CMOS, 2.5Ω Low Voltage, Triple/Quad SPDT Switches in Chip Scale

Preliminary Technical Data

FEATURES

+1.8 V to +5.5 V Single Supply H-3V Dual Supply
2.5Ω On Resistance
0.5Ω On Resistance Flatness
100pA Leakage Currents
19ns Switching Times
Triple SPDT : ADG786
Quad SPDT : ADG788
Small Chip Scale Package Low Power Consumption
TTL/CMOS Compatible Inputs

APPLICATIONS

Data Acquisition Systems

Communication Systems

Relay replacement

Audio and Video Switching
Battery Powered Systems

GENERAL DESCRIPTION

The ADG 786 and ADG 788 are low voltage, CM OS devices comprising three independently selectable SPDT (single pole, double throw) switches and four independently selectable SPDT switches respectively.
Low power consumption and operating supply range of +1.8 V to +5.5 V and dual $+/-3 \mathrm{~V}$ make the $\operatorname{ADG} 786$ and ADG788 ideal for battery powered, portable instruments. All channels exhibit break before make switching action preventing momentary shorting when switching channels. An $\overline{\mathrm{EN}}$ input on the ADG786 is used to enable or disable the device. When disabled, all channels are switched OFF.
These multiplexers are designed on an enhanced submicron process that provides low power dissipation yet gives high switching speed, very low on resistance, high signal bandwidths and low leakage currents. On resistance is in the region of a few Ohms, is closely matched between switches and very flat over the full signal range. These parts can operate equally well in either direction and have an input signal range which extends to the supplies.
The ADG786 and ADG788 are available in small Chip Scale packages.

REV. PrC J an. 2001

[^0]
FUNCTIONAL BLOCK DIAGRAMS

PRODUCT HIGHLIGHTS

1. Single/Dual Supply Operation. The ADG 786 and ADG788 are fully specified and guaranteed with +3 V and +5 V single supply and $+/-3 \mathrm{~V}$ dual supply rails.
2. Low On Resistance (2.5 Ω typical).
3. Low Power Consumption ($<0.01 \mu \mathrm{~W}$).
4. Guaranteed Break-Before-M ake Switching Action.
5. Available in Chip Scale Package (CSP).

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/ 329-4700
Fax: 781/326-8703
World Wide Web Site: http://www.analog.com
Analog Devices, Inc., 2001

ADG786/ADG788-SPECIFCATONŚ․ $\mathrm{V}_{D D}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted)

Parameter	B Version		Units	Test Conditions/Comments
	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH				
Analog Signal Range On-Resistance ($\mathrm{Ron}_{\mathrm{on}}$)		0 V to V_{DD}		
	2.5		Ω typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA}$;
	4.5	5.0	Ω max	T est Circuit 1
On-Resistance M atch Between Channels ($\Delta \mathrm{R}_{\text {on }}$) On-Resistance Flatness ($\mathrm{R}_{\mathrm{FLAT}(\mathrm{ON})}$)		0.1	Ω typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA}$
		0.4	$\Omega \max$	
	0.5		Ω typ	$\mathrm{V}_{S}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA}$
		1.2	Ω max	
LEAKAGE CURRENTS Source OFF Leakage IS (OFF)				$V_{D D}=5.5 \mathrm{~V}$
	± 0.01		nA typ	$\mathrm{V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V} \text {; }$
	± 10	± 20	$n A \max$	T est Circuit 2
Channel ON Leakage $I_{D}, I_{S}(O N$)	± 0.01		nA typ	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V}$, or 4.5 V ;
	± 10	± 20	nA max	T est Circuit 3
DIGITAL INPUTS				
Input High Voltage, $\mathrm{V}_{\text {INH }}$		2.4	V min	
Input Low Voltage, VInL		0.8	\checkmark max	
Input Current	0.005		$\mu \mathrm{A}$ typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$		± 0.1	$\mu \mathrm{A} \max$	$V_{\text {IN }}=V_{\text {INL }}$ or $V_{\text {INH }}$
$\mathrm{C}_{\text {IN }}$, Digital Input Capacitance	4		pF typ	
DYNAMIC CHARACTERISTICS ${ }^{2}$				
t_{N}	19		ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$;
		34	ns max	$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$, T est Circuit 4
$\mathrm{t}_{\text {OFF }}$	7		ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$;
		12	ns max	$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$, T est Circuit 4
ADG786 $\mathrm{t}_{\text {ON }}(\mathrm{EN})$	20		ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
		40	ns max	$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$, Test Circuit 5
	7		ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$;
		12	ns max	$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$, T est Circuit 5
Break-Before-M ake T ime Delay, t_{D}	13		ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$;
		1	ns min	$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$, T est Circuit 6
Charge Injection	± 3		pC typ	$\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ;$ Test Circuit 7
Off Isolation	-62		dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$;
	-82		dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$ Test Circuit 8
Channel to Channel Crosstalk	-62		dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$;
	-82		dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; } \\ & \text { Test Circuit } 9 \end{aligned}$
-3 dB Bandwidth	200		M Hz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, T est C ircuit 8
C_{5} (OFF)	11		pF typ	
$C_{D}, C_{S}(O N)$	34		pF typ	
POWER REQUIREMENTS				$\mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}$
$I_{\text {D }}$	0.001	1.0	$\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$	Digital Inputs $=0 \mathrm{~V}$ or +5.5 V

NOTES
${ }^{1} \mathrm{~T}$ emperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2} G$ uaranteed by design, not subject to production test.
Specifications subject to change without notice.

Parameter	$\begin{array}{r} B \\ +25^{\circ} \mathrm{C} \end{array}$	on $\begin{aligned} & -40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	Units	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On-Resistance (R_{on}) On-Resistance Match Between Channels ($\Delta \mathrm{R}_{\text {ON }}$) On-Resistance Flatness ($\mathrm{R}_{\mathrm{FLAT}(\mathrm{ON})}$)	$\begin{aligned} & 6 \\ & 11 \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{D D} \\ & 12 \\ & 0.1 \\ & 0.5 \\ & 3 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ	$\begin{aligned} & \mathrm{V}_{S}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} ; \\ & \mathrm{T} \text { est } \mathrm{C} \text { ircuit } 1 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{S}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Channel ON Leakage $I_{D}, I_{S}(O N)$	$\begin{aligned} & \pm 0.01 \\ & \pm 10 \\ & \pm 0.01 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 20 \\ & \pm 20 \end{aligned}$	nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{D D}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{S}=3 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{D}=1 \mathrm{~V} / 3 \mathrm{~V} \text {; } \\ & \text { Test Circuit } 2 \\ & \mathrm{~V}_{S}=\mathrm{V}_{\mathrm{D}}=+1 \mathrm{~V} \text { or }+3 \mathrm{~V} \text {; } \\ & \text { Test Circuit } 3 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current I INL or $\mathrm{I}_{\text {INH }}$ $\mathrm{C}_{\text {IN }}$, Digital Input Capacitance	0.005 4	$\begin{array}{r} 2.0 \\ 0.4 \\ \\ \pm 0.1 \end{array}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ t_{on} $\mathrm{t}_{\text {OFF }}$ ADG786 $\quad \mathrm{t}_{\mathrm{ON}}(\mathrm{EN})$ $\mathrm{t}_{\mathrm{OFF}}(\mathrm{EN})$ Break-Before-M ake Time Delay, t_{D} Charge Injection Off Isolation Channel to Channel Crosstalk $\begin{aligned} & -3 \mathrm{~dB} \text { Bandwidth } \\ & \mathrm{C}_{5}(\mathrm{OFF}) \\ & \mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON}) \end{aligned}$	$\begin{aligned} & 28 \\ & 9 \\ & 29 \\ & 9 \\ & 22 \\ & 22 \\ & \pm 3 \\ & -62 \\ & -82 \\ & -62 \\ & -82 \\ & 200 \\ & 20 \\ & 11 \end{aligned}$	55 16 60 16 1	ns typ ns max ns typ ns max ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ dB typ dB typ M Hz typ pF typ pF typ	$R_{L}=300 \Omega, C_{L}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$, T est Circuit 4 $R_{L}=300 \Omega, C_{L}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$, T est Circuit 4 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$, T est Circuit 5 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$, T est Circuit 5 $R_{L}=300 \Omega, C_{L}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$, T est C ircuit 6 $\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; Test Circuit 7 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$ $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$ Test Circuit 8 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$ $R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; Test Circuit 9 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, T est Circuit 8
POWER REQUIREMENTS $I_{D D}$	0.001	1.0	$\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or }+3.3 \mathrm{~V} \end{aligned}$

[^1]Dual Supply ${ }_{\left(\mathrm{V}_{D D}=+3 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{5 S}=-3 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V} \text {, unless otherwise noted) }\right)}$

NOTES

${ }^{1}$ T emperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ G uaranteed by design, not subject to production test.
Specifications subject to change without notice.

Preliminary Technical Data

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)
$V_{D D}$ to $V_{S S}$

$$
+7 \mathrm{~V}
$$

$V_{D D}$ to GND
$V_{\text {SS }}$ to GND
Analog Inputs ${ }^{2}$
Digital Inputs ${ }^{2}$
$\mathrm{V}_{\text {ss }}-03 \mathrm{~V}$ to V
30 mA , Whichever Occurs First
-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or
30 mA , Whichever Occurs First
Peak Current, S or D 100 mA
(Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty Cycle max)
Continuous Current, S or D
30 mA
Operating Temperature Range
Industrial (B Version)
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD G 786/AD G 788 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD G 786BC P	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Chip Scale Package (CSP)	$\mathrm{CP}-20$
AD G 788 BC P	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Chip Scale Package (CSP)	$\mathrm{CP}-20$

PIN CONFIGURATIONS

Exposed Pad tied to Substrate, $V_{S S}$

Table 1 ADG 786 Truth Table

A2	A1	A0	$\overline{\mathrm{E}} \overline{\mathrm{N}}$	ON Switch	
X	X	X	1	N ON E	
0	0	0	0	D 1-S1A, D 2-S2A, D 3-S3A	
0	0	1	0	D 1-S1B, D 2-S2A, D 3-S3A	
0	1	0	0	D 1-S1A, D 2-S2B, D 3-S3A	
0	1	1	0	D 1-S1B, D 2-S2B, D 3-S3A	
1	0	0	0	D 1-S1A, D 2-S2A, D 3-S3B	
1	0	1	0	D 1-S1B, D 2-S2A, D 3-S3B	
1	1	0	0	D 1-S1A, D 2-S2B, D 3-S3B	
1	1	1	0	D 1-S1B, D 2-S2B, D 3-S3B	
X D on't Care					

Table 1. ADG788 Truth Table

Logic	Switch A	Switch B
0	O F F	0 N
1	O N	O F F

TERMINOLOGY

$\mathrm{V}_{\text {D }}$	M ost positive power supply potential.
$\mathrm{V}_{\text {SS }}$	M ost Negative power supply in a dual supply application. In single supply applications, this should be tied to ground close to the device.
$\mathrm{I}_{\text {DD }}$	Positive supply current.
$\mathrm{I}_{\text {S }}$	N egative supply current.
G N D	Ground (0 V) reference.
S	Source terminal. M ay be an input or output.
D	D rain terminal. M ay be an input or output.
IN	Logic control input.
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$	Analog voltage on terminals D, S
$\mathrm{R}_{\text {ON }}$	Ohmic resistance between D and S.
$\Delta \mathrm{R}_{\text {ON }}$	On resistance match between any two channels, i.e. Ron max - Ronmin
R Flat (ON)	Flatness is defined as the difference between the maximum and minimum value of on-resistance as mea sured over the specified analog signal range.
I_{5} (OFF)	Source leakage current with the switch "OFF."
$I_{\text {d }}$ (OFF)	D rain leakage current with the switch "OFF."
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}$ (ON)	Channel leakage current with the switch"ON."
$\mathrm{V}_{\text {INL }}$	M aximum input voltage for logic " 0 ".
$\mathrm{V}_{\text {INH }}$	M inimum input voltage for logic "1".
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$	Input current of the digital input.
C_{5} (OFF)	"OFF" switch source capacitance. M easured with reference to ground.
$C_{D}(0 F F)$	"OFF" switch drain capacitance. M easured with reference to ground.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{5}(\mathrm{ON})$	"ON" switch capacitance. M easured with reference to ground.
$\mathrm{C}_{\text {IN }}$	Digital input capacitance.
$\mathrm{t}_{\text {transition }}$	Delay time measured between the 50% and 90% points of the digital inputs and the switch "ON" condition when switching from one address state to another.
$\mathrm{t}_{\text {ON }}$ (EN)	Delay time between the 50% and 90% points of the EN digital input and the switch "ON" condition.
$\mathrm{t}_{\text {OFF }}(\mathrm{EN})$	Delay time between the 50% and 90% points of the EN digital input and the switch "OFF" condition.
topen	"OFF" time measured between the 80% points of both switches when switching from one address state to another.
C harge	A measure of the glitch impulse transferred from the digital input to the analog outputduring switching.
Injection	
Off Isolation	A measure of unwanted signal coupling through an "OFF" switch.
Crosstalk	A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance.
B andwidth	T he frequency at which the output is attenuated by 3 dBs .
On Response	T he Frequency response of the "ON" switch.
Insertion	The loss due to the ON resistance of the switch.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 1. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for for Single Supply

Figure 4. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, SingleSupply

Figure 7. Leakage Currents as a function of $V_{D}\left(V_{S}\right)$

Figure 2. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Dual Supply

Figure 5. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Dual Supply

Figure 8. Leakage Currents as a function of $V_{D}\left(V_{S}\right)$

Figure 3. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, SingleSupply

Figure 6. Leakage Currents as a function of $V_{D}\left(V_{S}\right)$

Figure 9. Leakage Currents as a function of Temperature

Figure 11. $T_{\text {ON }} / T_{\text {OFF }}$ Times vs. Temperature

Figure 14. Off Isolation vs. Frequency

Figure 12. On Response vs. Frequency

Figure 15. Crosstalk vs. Frequency

Figure 16. Charge Injection vs. Source Voltage

TestCircuits

Test Circuit 1. On Resistance.

Test Circuit 2. I_{S} (OFF).

Test Circuit 3. $I_{D}(O N)$

Test Circuit 4. Switching Times.

Test Circuit 5. Enable Delay, $t_{O N}(E N), t_{\text {OFF }}$ (EN).

Test Circuit 6. Break Before Make Delay, $t_{\text {OPEN }}$.

Test Circuit 7. Charge Injection.

Test Circuit 8. OFF Isolation and Bandwidth.

Test Circuit 9. Channel-to-Channel Crosstalk.

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

[^1]: NOTES
 ${ }^{1} \mathrm{~T}$ emperature ranges are as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2} \mathrm{G}$ uaranteed by design, not subject to production test.
 Specifications subject to change without notice.

