16-Channel 14-Bit Voltage-Output DAC

Preliminary Technical Data
 AD5517-1/AD5517-2/AD5517-3*

FEATURES

High Integration: $16-$ channel DAC in $12 \times 12 \mathrm{~mm}^{2}$ LFBGA Guaranteed Monotonic
Low Power, SPI ${ }^{\text {TM }}$, MICROWIRE ${ }^{\text {TM }}$ and DSP-Compatible 3-Wire Serial Interface
Output Impedance 0.5Ω
Output Voltage Range
± 2.5 V (AD5517-1)
± 5 V (AD5517-2)
\pm 10V (AD5517-3)
Asynchronous $\overline{\text { RESET }}$ facility
Daisy-Chaining Option
Temperature Range $-40^{\circ} \mathrm{C}$ to $+\mathbf{8 5}^{\circ} \mathrm{C}$
APPLICATIONS
Level Setting
Instrumentation
Automatic Test Equipment
Optical Networks
Industrial Control Systems
Data Acquisition
Low Cost I/O
FUNCTIONAL

GENERAL DESCRIPTION

The AD 5517 is a 16 -channel voltage-output 14-bit DAC. The selected DAC register is written to via the 3-wire serial interface. DAC selection is accomplished via address bits A3-A0. 14 -bit resolution is achieved by fine adjusment in M ode 2. The serial interface operates at clock rates up to 20 M Hz and is compatible with standard SPI, MICROWIRE and DSP interface standards. The output voltage range is fixed at $\pm 2.5 \mathrm{~V}$ (AD 5517-1), $\pm 5 \mathrm{~V}$ (AD 5517-2) and $\pm 10 \mathrm{~V}$ (AD 5517-3). Access to the feedback resistor in each channel is provided via $\mathrm{R}_{\mathrm{FB}} 0$ to $\mathrm{R}_{\mathrm{BF}} 15$ pins.
The device is operated with $\mathrm{AVcc}=5 \mathrm{~V} \pm 5 \%$, $\mathrm{DVcc}=2.7 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4.75 \mathrm{~V}$ to -12 V and $\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}$ to 12 V and requires a stable 2.5 V reference on REF_IN.

PRODUCT HIGHLIGHTS

1. 16 14-bit DACs in one package, guaranteed monotonic.
2. T he AD 5517 is available in a 74 -lead LFBGA package with a body size of 12 mm by 12 mm .
FUNCTIONAL BLOCK DIAGRAM

AD5517-1/AD5517-2/AD5517-3 SPECIFICATIONS

($\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}$ to $12 \mathrm{~V}, \mathrm{~V}_{5 S}=-4.75 \mathrm{~V}$ to $-12 \mathrm{~V} ; \mathrm{AV}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V} ; \mathrm{DV}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.25 \mathrm{~V} ; \mathrm{AGND}=\mathrm{DGND}=\mathrm{DACGND}=0 \mathrm{~V}$; REF_IN = 2.5 V ; All outputs unloaded. All specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {Max }}$ unless otherwise noted.)

Parameter ${ }^{1}$	A Version ${ }^{2}$	Units	Conditions/Comments
DAC DC PERFORM ANCE Resolution Integral N onlinearity (INL) Differential N onlinearity (DNL) Bipolar Zero Error Positive Fullscale E rror Negative F ullscale Error	$\begin{aligned} & 14 \\ & \pm 8 \\ & \pm 1 \\ & \text { TBD } \\ & \text { TBD } \\ & \text { TBD } \end{aligned}$	Bits LSB max LSB max LSB max LSB max LSB max	M odel Operation ± 0.5 LSB typ, M onotonic; M ode2
voltage reference REF_IN N óminal Input Voltage Input Voltage Range ${ }^{3}$ Input Current	$\begin{aligned} & 2.5 \\ & 2.375 / 2.625 \\ & \pm 1 \end{aligned}$	V V min/max $\mu \mathrm{A}$ max	$<1 \mathrm{nA}$ typ
ANALOG OUTPUTS (V ${ }_{\text {OUt }} 0-15$) Output T emperatureC oefficient ${ }^{3,4}$ DC Output Impedance ${ }^{3}$ Output Range ${ }^{5}$ AD 5516-1 AD 5516-2 AD 5516-3 Resistive Load ${ }^{3,6}$ C apacitive Load ${ }^{3,6}$ Short-CircuitCurrent ${ }^{3}$ DC Power-Supply Rejection Ratio ${ }^{3}$ DC Crosstalk ${ }^{3}$	$\begin{aligned} & 10 \\ & 0.5 \\ & \\ & \pm 2.5 \\ & \pm 5 \\ & \pm 10 \\ & 5 \\ & 100 \\ & 10 \\ & -70 \\ & -70 \\ & 120 \end{aligned}$	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ Ω typ V typ V typ V typ $\mathrm{k} \Omega$ min $\mathrm{pF} \max$ $m A$ typ $d B$ typ $d B$ typ $\mu V \max$	$100 \mu \mathrm{~A}$ output load $100 \mu \mathrm{~A}$ output load $100 \mu \mathrm{~A}$ output load $\begin{aligned} & V_{D D}=10 \mathrm{~V} \pm 5 \% \\ & V_{S S}=-10 \mathrm{~V} \pm 5 \% \end{aligned}$
DIGITALINPUTS ${ }^{3}$ Input Current Input Low Voltage Input High Voltage Input H ysteresis (SCLK and $\overline{\mathrm{SYNC}}$) Input C apacitance	± 10 0.8 0.4 2.4 2.0 200 10	$\mu \mathrm{A}$ max \checkmark max \checkmark max V min V min mV typ pF max	$\pm 5 \mu \mathrm{~A}$ typ $\begin{aligned} & D V_{c C}=5 V \pm 5 \% \\ & D V_{c C}=3 V \pm 10 \% \\ & D V_{c C}=5 V \pm 5 \% \\ & D V_{C C}=3 V \pm 10 \% \end{aligned}$
DIGITAL OUTPUTS ($\left.\overline{\text { BUSY, }} \mathrm{D}_{\text {OUT }}\right)^{3}$ Output L ow Voltage, $\mathrm{DV}_{\mathrm{cc}}=5 \mathrm{~V}$ Output High Voltage, $\mathrm{DV}_{\mathrm{CC}}=5 \mathrm{~V}$ Output Low Voltage, $\mathrm{DV}_{\mathrm{cc}}=3 \mathrm{~V}$ Output High Voltage, $D V_{C C}=3 \mathrm{~V}$ High Impedance Leakage Current ($\mathrm{D}_{\text {out }}$ only) High Impedance Output C apacitance (D out only)	$\begin{aligned} & 0.4 \\ & 4.0 \\ & 0.4 \\ & 2.4 \\ & \pm 1 \\ & 15 \end{aligned}$	\checkmark max V min \checkmark max \checkmark min $\mu \mathrm{A}$ max pF typ	Sinking $200 \mu \mathrm{~A}$ Sourcing $200 \mu \mathrm{~A}$ Sinking $200 \mu \mathrm{~A}$ Sourcing $200 \mu \mathrm{~A}$ DCEN $=0$ DCEN $=0$
Power-Supply Voltages $V_{D D}$ V_{SS} $\mathrm{AV}_{\mathrm{CC}}$ DV cc Power-Supply Currents ${ }^{7}$ $I_{\text {DD }}$ $I_{s s}$ $\mathrm{Al}_{c c}$ Dlcc Power Dissipation ${ }^{7}$	$\begin{aligned} & +4.75 /+12 \\ & -4.75 /-12 \\ & +4.75 /+5.25 \\ & +2.7 /+5.25 \\ & \\ & 7.5 \\ & 7.5 \\ & 16.5 \\ & 1.5 \\ & 115 \end{aligned}$	V min/max V min/max V min/max V min/max mA max mA max mA max mA max mW typ	5 mA typ. All channels F ullscale 5 mA typ. All channels F ullscale 13 mA typ 1 mA typ $V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}$

NOTES:

${ }^{1}$ See Terminology
${ }^{2} \mathrm{~A}$ Version: Industrial temperature range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; typical at $+25^{\circ} \mathrm{C}$.
${ }^{3}$ Guaranteed by design and characterization, not production tested.
${ }^{4}$ AD 780 as reference for the AD5517.
${ }^{5}$ O utput range is restricted from $\mathrm{V}_{S S}+2 \mathrm{~V}$ to $\mathrm{V}_{D D}-2 \mathrm{~V}$
${ }^{6}$ Ensure that you do not exceed $\mathrm{Tj}(\max)$. See M aximum ratings.
${ }^{7}$ Outputs U nloaded.
Specifications subject to change without notice
$\left(\mathrm{V}_{D D}=4.75 \mathrm{~V}\right.$ to $12 \mathrm{~V}, \mathrm{~V}_{S S}=-4.75 \mathrm{~V}$ to $-12 \mathrm{~V} ; \mathrm{AV}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V} ; \mathrm{DV}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.25 \mathrm{~V} ; \mathrm{AGND}=\mathrm{DGND}=$ DACGND = OV; REF_IN = 2.5 V ; All outputs unloaded. All specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ unless otherwise noted.)

Parameter ${ }^{1,2}$	A Version ${ }^{3}$	Units	Conditions/ Comments
Output Voltage Settling Time ${ }^{4}$ Slew Rate D igital-to-A nalog G litch Impulse Digital C rosstalk A nalog Crosstalk Digital Feedthrough Output Noise Spectral D ensity @ 1kHz	$\begin{aligned} & \hline 20 \\ & 0.85 \\ & 1 \\ & 5 \\ & 1 \\ & 0.2 \\ & 400 \end{aligned}$	$\mu \mathrm{s}$ max V/us typ nV-s typ nV-s typ nV-s typ nV-s typ $\mathrm{nV} /(\mathrm{Hz})^{1 / 2}$ typ	$100 \mathrm{pF}, 5 \mathrm{k} \Omega$ L oad Full Scale change 1 LSB change around major carry

NOTES:

${ }^{1}$ See T erminology
${ }^{2} G$ uaranteed by design and characterization, not production tested
${ }^{3} \mathrm{~A}$ version: Industrial temperature range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
${ }^{4}$ Timed from the end of a write sequence
Specifications subject to change without notice
Timing Characteristícs $\begin{aligned} & \left(\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V} \text { to } 12 \mathrm{~V}, \mathrm{~V}_{S S}=-4.75 \mathrm{~V} \text { to }-12 \mathrm{~V} ; \mathrm{AV}_{C C}=4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} ; D V_{C C}=2.7 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \text {; }\right. \\ & \mathrm{AGND}=\mathrm{DGND}=\mathrm{DACGND}=0 \mathrm{~V} ;\end{aligned}$ AGND $=$ DGND $=$ DACGND $=0 \mathrm{~V}$; All specifications $\mathrm{T}_{\text {MiN }}$ to $\mathrm{T}_{\text {Max }}$ unless otherwise noted.)

Parameter ${ }^{\mathbf{1 , 2 , 3}}$	Limit at $\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$ (A Version)	Units	Conditions/Comments
fupdatel	50	kHz max	DAC U pdate R ate (M ode 1)
fupdate2	900	kHz max	DAC Update Rate (M ode 2)
$\mathrm{f}_{\text {CLKIN }}$	20	M Hz max	SCLK Frequency
t_{1}	20	$n \mathrm{n}$ min	SCLK High Pulse Width
t_{2}	20	ns min	SCLK Low Pulse Width
t_{3}	10	ns min	SYNC Falling Edge to SCLK Falling Edge Setup Time
t_{4}	5	ns min	$\mathrm{D}_{\text {IN }}$ Setup Time
t_{5}	5	ns min	$\mathrm{D}_{\text {IN }}$ H old T ime
t_{6}	0	ns min	SCLK Falling Edge to $\overline{\text { SYNC }}$ Rising Edge
t_{7}	10	ns min	M inimum $\overline{\text { SYNC }} \mathrm{H}$ igh Time (Stand-Alone M ode)
$\mathrm{t}_{7 \text { M ODE2 }}$	400	$n s$ min	M inimum $\overline{\text { SYNC }} \mathrm{H}$ igh Time (D aisy-C hain M ode)
$\mathrm{t}_{8 \mathrm{MODE1}}$	10	$n s$ min	$\overline{\text { BUSY }}$ R ising Edge to $\overline{\text { SYNC F alling Edge }}$
$\mathrm{t}_{\text {gm Ode2 }}$	200	ns min	18th SCLK F alling Edge to $\overline{\text { SYNC }}$ F alling Edge (Stand-Alone M ode)
t_{10}	10	ns min	SYNC Rising Edge to SCLK Rising Edge (Daisy-C hain M ode)
$\mathrm{t}_{11}{ }^{4}$	20	ns max	SCLK Rising Edge to D out Valid (Daisy-Chain M ode)
t_{12}	20	ns min	RESET Pulse Width

NOTES

${ }^{1}$ See Timing Diagrams in Figures 1 and 2.
${ }^{2}$ Guaranteed by design and characterization, not production tested.
${ }^{3}$ All input signals are specified with $\mathrm{tr}=\mathrm{tf}=5 \mathrm{~ns}\left(10 \%\right.$ to 90% of $\left.\mathrm{D} \mathrm{V}_{\mathrm{CC}}\right)$ and timed from a voltage level of $\left(\mathrm{V}_{\mathrm{IL}}+\mathrm{V}_{\text {IH }}\right) / 2$
${ }^{4}$ T his is measured with the load circuit of F igure 3.

SERIAL INTERFACE TIMING DIAGRAMS

Figure 1. Serial Interface Timing Diagram

Figure 2. Daisy-Chaining Timing Diagram

Figure 3. Load Circuit for Dout Timing Specifications

ABSOLUTE MAXIMUM RATINGS*

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted) $V_{D D}$ to AGND	
$V_{S S}$ to AGND	V
$A V_{C C}$ to AGND, DACGND	-0.3 V to +7 V
DV	-0.3V to +7 V
Digital Inputs to DGND.	..-0.3 V to $\mathrm{DV}_{C C}+0.3 \mathrm{~V}$
Digital Outputs to DGND.	...-0.3 V to $\mathrm{DV}_{C C}+0.3 \mathrm{~V}$
REF_IN to AGND, DACGND-0.3 V to +7 V
$V_{\text {OUT }} 0-15$ to AGND	$\mathrm{V}_{\text {SS }}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
AGND to DGN	-0.3 V to + 0.3V

ORDERING GUIDE

Model	Function	Output VoltageSpan	Package Option
AD 5517ABC-1	16 DACs	$\pm 2.5 \mathrm{~V}$	74-lead LFBGA
AD 5517ABC-2	16 DAC s	$\pm 5 \mathrm{~V}$	74 -lead LFBGA
AD 5517ABC-3	16 DACs	$\pm 10 \mathrm{~V}$	74 -lead LFBGA

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD 5517 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION

AD5517 74 - lead LFBGA B all Configuration

LFBGA Number	Ball Name	LFBGA Number	Ball Name	LFBGA Number	Ball Name
A1	N/C	C 10	AVCC 1	J10	RF B12
A2	N/C	C11	N/C	J11	RFB11
A3	RESET	D 1	RFB0	K 1	RFB4
A4	$\overline{\text { BUSY }}$	D 2	DACGND	K 2	VOUT 5
A5	DGND	D10	AVCC2	K 3	RFB5
A6	DVCC	D 11	N/C	K 4	N/C
A7	DOUT	E1	VOUT 1	K 5	VSS2
A8	DIN	E2	N/C	K 6	VSS1
A9	$\overline{\text { SYNC }}$	E10	AGND 1	K 7	VOUT 10
A10	N/C	E11	PD	K 8	VOUT9
A11	N/C	F1	VOUT2	K 9	RFB10
B1	N/C	F2	RFB1	K10	RFB9
B2	N/C	F10	AGND 2	K11	VOUT 11
B3	N/C	F11	RFB14	L1	N/C
B4	DCEN	G 1	RFB2	L2	VOUT 6
B5	DGND	G 2	RF B15	L3	RFB6
B6	DGND	G 10	VOUT 14	L4	VOUT 7
B7	N/C	G 11	RFB13	L5	N/C
B8	N/C	H 1	VOUT3	L6	VDD 2
B9	SCLK	H2	VOUT 15	L 7	VDD 1
B10	N/C	H 10	VOUT 13	L8	RFB7
B11	REF IN	H 11	VOUT 12	L9	VOUT 8
C1	VOUTTO	J1	RFB3	L10	RFB8
C2	DACGND	J2	VOUT4	L11	N/C
C6	N/C	J6	N/C		

PIN FUNCTION DESCRIPTION

Pin	Function
AGND(1-2)	Analog GND pins.
$A V_{C C}$ (1-2)	Analog supply pins. Voltage range from 4.75 V to 5.25 V .
$V_{\text {D }}(1-2)$	$\mathrm{V}_{\text {D }}$ supply pins. Voltage range from 4.75 V to 12 V .
$V_{\text {SS }}$ (1-2)	$\mathrm{V}_{\text {SS }}$ supply pins. Voltage range from -4.75 V to -12 V .
DGND	Digital GND pins.
$\begin{aligned} & \text { DV }{ }_{C C} \\ & \text { DACGND } \end{aligned}$	Digital supply pins. Voltage range from 2.7 V to 5.25 V . Reference GND supply for all 16 DACs.
REF_IN	Reference input voltage for all 16 DACs .
$\mathrm{V}_{\text {OUT }}{ }^{\text {- }}$ (0-15)	Analog output voltages from the 16 DAC channels.
$\mathrm{R}_{\mathrm{FB}}(0-15)$	F eedback Resistors. Access to the inverting inputs of the 16 output amplifiers allows remote sensing in force/sense applications. F or nominal output voltage range connect each $R_{F B}$ to it's corresponding $\mathrm{V}_{\text {OUT }}$.
$\overline{\text { SYNC }}$	Active L ow Input. This is the Frame Synchronisation signal for the serial interface. While $\overline{\text { SYNC }}$ is low, data is transferred in on the falling edge of SCLK.
SCLK	Serial Clock Input. Data is clocked into the shift register on the falling edge of SCLK. This operates at clock speeds up to 20 MHz .
$\mathrm{D}_{\text {IN }}$	Serial D ata Input. D ata must be valid on the falling edge of SCLK.
D OUT	Serial D ata Output. $D_{\text {out }}$ can be used for daisy-chaining a number of devices together or for reading back the data in the shift register for diagnostic purposes. D ata is clocked out on D out on the rising edge of SCLK and is valid on the falling edge of SCLK.
DCEN ${ }^{1}$	Active High C ontrol Input. This pin is tied high to enable D aisy-C hain M ode.
$\overline{\text { RESET }}^{2}$	Active Low C ontrol Input. This resets all DAC registers to their mid-scale value.
PD	Active High Control Input. All DAC s go into power-down mode when this pin is high. The DAC outputs go into a high-impedance state and the power dissipation drops to TBD.
$\overline{\text { BUSY }}$	Active Low Output. This signal tells the user that the analog calibration loop is active. It goes low during conversion. The duration of the pulse on $\overline{B U S Y}$ determines the maximum DAC update rate, fupdate.

NOTES:

${ }^{1}$ Internal Pull-down device on this logic input. Therfore it can be left floating and will default to a logic low condition.
${ }^{2}$ Internal Pull-up device on this logic input. Therfore it can be left floating and will default to a logic high condition.

TERMINOLOGY

Integral Nonlinearity (INL)

This is a measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is expressed in LSBs.

Differential Nonlinearity (DNL)

Differential Nonlinearity (DNL) is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified DNL of ± 1 LSB maximum ensures monotonicity.

Bipolar Zero Error

Bipolar zero error is the deviation of the DAC output from the ideal midscale of 0 V . It is measured with $10 \ldots 00$ loaded to the DAC. It is expressed in LSBs.

Positive Full-Scale E rror

This is the error in the DAC output voltage with all 1 s loaded to the DAC. Ideally the DAC output voltage, with all 1 s loaded to the DAC registers, should be REF IN (AD 5517-1), 2 REF_IN (AD5517-2) and 4 REF_IN (AD 5517-3). It is expressed in LSBs.

NegativeFull-Scale Error

This is the error in the DAC output voltage with all Os loaded to the DAC. Ideally the DAC output voltage, with all Os loaded to the DAC registers, should be-REF IN (AD 55171), -2 REF_IN (AD 5517-2) and -4 REF_IN (AD 5517-3). It is expressed in LSBs.

Output TemperatureCoefficient

This is a measure of the change in analog output with changes in temperature. It is expressed in $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

DC Power-Supply Rejection Ratio

DC Power-Supply Rejection Ratio (PSRR) is a measure of the change in analog output for a change in supply voltage (V_{DD} and $\mathrm{V}_{S S}$). It is expressed in dBs . V_{DD} and V_{SS} are varied $\pm 5 \%$.

DC Crosstalk

This the DC change in the output level of one DAC at midscale in response to a full-scale code change (all Os to all 1s and vice versa) and output change of another DAC. It is expressed in $\mu \mathrm{V}$.

Output Settling Time

This is the time taken from when the last data bit is clocked into the DAC until the output has settled to within $\pm 0.5 \mathrm{LSB}$ of it's final value.

Digital-to-Analog Glitch Impulse

This is the area of the glitch injected into the analog output when the code in the DAC register changes state. It is specified as the area of the glitch in nV -secs when the digital code is changed by 1 LSB at the major carry transition ($011 . . .11$ to $100 . . .00$ or $100 . . .00$ to $011 . . .11$).

Digital Crosstalk

This is the glitch impulse transferred to the output of one DAC at mid-scale while a full-scale code change (all 1 s to all Os and vice versa) is being written to another DAC. It is expressed in nV-secs.

Analog Crosstalk

This the area of the glitch transferred to the output ($\mathrm{V}_{\text {OUT }}$) of one DAC due to a full-scale change in the output ($\mathrm{V}_{\text {OUT }}$) of another DAC. The area of the glitch is expressed in nV-secs.

Digital Feeedthrough

This is a measure of the impulse injected into the analog outputs from the digital control inputs when the part is not being written to, i.e. $\overline{\text { SYNC }}$ is high. It is specified in nV -secs and is measured with a worst-case change on the digital input pins, e.g. from all 0 s to all 1 s and vice versa.

Output Noise Spectral Density

This is a measure of internally generated random noise. R andom noise is characterized as a spectral density (voltage per root Hertz). It is measured in $\mathrm{nV} /(\mathrm{Hz})^{1 / 2}$.

TPC 1. Typical DNL plot

TPC 4. Bipolar Zero Error and Fullscale Error vs. Temperature

TPC 7. Full-Scale Settling Time

TPC 2. Typical INL plot

TPC 5. V ${ }_{\text {OUT }}$ vs. Temperature

TPC 8. Exiting Powerdown to Fullscale

TPC 3. INL Error and DNL Error vs. Temperature

TPC 6. Vout Source and Sink Capability

TPC 9. Major Code Transition Glitch Impulse

FUNCTIONAL DESCRIPTION

The AD 5517 consists of 16 14-bit DACs in a single package. A single reference input pin (REF IN) is used to provide a 2.5 V reference for all 16 DAC s. T o update a DAC's output voltage an 18-bit word is written to the part via the 3 -wire serial interface. This 18 -bit word consists of 2 mode bits, 4 address bits and 12 data bits as shown in Figure 4. Once the serial write is complete the selected DAC converts the code. The output amplifiers translate the $0-2.5 \mathrm{~V}$ DAC output range to give $\mathrm{a} \pm 5 \mathrm{~V}$ range at the output pins $\mathrm{V}_{\text {OUT }} 0$ to $\mathrm{V}_{\text {OUT }} 15$.

SERIAL INTERFACE

DCEN (D aisy-C hain Enable) determines whether the serial interface is in D aisy-C hain M ode or Stand-Alone M ode. In both modes SYNC is an edge-triggered input that acts as a frame synchronization signal and chip enable. D ata can only be transferred into the device while SYNC is low. T o start the serial data transfer, $\overline{\text { SYNC }}$ should be taken low observing the minimum $\overline{\text { SYNC }}$ falling to SCLK falling edge setup time, t_{3}.

Stand-Alone Mode (DCEN = 0)

After $\overline{\text { SYNC }}$ goes low, serial data will be shifted into the device's input shift register on the falling edges of SCLK for 18 clock pulses. After the falling edge of the 18th SCLK pulse, data will automatically be transferred from the input shift register to the addressed DAC. $\overline{\text { BUSY }}$ goes low indicating that conversion has started. All SCLK pulses will be ignored while $\overline{B U S Y}$ is low. At the end of a conversion BUSY goes high indicating that the update of the addressed DAC is complete. It is recommended that SCLK is not pulsed while $\overline{\text { BUSY }}$ is low. See the timing diagram in Figure 1.
$\overline{\text { SYNC }}$ must be taken high and low again for further serial data transfer. SYNC may be taken high after the falling edge of the 18th SCLK pulse, observing the minimum SCLK falling edge to $\overline{\text { SYNC }}$ rising edge time, t_{6}. If $\overline{\mathrm{SYNC}}$ is taken high before the 18th falling edge of SCLK, the data transfer will be aborted and the addressed DAC will not be updated.

Daisy-Chain Mode (DCEN = 1)

In D aisy-C hain M ode the internal gating on SCLK is disabled. The SCLK is continuously applied to the input shift register when SYNC is low. If more than 18 clock pulses are applied, the data ripples out of the shift register and appears on the $D_{\text {OUT }}$ line. This data is clocked out on the rising edge of SCLK and is valid on the falling edge. By connecting this line to the $D_{\text {IN }}$ input on the next device in the chain, a multi-device interface is constructed. 18 clock pulses are required for each device in the system. Therefore, the total number of clock cycles must equal 18 N where N is the total number of devices in the chain. See the timing diagram in Figure 2.
When the serial transfer to all devices is complete, $\overline{\text { SYNC }}$ should be taken high. T his prevents any further data being clocked into the input shift register. A burst clock containing the exact number of clock cycles may be used and SYNC taken high some time later. After the rising edge of $\overline{\text { SYNC }}$, data is automatically transferred from each device's input shift register to the addressed DAC. $\overline{\text { BUSY }}$ goes low indicating that conversion has started. All SCLK pulses will be ignored while $\overline{\text { BUSY }}$ is low. At the end of a conversion $\overline{\text { BUSY }}$ goes high indicating that the update of the addressed DAC s is complete. It is recommended that SCLK is not pulsed while $\overline{\text { BUSY }}$ is low.

MSB LSB																	
0	0	A3	A2	A1	A 0	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
\leftarrow Mode $\rightarrow \leftarrow$ Address $\longrightarrow \longleftarrow$ Data \longrightarrow																	
Bits		Bits									Bits						

Figure 4. Mode1 data format

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).
74-Lead LFBGA
(BC-74)

