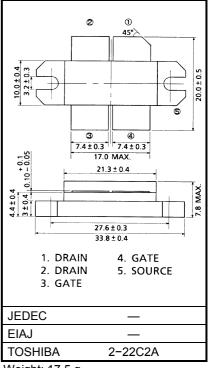
TOSHIBA FIELD EFFECT TRANSISTOR SILICON N CHANNEL MOS TYPE

2SK1310A


RF POWER MOS FET for VHF TV BROADCAST TRANSMITTER

• Push-Pull Structure Package

MAXIMUM RATINGS (Tc = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Drain-Source Voltage	V _{DSS}	100	٧
Gate-Source Voltage	V _{GSS}	±20	V
Drain Current	I _D	12	Α
Reverse Drain Current	I _{DR}	12	Α
Drain Power Dissipation	PD	250	W
Channel Temperature	T _{ch}	150	°C
Storage Temperature Range	T _{stg}	-55~150	°C

Unit in mm

Weight: 17.5 g

000707EAA1

damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

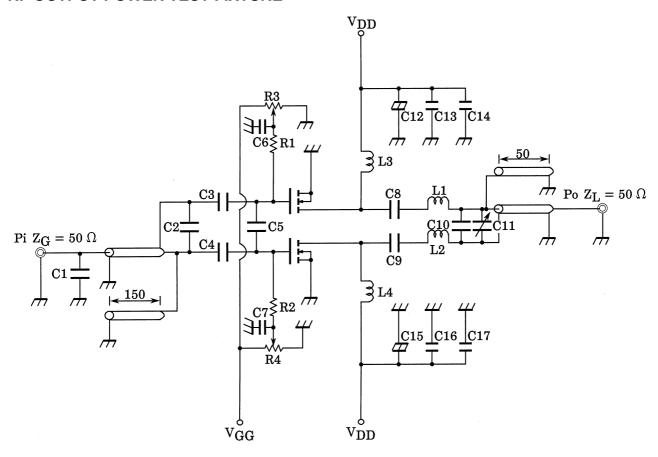
The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal semiconductor services and applications). These TOSHIBA products are

• The information contained herein is subject to change without notice.

[•] TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

[•] The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others


ELECTRICAL CHARACTERISTICS (Tc = 25°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Power	Po	V _{DD} = 50 V, I _{idle} = 0.2 A × 2	190	220	_	W
Drain Efficiency	ηD	Pi = 10 W, f = 230 MHz *	_	65	_	%
Drain-Source Breakdown Voltage	V (BR) DSS	I _D = 10 mA, V _{GS} = 0	100	_	_	V
Drain Cut-off Current	I _{DSS}	V _{DS} = 80 V, V _{GS} = 0	_	_	1.0	mA
Gate Threshold Voltage	V_{th}	I _D = 1 mA, V _{DS} = 10 V	0.5	_	3.0	V
Drain-Source ON Resistance	R _{DS (on)}	I _D = 4 A, V _{GS} = 10 V **	_	0.9	1.5	Ω
Drain-Source ON Voltage	V _{DS (on)}	I _D = 4 A, V _{GS} = 10 V **	_	3.6	6.0	V
Forward Transfer Admittance	Y _{fs}	I _D = 3 A, V _{DS} = 20 V **	0.9	1.3	_	S
Input Capacitance	C _{iss}	V _{DS} = 50 V, V _{GS} = 0, f = 1 MHz	_	100	_	pF
Output Capacitance	C _{oss}	V _{DS} = 50 V, V _{GS} = 0, f = 1 MHz	_	40	_	pF
Reverse Transfer Capacitance	C _{rss}	V _{DS} = 50 V, V _{GS} = 0, f = 1 MHz	_	1	_	pF

^{*:} Push-Pull Operation **: Pulse Test

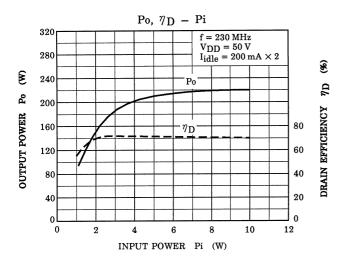
This transistor is the electrostatic sensitive device. Please handle with caution.

RF OUTPUT POWER TEST FIXTURE

C1 : 1pF MICA CAPACITOR C2 : 33 pF \times 3 (PARALLEL) MICA CAPACITOR

C3, C4, C8, C9, C13, C16 : 1000 pF MICA CAPACITOR

C5 : 33 pF MICA CAPACITOR C6, C7 : $0.01\,\mu\text{F}\times2$ (PARALLEL) CERAMIC CAPACITOR


C10 : 14 pF MICA CAPACITOR C11 : \sim 20 pF AIR TRIMMER CAPACITOR C12, C15 : 100 μ F, 100 V ELECTROLYTIC CAPACITOR

C14, C17: 4700 pF CERAMIC CAPACITOR

L1, L2 : 0.5T, 5ID ø1.0 SILVER PLATED COPPER WIRE L3, L4 : 3.0T, 5ID ø1.0 SILVER PLATED COPPER WIRE

R1, R2 : $220 \Omega \times 2$ (PARALLEL)

R3, R4 : $1 \text{ k}\Omega$ VARIABLE RESISTOR

CAUTION

These are only typical curves and devices are not necessarily guaranteed at these curves.