Omega \\ R_s = 10k\Omega $		8 10 18	15		10 12 20		nV √Hz
THD	Total Harmonic Distortion	$A_V = 20 dB R_L = 2k\Omega$ $V_O = 2V_{PP} f = 1kHz$		0.03	0.1		0.03	0.1	%
±V _{opp}	Output Voltage Swing	$R_L = 2k\Omega V_{CC} = \pm 15V \\ V_{CC} = \pm 4V$	±13	±3		±13	±3		V
V _{opp}	Large Signal Voltage Swing	$R_L = 10k\Omega$ f = 10kHz		28			28		V _{PP}
SR	Slew Rate	Unity Gain, $R_L = 2k\Omega$	0.8	1.5			1		V/µs
CMR	Common Mode Rejection Ratio	$\label{eq:Vic} \begin{array}{l} V_{ic} = 10V \\ T_{min.} < T_{op} < T_{max}. \end{array}$	90			86			dB
SVR	Supply Voltage Rejection Ratio	$\label{eq:Vic} \begin{array}{ll} V_{ic} = 1V & f = 100Hz \\ T_{min.} < T_{op} < T_{max}. \end{array}$	90			86			dB
V _{O1} /V _{O2}	Channel Separation	f = 1kHz	100	120			120		dB
		-							

Figure 1: Supply Current versus Supply Voltage

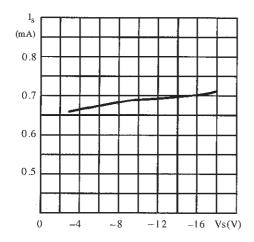


Figure 3: Output Short Circuit Current versus Ambient Temperature

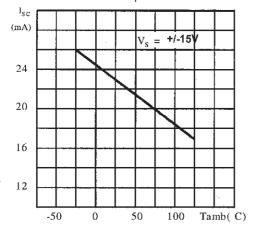


Figure 5 : Output Loop Gain versus Ambient Temperature

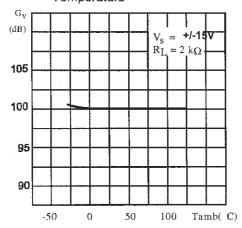


Figure 2: Supply Current versus Ambient Temperature

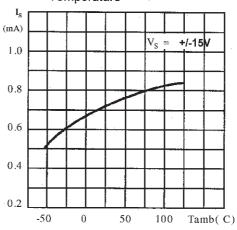


Figure 4: Open Loop Frequency and Phase Response

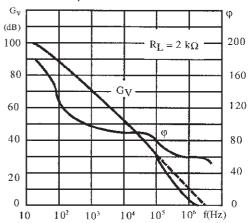


Figure 6: Supply Voltage Rejection versus Frequency

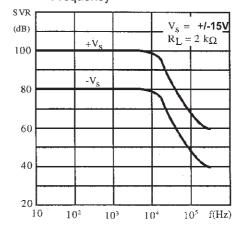


Figure 7: Large Signal Frequency Response

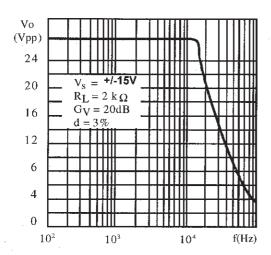


Figure 9: Total Input Noise versus Frequency

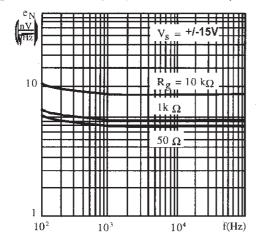


Figure 8 : Output Voltage Swing versus Load Resistance

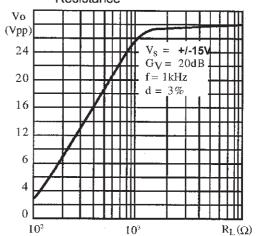


Figure 10: Amplitude Response

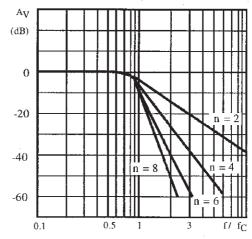
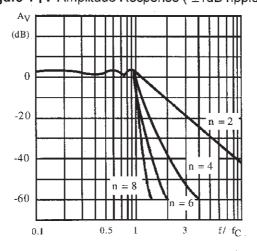



Figure 11: Amplitude Response (±1dB ripple)

APPLICATION INFORMATION : Active low-pass filter

BUTTERWORTH

The Butterworth is a "maximally flat" amplitude response filter (figure 10) Butterworth filters are used for filtering signals in data acquisition systems to prevent aliasing errors in samples-data applications and for general purpose low-pass filtering.

The cut-off frequency F_c , is the frequency at which the amplitude response is down 3dB. The attenuation rate beyond the cutoff frequency is n6 dB per octave of frequency where n is the order (number of poles) of the filter.

Other characteristics:

- Flattest possible amplitude response
- Excellent gain accuracy at low frequency end of passband

BESSEL

The Bessel is a type of "linear phase" filter. Because of their linear phase characteristics, these filters approximate a constant time delay over a limited frequency range. Bessel filters pass transient waveforms with a minimum of distortion. They are also used to provide time delays for low pass filtering of modulated waveforms and as a "running average" type filter.

The maximum phase shift is $\frac{-n\Pi}{2}$ radians where n is the order (number of poles) of the filter. The

cut-off frequency f_c, is defined as the frequency at which the phase shift is one half of this value. For accurate delay, the cut-off frequency should be twice the maximum signal frequency.

The following table can be used to obtain the -3dB frequency of the filter.

	2 Pole	4 Pole	6 Pole	8 Pole
-3dB Frequency	0.77f _c	0.67fc	0.57fc	0.50fc

Other characteristics:

- Selectivity not as great as Chebyschev or Butterworth
- Very little overshoot response to step inputs
- Fast rise time

CHEBYSCHEV

Chebyschev filters have greater selectivity than either Bessel ro Butterworth at the expense of ripple in the passband (figure 11).

Chebyschev filters are normally designed with peak-to-peak ripple values from 0.2dB to 2dB.

Increased ripple in the passband allows increased attenuation above the cut-off frequency.

The cut-off frequency is defined as the frequency at which the amplitude response passes through the specificed maximum ripple band and enters the stop band.

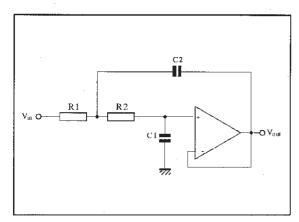
Other characteristics:

- Greater selectivity
- Very non-linear phase response
- High overshoot response to step inputs

The table below shows the typical overshoot and settling time response of the low pass filters to a step input.

	Number of Poles	Peak Overshoot	Settling	Settling Time (% of final v		
	Foles	% Overshoot	±1%	±0.1%	±0.01%	
Butterworth	2	4	1.1F _c sec.	1.7F _c sec.	1.9F _c sec.	
	4	11	1.7/f _c	2.8/f _c	3.8/f _c	
	6	14	2.4/f _c	3.9/f _c	5.0/f _c	
	8	16	3.1/f _c	5.1/f _c	7.1/f _c	
Bessel	2	0.4	0.8/f _c	1.4/f _c	1.7/f _c	
	4	0.8	1.0/f _c	1.8/f _c	2.4/f _c	
	6	0.6	1.3/f _c	2.1/f _c	2.7/f _c	
	8	0.1	1.6/f _c	2.3/f _c	3.2/f _c	
Chebyschev (ripple ±0.25dB)	2	11	1.1/f _c	1.6/f _c	-	
	4	18	3.0/f _c	5.4/f _c	-	
	6	21	5.9/f _c	10.4/f _c	-	
	8	23	8.4/f _c	16.4/f _c	-	
Chebyschev (ripple ±1dB)	2	21	1.6/f _c	2.7/f _c	-	
	4	28	4.8/f _c	8.4/f _c	-	
	6	32	8.2/f _c	16.3/f _c	-	
	8	34	11.6/f _c	24.8/f _c	-	

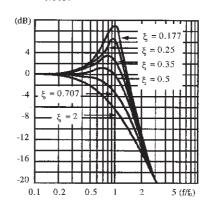
Design of 2nd order active low pass filter (Sallen and Key configuration unity gain-op-amp)


Fixed R = R1 = R2, we have (see fig. 12).

$$C1 = \frac{1}{R} \frac{\xi}{\omega_c}$$

$$C2 = \frac{1}{R} \ \frac{1}{\xi \omega_c}$$

The diagram of fig.14 shows the amplitude response for different values of damping factor ξ in 2nd order filters


Figure 12: Filter Configuration

Three parameters are needed to characterize the frequency and phase response of a 2^{nd} order active filter: the gain (G_v) , the damping factor (ξ) or the Q-factor $(Q = (2 \xi)^1)$, and the cutoff frequency (f_c) .

The higher order responses are obtained with a se-

Figure 13: Filter Respons versus Damping Factor

ries of 2nd order sections. A simple RC section is introduced when an odd filter is required.

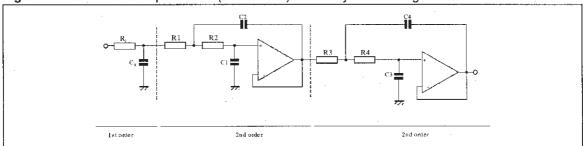

The choice of ' ξ ' (or Q-factor) determines the filter response (see table 1).

Table 1

Filter Response	ξ.	Q	Cutoff Frequency f _c
Bessel	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{1}}{3}$	Frequency at which Phase Shift is -90°C
Butterworth	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	Frequency at which G _V = -3dB
Chebyschev	<u>√2</u> 2	√ <u>1</u> 2	Frequency at which the amplitude response passes through specified max. ripple band and enters the stop band.

EXAMPLE

Figure 14: 5th Order Low-pass Filter (Butterworth) with Unity Gain Configuration

In the circuit of fig. 15, for f_c = 3.4kHz and R_i = R_1 = R_2 = R_3 = R_4 = 10k Ω_i we obtain:

$$\begin{aligned} &C_{i}=\ 1.354.\ \frac{1}{R}.\ \frac{1}{2\Pi f_{C}}=\ 6.33nF\\ &C_{1}=\ 0.421.\ \frac{1}{R}.\ \frac{1}{2\Pi f_{C}}=\ 1.97nF\\ &C_{2}=\ 1.753.\ \frac{1}{R}.\ \frac{1}{2\Pi f_{C}}=\ 8.20nF\\ &C_{3}=\ 0.309.\ \frac{1}{R}.\ \frac{1}{2\Pi f_{C}}=\ 1.45nF\\ &C_{4}=\ 3.325.\ \frac{1}{R}.\ \frac{1}{2\Pi f_{C}}=\ 15.14nF \end{aligned}$$

The attenuation of the filter is 30dB at 6.8kHz and better than 60dB at 15kHz.

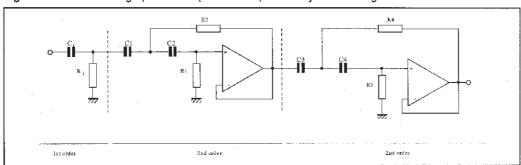
The same method, referring to Tab. 2 and fig. 16, is used to design high-pass filter. In this case the damping factor is found by taking the reciprocal of the numbers in Tab. 2. For f_c = 5kHz and

 $C_1 = C_1 = C_2 = C_3 = C_4 = 1$ nF we obtain:

$$R_i = \frac{1}{0.354} \cdot \frac{1}{C} \cdot \frac{1}{2\Pi f_C} = 25.5 k\Omega$$

$$R_1 = \frac{1}{0.421} \cdot \frac{1}{C} \cdot \frac{1}{2\Pi f_C} = 75.6 k\Omega$$

$$R_2 = \frac{1}{1.753} \cdot \frac{1}{C} \cdot \frac{1}{2\Pi f_C} = 18.2 k\Omega$$


$$R_3 = \, \frac{1}{0.309} \cdot \frac{1}{C} \cdot \frac{1}{2\Pi f_C} = \, 103 k\Omega$$

$$R_4 = \frac{1}{3.325} \cdot \frac{1}{C} \cdot \frac{1}{2\Pi f_C} = 9.6 k\Omega$$

Table 2: Damping Factor for Low-pass Butterworth Filters

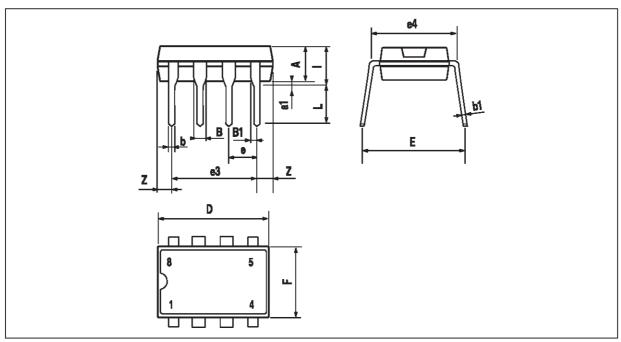

Order	Ci	C ₁	. C ₂	C ₃	C ₄	C ₅	C 6	C ₇	C ₈
2		0.707	1.41						
3	1.392	0.202	3.54						
4		0.92	1.08	0.38	2.61				
5	1.354	0.421	1.75	0.309	3.235				
6		0.966	1.035	0.707	1.414	0.259	3.86		
7	1.336	0.488	1.53	0.623	1.604	0.222	4.49		
8		0.98	1.02	0.83	1.20	0.556	1.80	0.195	5.125

Figure 15: 5th Order High-pass Filter (Butterworth) with Unity Gain Configuration

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC DIP

Dim.		Millimeters		Inches			
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α		3.32			0.131		
a1	0.51			0.020			
В	1.15		1.65	0.045		0.065	
b	0.356		0.55	0.014		0.022	
b1	0.204		0.304	0.008		0.012	
D			10.92			0.430	
E	7.95		9.75	0.313		0.384	
е		2.54			0.100		
e3		7.62			0.300		
e4		7.62			0.300		
F			6.6			0260	
i			5.08			0.200	
L	3.18		3.81	0.125		0.150	
Z			1.52			0.060	

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC MICROPACKAGE (SO)

Dim.		Millimeters			Inches		
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			1.75			0.069	
a1	0.1		0.25	0.004		0.010	
a2			1.65			0.065	
a3	0.65		0.85	0.026		0.033	
b	0.35		0.48	0.014		0.019	
b1	0.19		0.25	0.007		0.010	
С	0.25		0.5	0.010		0.020	
c1			45°	(typ.)			
D	4.8		5.0	0.189		0.197	
Е	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		3.81			0.150		
F	3.8		4.0	0.150		0.157	
L	0.4		1.27	0.016		0.050	
М			0.6			0.024	
S			8° (n	nax.)			

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1998 SGS-THOMSON Microelectronics – Printed in Italy – All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

47/