

 1996 Microchip Technology Inc. FACT003-page 1

®

CARE AND FEEDING OF THE PIC16C74
AND ITS PERIPHERALS

By: Robert Angelo

The PIC16C74 is one of the latest mid-range
microcontrollers from Microchip Technology Inc. In this
article we will be addressing a few of the new features and
peripherals of this new part. The main focus will be on the
A/D (Analog-to-Digital) Converter, the SCI-Serial
Communication Interface, and the PWM-Pulse Width
Modulator. Our intention is to give you a small program that
initializes these peripherals as well as exercise them. A
schematic is provided. The PICDEM-2 board from
Microchip will run this program. The second trimpot does
not exist on the PICDEM-2 board, so the second A/D value
may float around. The second trimpot is only used to show
a method of changing A/D input pins. If you are using the
PICDEM-2 board, then the LED and a current limiting
resistor must be connected to the PWM output. When the
program is run, the RS-232 terminal will display two A/D
values. The brightness of an LED is adjusted using pulse
width modulation. The duty cycle is determined by the
trimpot setting.

Assumptions

Although dangerous, sometimes we need to make
assumptions. For this discussion on the PIC16C74, let us
agree that RA0 and RA1 will be connected through a series
resistor to the wipers on two potentiometers with the other
ends connecting across V

DD

 and ground (see schematic).
The oscillator clock will be 4 MHz. First we'll read an A/D
input, send its result out the serial port (to be displayed on
a PC terminal program), and then switch to the next
channel. We will adjust the PWM output pulse width to
match the first potentiometer. Each time we are ready to
begin a new sequence we will first send a pair of sync bytes
to signal the receiving processor. To simplify our discussion,
we will forgo using interrupts and we will do this in a polled
fashion. The watch dog timer is disabled for this program.

To ensure there are no surprises, it is a good idea to
initialize every special function register (SFR) and data
register to some known value prior to use.

A/D Converter Mysteries

The A/D converter and its eight input channels will be our
first topic. Setting up the A/D converter involves two special
function registers:

• ADCON0
• ADCON1

In the program included with this article is a code segment

initad

 that sets up the A/D. ADCON0 is the work horse
register for this peripheral. This register is used to select the
conversion clock frequency and channel. This register is
also where we signal the start of a conversion and detect
the completion of a conversion. ADCON1 has only one
purpose in life for this part, and that is A/D port
configuration. When ADCON1 is used it does not override
the TRISA register controls. The TRISA register must be set
up. Once these registers are set up, all the program has to
do is select the desired pin and set the GO/DONE bit in
ADCON0. The program then waits for the conversion
complete bit, GO/DONE, to be cleared by hardware. Then
the ADRES (A/D conversion result register) register is read.
The value from the first pot's conversion is then used to
adjust the PWM pulse width thereby adjusting the LED
brightness.

FIGURE 1: PWM PULSE WIDTH

Duty Duty

Period Period

This document was created with FrameMaker 4 0 4

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

FACT003-page 2

 1996 Microchip Technology Inc.

®

Pulse Width Modulation (PWM)

The PORTC-1 pin is used as the PWM output. The registers
that need to be set up for this PWM operation are:

• TRISC
• T2CON
• CCPR2L
• PR2
• CCP2CON.

The code

initpwm

 is an example of what might be done
to initialize the PWM module. TRISC was cleared earlier
thus setting PORTC as output. By writing a "4" to the
T2CON register, we will set the prescaler equal to 0 and
select TIMER2 operation. Writing a 0fh to the CCP2CON
register selects PWM mode and standard resolution. The
0fh written to the CCPR2L register sets the high period to a
low value initially. Setting the PR2 register to ffh allows the
CCPR2L value (from the A/D converter result) to approach
a 100% duty cycle. Now we can control the brightness of the
LED attached to this pin by adjusting the pot on pin RA0 and
writing the A/D result to the CCPR2L register as already
described earlier.

SCI

The Serial Communications Interface Module is our RS-232
communications channel. We will configure the SCI as an
asynchronous full duplex serial port. This is done with the
routine at

initsci

 in the program provided. There are a
few fine points to remember relative to this peripheral. The
baud rate is determined by a dedicated eight bit baud rate
generator and can be used to derive standard baud rate
frequencies from the oscillator. Since we are not using
interrupts, there are only five registers to deal with:

• RCSTA - receiver status
• TXSTA - transmitter status
• TXREG - transmit buffer
• RCREG - receive buffer
• SPBRG - to set the baud rate generator

FIGURE 2: SERIAL COMMUNICATIONS
INTERFACE MODULE

First global interrupts are disabled. The

initsci

 code
does the serial port setup and the

sendat

 code handles the
actual sending of the data.

The SCI is setup for 2400 baud, 8 data bits and 1 stop bit
with no parity. A terminal program, such as TERMINAL in
Windows“, set to the same settings can be used to see our
output. If you use the Windows terminal program, then set
the communications parameters to 2400 baud, 8 data bits,
1 stop bit, no parity and hardware handshake.

Tying The Pieces Together

The main loop for getting the process running and restarting
it again is

mloop

. The

adcnvrt

 routine handles port pin
selection and actual conversion control. The

dopwm

 routine
handles updating the PWM duty cycle register CCPR2L.
The routine

sendat

 checks transmit ready status and loads
the transmit buffer when the status reports ready. You will
notice there is no error recovery routine. It is up to the user
to determine.

Here is what the program will do:

Once all peripherals have been initialized two sync bytes
"< >" are sent to the terminal. The A/D conversion results
are then sent and the LED brightness is adjusted to match
the RA0 trimpot setting. To simplify displaying A/D values,
only the highest nibble is used, and thirty is added to put it
into an ASCII range.

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

 1996 Microchip Technology Inc. FACT003-page 3

®

Care and Feeding of PIC16C74 Source Code

Note:

This source code can be downloaded from our BBS from the "PICTIPS" library as filenameC74feed.ZIP.

LIST P=16C74
INCLUDE P16CXX.INC ;new include file that comes with MPASM (on BBS)
Adcnt equ 20h ;a/d converter pin count register
Adcntw equ 21h ;a/d converter pin work register
Temp equ 22h ;temporary data holding register seems we always need one

org 0
goto init ;go to where our code really begins
org 5h ;begin program above interrupt service vector address

init bcf INTCON,7 ;make sure we don't get interrupted
clrf PORTA ;don't rely on anything, set port latches where you want them
clrf PORTB
clrf PORTC
clrf PORTD
clrf PORTE
clrf Adcnt ;clear RAM registers we will be using
clrf Adcntw
clrf Temp
bsf STATUS,RP0 ;switch to page 1 to access trisX registers
clrf TRISB ;set all ports outputs
clrf TRISC ;just for this program to minimize current
clrf TRISD ; and prevent pins from floating
clrf TRISE
movlw 0Bh
movwf TRISA ;set analog inputs as inputs, the rest as outputs
bcf STATUS,RP0 ;

initad movlw 0C1h ;Internal RC A/D clock, input channel 0 , A/D on
movwf ADCON0 ;(user must wait for specified period before sampling)
bsf STATUS,RP0 ;select page 1 of the SFRs
movlw 4
movwf ADCON1 ;setup a/d inputs on RA0, RA1 and RA3 with Vref = Vdd

;we are still in page 1 of the SFRs
initsci movlw 19h ;setup 2400 baud

movwf SPBRG
movlw 20h ;setup for async operations
movwf TXSTA
bcf STATUS,RP0 ;back to page 0 for a moment
movlw 80h ;enable serial port operations and the associated pins
movwf RCSTA
clrf TXREG ;clear our serial port buffers for start up
clrf RCREG

initpwm movlw 4h ;setup T2CON with prescaler = 0 and timer2 on
movwf T2CON
movlw 0fh ;setup capture/compare to PWM mode standard resolution
movwf CCP2CON
movlw 0fh ;set compare register to half for now
movwf CCPR2L
bsf STATUS,RP0 ;select page 1 for the PR2 register
movlw 0ffh
movwf PR2
bcf STATUS,RP0

mloop movlw 0dh ;send a carriage return character
call sendat
movlw 3ch ;begin main loop for data gathering and serial transmission
call sendat ;these are our sync bytes to tell receiving micro a new
movlw 3eh ;sequence is beginning
call sendat
clrf Adcnt ;our first time through select AN0 pin

adloop call adcnvrt ;go do a conversion and send the result
movf Adcnt,0 ;get Adcnt into the W register
xorlw 2 ;(# determines number of AD inputs to scan)
btfss STATUS,2 ;have we sampled all of the pins yet?
goto dopwm ;go adjust the PWM output
goto mloop ;all done go do it again

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

FACT003-page 4

 1996 Microchip Technology Inc.

®

adcnvrt movf Adcnt,0 ;get a/d count value
movwf Adcntw ;put in work register
bcf STATUS,0 ;clear the carry flag for the upcoming rotate operations
rlf Adcntw,1 ;rotate left and leave the number in adcntw
rlf Adcntw,1 ;need to do it three times to put the count in the right
rlf Adcntw,1 ;position to select the next A/D pin
movlw 0C1h ;load the initial ADCON0 value excepting channel select
iorwf Adcntw,0 ;set the pin select bits we want
movwf ADCON0 ;set the new ADCON0 with new channels selected
call wait ;wait about twenty micro seconds
bsf ADCON0,2 ;start conversion
incf Adcnt ;increment pin counter register

adwait btfsc ADCON0,2 ;wait for conversion done
goto adwait ;not done yet
swapf ADRES,0 ;conversion done, swap result nibbles into W register
andlw 0Fh ;mask off the upper nibble to limit number to an ascii range
addlw 30h ;convert to ascii character to make it visible on terminal

sendat bsf STATUS,RP0 ;select page one
btfss TXSTA,1 ;check transmit status ready to send
goto sendat ;if not ready go try again
bcf STATUS,RP0 ;back to page 0
movwf TXREG ;transmit buffer empty send new data
return

dopwm movf ADRES,0 ;get the a/d conversion value
movwf CCPR2L ;put the value into the PWM duty cycle register
goto adloop

wait movlw 08h ;do a wait loop of before using a/d converter
movwf Temp

w1 decfsz Temp
goto w1
return
end ;end of program

FIGURE 3: PIC16C74 DEMO SCHEMATIC

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

