DC/DC Converter Controller Using a PICmicro ${ }^{\circledR}$ Microcontroller

Author: | Hartono Darmawaskita |
| :--- |
| |
| Microchip Technology Inc. |

INTRODUCTION

In many applications, a DC/DC Converter is used to produce a regulated voltage or current, derived from an unregulated power supply, or from a battery. Examples of these applications include battery chargers, electronic air purifiers, emergency exit signs, and distributed power systems.

In some of those applications, a dedicated Switched Mode Power Supply (SMPS) Controller IC is used in conjunction with a microcontroller. In other applications, however, a dedicated SMPS Controller IC may be overkill. An alternative approach is to generate a low cost SMPS function in a smart microcontroller, such as the PIC16C620A. This Application Note shows a method of using the microcontroller to perform simple SMPS control functions.
Two circuits were built for evaluation. One circuit provides a Constant Voltage output, the other a Constant Current output.

DC/DC CONVERTER

There are several popular DC/DC Converter topologies, such as the Boost and Fly-back Converter topologies. The DC/DC Converter used in this example is a Buck (or step down) Converter, which is also a popular topology. In Figure 3, the Buck Converter consists of transistor Q1, diode D1, inductor L1, and capacitor C1. Transistor Q2 is used as a level translator for the PICmicro device PORTB output to turn Q1 on or off.
Application Note AN701 explains how a Buck Converter works. It also provides a general guideline on component selection.

In any type of DC/DC Converter circuit, the power device selections are very important. The key parameters to look for in the transistor Q1 are the switching time and current rating. These two parameters greatly affect the maximum switching frequency of the converter, and also how much current the converter can be designed for. The diode D1 should either be a Schottky, or ultra fast diode, in order to minimize switching losses in the converter. The type of capacitor C1 is also very important to minimize the ripple on the converter output. An electrolytic capacitor with a low ESR (Equivalent Series Resistance) is desirable for capacitor C1.

In some cases, the output ripple of the converter may still be higher than desired, even with the proper inductor and capacitor selections. In this case, an additional inductor and capacitor may be used as a low pass filter at the converter output.
A DC/DC Converter is normally chosen because of its high efficiency in converting the input power to output power. Unlike a linear regulator, the efficiency measure of a DC/DC Converter generally increases as its load increases. A properly designed DC/DC Converter can yield an efficiency measure of greater than 90% at full load. The efficiency of a DC/DC Converter is expressed as the ratio of output power and input power. The following equations can be used to determine efficiency.

$$
\begin{aligned}
& \text { Efficiency }=\text { Pout } / \text { PIN } * 100 \% \\
& o r \\
& \text { Efficiency }=\text { Vout } * \text { IouT } /\left(\text { VIN }^{*} * \text { IIN }\right) * 100 \%
\end{aligned}
$$

The selection of the DC/DC Converter components, in many cases, is a trade-off between cost, performance, and size. In this Application Note, the component selections were made to simply provide a DC/DC Converter that can be used to demonstrate the PIC16C620A capability to perform SMPS controller function. The DC/DC Converter discussed here is not optimized for any particular parameter.

SMPS CONTROLLER FUNCTION

The DC/DC Converter circuit is merely a power processor. It transforms the available input voltage and current into the output voltage and current, based on the command of the SMPS controller. The SMPS controller looks at the converter output, compares the output to a set point, performs a control algorithm and finally, applies the algorithm output to a modulator. The modu-
lator output is then used to drive the DC/DC Converter. Figure 1 shows a simplified block diagram of a complete DC/DC Converter system. In this Application Note, the PIC16C620A is used to implement the SMPS controller function, which includes the following functions: set point generation, error amplifier, control algorithm, and the modulator. These functions are shown inside the dashed box in Figure 1.

FIGURE 1: DC/DC CONVERTER SYSTEM

MODULATOR - PULSE SKIPPING MODULATION (PSM)

One of the simplest modulation techniques used for controlling a DC/DC Converter is Pulse Skipping Modulation (PSM), which is also known as Pulsed Frequency Modulation. In a PSM system, the modulator generates a train of pulses to turn the converter power switch on and off. The pulses have a fixed pulse width, as well as period. As long as the converter output is below the desired target, the PSM pulses continue to run the converter switch. Once the converter output reaches or exceeds the target, the next PSM pulse is skipped. This operation will result in decreasing pulse density as the converter output reaches its target, or as the output loading decreases. When the converter output falls below the target, or as the output loading increases, the PSM pulse density will increase.
The theoretical limit of the maximum output voltage is determined by the input voltage to the DC/DC Converter and the maximum duty cycle of the PSM signal, which is the duty cycle of the PSM signal when it is continuously running (not skipping pulses). This relationship can be expressed as follows:

$$
\text { VoUTMAX }=\text { VIN } * d_{\max }
$$

This formula does not take into account the conduction and switching losses of the converter components. The discussion of non-ideal DC/DC Converter is beyond the scope of this Application Note. However, many papers and text books are available on this subject.
In this application, the PIC16C620A microcontroller performs the modulator function in firmware. This firmware modulator generates the PSM pulses on the RB7 pin (PORTB, bit 7), to drive transistor Q2 of the DC/DC Converter. When the DC/DC Converter output is below the desired value, the firmware continuously sends out PSM pulses to increase the converter output. Once the DC/DC Converter output exceeds the target, the controller will skip the PSM pulses until the output voltage, or current, falls below the threshold and the control cycle repeats.
Timer0 of the microcontroller is used to generate a time base for the firmware modulator. Timer0 is enabled and the TMR0 register is loaded with a reload value. When TimerO overflows, an interrupt occurs. In the interrupt routine, TMRO is again loaded with the reload value. The reload value determines the time base of the PSM signal. In this application, the TMRO reload value is chosen to produce a time base of 50 microseconds when the microcontroller runs from a 16 MHz crystal. Other crystal frequencies may be used; however, the 16 MHz was selected to give plenty of instruction cycles in between Timer0 interrupts, for the firmware execution. When the actual application requirements are well defined, the operating frequency can be adjusted to a lower frequency to save power.

FEEDBACK CIRCUIT

For the SMPS controller to work properly, the DC/DC Converter system must include a feedback circuit. The feedback circuit provides information to the SMPS controller of the converter output.

Feedback Circuit for Constant Voltage DC/DC Converter

The first circuit is a Constant Voltage DC/DC Converter. The feedback requirement for a Constant Voltage control is a voltage proportional to the output voltage. In Figure 3, this feedback circuit consists of R5 and R6. The output of the R5-R6 divider is applied to the AN1 input pin of the C2 comparator in the PIC16C620A. The two resistors simply scale down the output voltage to equal the reference voltage. The formula to calculate R5 and R6 is shown below.

$$
R 6=R 5 * \text { VREF }_{(\text {Vout-VREF })}
$$

The parallel combination value of R5 and R6 should be less than $10 \mathrm{k} \Omega$ to minimize errors due to input leakage current from the AN1 pin.
Some applications require that the feedback voltage can be trimmed to compensate for the VREF variations over process. If this capability is required, then a potentiometer can be added to allow trimming. To get the most accurate results, the adjustment of the trim potentiometer should be performed when the system is running.

Feedback Circuit for Constant Current DC/DC Converter

The second circuit is a Constant Current DC/DC Converter. The feedback requirement for this circuit is a voltage proportional to the output current.
For the Constant Current circuit in Figure 4, the feedback consists of simply R6. The voltage on R6 is then presented to the AN1 input pin of the C2 comparator in the PIC16C620A. Resistor R7 is added to provide ESD protection to the AN1 pin, since the load will be connected to R6 directly. The formula to calculate R6 is:

$$
\begin{aligned}
& R 6=V R E F / \text { Iout } \\
& \text { Power dissipation on } R 6=V R E F * \text { IOUT }
\end{aligned}
$$

For applications where the output current is high, a very small current sense resistor, R6, is required to minimize power dissipation. In this case, an operation amplifier may be required to amplify the small voltage on R 6 to the size of Vref.

AN216

Similar to the Constant Voltage applications, depending on the need, a trimming potentiometer may be required in the Constant Current application as well. Since potentiometers are generally not designed to dissipate power, it is very important to make sure that the potentiometer does not carry the load current, for reliability and control drift minimization reasons.

Output Load Connections for the Constant Current DC/DC Converter

For the circuit shown in Figure 4, the load connections for the Constant Current circuit can not be grounded. If the load is grounded, then the current sense resistor R6 is shorted to ground and the SMPS controller can not sense the load current. If a grounded load is required in the system, the method for current sensing must be modified. The following are possible solutions to allow a ground referenced load:

1. Ground the load and float the PICmicro microcontroller ground.
2. Move the current sense resistor to the output of the DC/DC Converter and use an op-amp to level shift the voltage on R6 to a ground referred signal.

SET POINT AND VOLTAGE CONTROL ALGORITHM

The PIC16C620A has an on-board voltage reference, VREF, and two comparators, C1 and C2 (see Figure 2 for illustration). The Vref module is used to provide a set point to the system. If so desired, the set point voltage can be adjusted via firmware. In this application, the Vref set point is set to VDd/2.
The comparators have several configurations, some of which allow the comparators to compare external voltage(s) to the Vref voltage. The configuration that is used for this application example is shown in Figure 2. To select this configuration, the comparator control register CMCON must be set to $\mathrm{b}^{\prime} 00000010^{\prime}$.

FIGURE 2: PIC16C620A COMPARATOR AND Vref SELECTED CONFIGURATION

Note 1: C1OUT and C2OUT can be read by the firmware in the CMCON Register.

In this application, only the C2 comparator of the PIC16C620A is used to compare the feedback voltage on the AN1 pin to the internal voltage reference Vref. If the DC/DC Converter output is lower than the desired value, then the feedback voltage presented on AN1 is lower than Vref. In this case, the comparator output, C2OUT, is high. If the DC/DC Converter output is higher than the desired value, then the comparator output is low. The firmware uses the comparator output state to determine whether the DC/DC Converter output needs to be increased or not.
The Voltage Control Algorithm performed in firmware becomes very simple:

- If the voltage on AN1 pin is lower than VREF, then produce PSM output pulse
- Else (voltage on AN1 pin is higher than Vref), then skip PSM output pulse
Because the PIC16C620A and the firmware monitors and controls the voltage on the AN1 pin, regardless of whether the voltage is derived from either the Constant

Voltage or Constant Current feedback circuit, this firmware can be used for either the Constant Voltage or Constant Current circuit implementation without any changes.

Integrating the Voltage Control and Modulator

The Voltage Control Algorithm is executed every time Timer0 interrupts. After the firmware reloads TMR0, it checks the comparator output to determine whether the output pulse should be active or not, on the next PSM cycle. Once this decision is made, a flag bit is set or cleared depending on the decision, and the output pulse is turned off. After several microseconds delay, before leaving the interrupt routine, the output pulse is activated again, depending on the status of the flag bit. If the output is set, this pulse will stay active until the next Timer0 interrupt occurs. If the output is clear, then the PSM pulse is skipped until the next Timer0 interrupt occurs, and the control sequence repeats. Figure 5 shows the flowchart of the Firmware SMPS Controller.

FIGURE 3: VOLTAGE SOURCE DC/DC CONVERTER USING PIC16C620A

FIGURE 4: CURRENT SOURCE DC/DC CONVERTER USING PIC16C620A

FIGURE 5: FIRMWARE SMPS CONTROLLER FLOW CHART

WAVEFORMS FROM THE VOLTAGE SOURCE CIRCUIT

To see how the DC/DC Converter circuit works, voltage waveforms of the PSM output on RB7 and the Q1 switch output are captured for 3 different input voltage levels, while the output load is kept constant at 4.2 V , 100 mA . The RB7 PSM output voltage is shown as Channel 1, while the Q1 switch output voltage is shown as Channel 2. The waveforms are captured at the following input voltage levels:

1. $\quad \mathrm{VIN}=8.8 \mathrm{~V}$. See Figure 6.
2. $\quad \mathrm{VIN}=10.8 \mathrm{~V}$. See Figure 7.
3. $\mathrm{VIN}=12.8 \mathrm{~V}$. See Figure 8.

When the RB7 output is high, the Q1 switch turns on. The switch output voltage immediately rises to the input voltage, i.e., 8.8 V on Figure 6. At this time, the inductor current increases. The inductor current is flowing to the capacitor C1 and the DC/DC Converter load. Once the RB7 output goes low, the Q1 switch turns off. The inductor current, however, needs a low impedance path to continue its flow. This causes the switch output voltage to fall until diode D1 turns on. The inductor current now flows through the diode from the system ground. Figure 6 shows that the voltage at the output of the
switch drops to approximately -0.7 V . At this time, the voltage across the inductor reverses its polarity, causing the inductor current to drop. When the inductor current reaches zero, diode D1 turns off, and the voltage on the inductor collapses to zero. This can be seen by the Q1 switch output going from -0.7 V to the DC/DC Converter output voltage.
Note that although the waveform seems repetitive, the frequency is not constant. Once in a while, the distance between pulses changes. This change happens when the Voltage Control Algorithm determines that additional pulses should be skipped for that PSM cycle.
The waveforms on Figure 6, Figure 7 and Figure 8, were taken with the same voltage and time scales. It is obvious from looking at the three plots, as the ratio of VIN/Vout increases, the pulse density on the RB7 pin decreases. At higher input voltages, each switching of the Q1 transistor will deliver higher charge to the DC/ DC Converter output.
For a constant input voltage, the PSM pulse density on the RB7 pin will also vary as a function on the output load. In the Constant Voltage circuit, as the output current decreases, the PSM pulse density on the RB7 pin also decreases.

FIGURE 6: WAVEFORMS OF RB7 AND Q1 SWITCH OUTPUT VOLTAGES, VIN = 8.8 V, VOUT $=4.2 \mathrm{~V}$, IOUT $=100 \mathrm{~mA}$

FIGURE 7: WAVEFORMS OF RB7 AND Q1 SWITCH OUTPUT VOLTAGES, Vin = 10.8 V, Vout $=4.2 \mathrm{~V}$, IOUT $=100 \mathrm{~mA}$

FIGURE 8: WAVEFORMS OF RB7 AND Q1 SWITCH OUTPUT VOLTAGES, VIN = 12.8 V , Vout $=4.2 \mathrm{~V}$, IOUT $=100 \mathrm{~mA}$

BENCH MEASUREMENTS DATA

To quantitatively evaluate performance, each circuit was tested in the lab. Several key parameters relevant to power supply circuits were measured. Those parameters are:

1. Line Regulation: both Constant Voltage and Constant Current circuits.
Line regulation is the amount of change on the output as a function of the input voltage. For the Constant Voltage circuit, the units for line regulation are V/V, while for the Constant Current they are A/V (or mA/V).

Bench Measurement Data of the Constant Voltage DC/DC Converter

The following table is a summary of the Constant Voltage DC/DC Converter performance.
2. Load Regulation: both Constant Voltage and Constant Current circuits.
Load regulation is the amount of change on the output as a function of the load. For the Constant Voltage circuit, the units for load regulation are V/A (or $\mathrm{mV} / \mathrm{mA}$), while for the Constant Current they are A/V (or mA/V).
3. Output Ripple Noise: Constant Voltage only. The output ripple noise is measured in mV rms.
4. Power Conversion Efficiency: Constant Voltage only.
The Efficiency is measured as the ratio of power delivered to the load and power delivered to the DC/DC Converter.

TABLE 1: CONSTANT VOLTAGE DC/DC CONVERTER PERFORMANCE

Parameter	Value	Conditions
Line Regulation	$<3 \mathrm{mV} / \mathrm{V}$	$\mathrm{VIN}=8.8 \mathrm{~V}$ to 14.8 V , VOUT $=4.2 \mathrm{~V}$, $\mathrm{IOUT}=100 \mathrm{~mA}$
	$<5 \mathrm{mV} / \mathrm{V}$	$\mathrm{VIN}=8.8 \mathrm{~V}$ to 14.8 V , VOUT $=4.2 \mathrm{~V}$, $\mathrm{IOUT}=520 \mathrm{~mA}$
Load Regulation	-0.06 mV/mA	$\mathrm{VIN}=8.8 \mathrm{~V}$, Vout $=4.2 \mathrm{~V}$, IOUT $=0 \mathrm{~mA}$ to 100 mA
	-0.04 mV/mA	$\mathrm{VIN}=8.8 \mathrm{~V}$, VOUT $=4.2 \mathrm{~V}$, $\mathrm{IOUT}=100 \mathrm{~mA}$ to 520 mA
Output Ripple	< 5.2 mV rms	$\mathrm{VIN}=8.8 \mathrm{~V}$, VOUT $=4.2 \mathrm{~V}$, IOUT $=0 \mathrm{~mA}$ to 100 mA
	$<12.3 \mathrm{mV} \mathrm{rms}$	$\mathrm{VIN}=8.8 \mathrm{~V}$, VOUT $=4.2 \mathrm{~V}$, $\mathrm{IOUT}=100 \mathrm{~mA}$ to 520 mA
Efficiency	67\%	VIN $=8.8 \mathrm{~V}, \mathrm{VOUT}=4.2 \mathrm{~V}$, IOUT $=100 \mathrm{~mA}$
	72\%	VIN $=8.8 \mathrm{~V}$, VOUT $=4.2 \mathrm{~V}$, IOUT $=520 \mathrm{~mA}$
	45\%	$\mathrm{VIN}=14.8 \mathrm{~V}$, VOUT $=4.2 \mathrm{~V}$, $\mathrm{IOUT}=100 \mathrm{~mA}$
	62\%	$\mathrm{VIN}=14.8 \mathrm{~V}, \mathrm{VOUT}=4.2 \mathrm{~V}$, $\mathrm{IOUT}=520 \mathrm{~mA}$

Bench Measurement Data of the Constant Current DC/DC Converter

The following table is a summary of the Constant Current DC/DC Converter performance. The output ripple current of this circuit was not measured. The Efficiency
parameter was also not measured. The Efficiency measure, however, should be identical to that of the Constant Voltage DC/DC Converter for a given similar input and output condition to the circuit.

TABLE 2: CONSTANT CURRENT DC/DC CONVERTER PERFORMANCE

Parameter	Value	Conditions
Line Regulation	$<0.02 \mathrm{~mA} / \mathrm{V}$	VIN $=7.8 \mathrm{~V}$ to 14.8 V, VoUT $=4.0 \mathrm{~V}$, IOUT $=90 \mathrm{~mA}$
Load Regulation	$-0.26 \mathrm{~mA} / \mathrm{V}$	$\mathrm{VIN}=14.8 \mathrm{~V}$, VoUT $=4 \mathrm{~V}$ to 14.8 V, IoUT $=90 \mathrm{~mA}$
	$-0.52 \mathrm{~mA} / \mathrm{V}$	$\mathrm{VIN}=14.8 \mathrm{~V}$, VOUT $=2 \mathrm{~V}$ to 4 V , IOUT $=90 \mathrm{~mA}$

EXPANDING THE APPLICATION

The use of the PIC16C620A in DC/DC Converter circuits can be expanded to the following applications:

1. Constant Voltage with Current Limit DC/DC Converters.
Since the PIC16C620A has two comparators, one comparator can be used for the voltage feedback, and the other for detecting current limit.
2. Other power converter topologies.

The control methodology can be used for Boost and Fly-back topologies, as well. The feedback circuitry, more than likely, must be modified to include the power switch current sensing.
3. Firmware programmable output voltage or current.
The Vref voltage can be changed in firmware. This capability allows user to change the output voltage or current as needed by the application.
4. The use of other modulation techniques, i.e., Pulse Width Modulation (PWM).
A PWM control can be implemented, instead of the PSM technique used in this example. In addition to Timer0 interrupt, the comparator interrupt is also enabled. In this case, the comparator interrupt determines when to turn off the RB7 output pulse as soon as the control threshold is reached. In this type of PWM control, however, it is possible for the PWM signal to oscillate when the duty cycle is greater than 50%, due to a phenomenon called the Right Half Plane Zero. Under this condition, a slope compensation is required to stabilize the PWM control signal.
The detailed implementations of any of those applications are left as an exercise to the readers' creativity.

CONCLUSION

This Application Note has demonstrated that the PIC16C620A can be used to perform simple SMPS controller functions, such as Constant Voltage, Constant Current, or Constant Voltage with current limit. The program example can be used with any of the PICmicro family members, which has on-board comparators.

REFERENCES

1. PIC16C620A Datasheet, DS30235 revision H or newer
2. AN701: Switch Mode Battery Eliminator Based on a PIC16C72A
Software License Agreement

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the "Company") for its PICmicro® Microcontroller is
intended and supplied to you, the Company's customer, for use solely and exclusively on Microchip PICmicro Microcontroller prod-
ucts.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

APPENDIX A: SOURCE CODE

MPASM 02.30.07 Intermediate DC-DC1.ASM 3-1-2000 14:29:37

[^0]dc-dc1.asm
PAGE to drive the external power converter circuit.
 Hartono Darmawaskita
Microchip Technology, Inc. Microchip Technology, Inc

$02-11-2000$ $\begin{array}{ll}\text {; date: } & 02-11-200 \\ \text {;MPLAB version: } & 4.12 .12\end{array}$
$=========================$
LIST P $=16 \mathrm{C} 620 \mathrm{~A}, \mathrm{~F}=\mathrm{INHX} 8 \mathrm{M}$
$======$
author : $\begin{array}{lllll}n & m & \text { H } & n & 6 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & \circ & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}$ 00007 00008 00009 00010 00012
00013
00014

n	6
-1	
	-
0	
0	
0	0

H Nㅡㅇ
$\begin{array}{ll}n \\ 6 & \\ \vdots & \\ \vdots & 0 \\ 0 & 0 \\ 0 & 0\end{array}$ $\begin{array}{ll} & \infty \\ -1 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$ $\begin{array}{ll}\infty & 0 \\ -1 & - \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$

U	6	\sim	N	\bigcirc	＋	ம		$\stackrel{\sim}{\sim}$
区	区	区	－	v	N	\cdots		∞
－	－	－	－	－	－	－		\sim
－	－	－	－	－	－	－		
－	－	－	－	－	－	－		
－	－	－	－	－	－	－		
－	－	－	－	\bigcirc	－	－	\bigcirc	－
\bigcirc	－							
							－	
							\bigcirc	－

NOTES:

Worldwide Sales and SErvice

AMERICAS

Corporate Office

Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-786-7200 Fax: 480-786-7277
Technical Support: 480-786-7627
Web Address: http://www.microchip.com

Atlanta

Microchip Technology Inc.
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307

Boston

Microchip Technology Inc.
2 LAN Drive, Suite 120
Westford, MA 01886
Tel: 508-480-9990 Fax: 508-480-8575

Chicago

Microchip Technology Inc.
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Microchip Technology Inc.
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924

Dayton

Microchip Technology Inc.
Two Prestige Place, Suite 150
Miamisburg, OH 45342
Tel: 937-291-1654 Fax: 937-291-9175

Detroit

Microchip Technology Inc.
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260

Los Angeles

Microchip Technology Inc
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338

New York

Microchip Technology Inc.
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335

San Jose

Microchip Technology Inc
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

AMERICAS (continued)

Toronto

Microchip Technology Inc.
5925 Airport Road, Suite 200
Mississauga, Ontario L4V 1W1, Canada
Tel: 905-405-6279 Fax: 905-405-6253

ASIA/PACIFIC

China - Beijing

Microchip Technology, Beijing
Unit 915, 6 Chaoyangmen Bei Dajie
Dong Erhuan Road, Dongcheng District
New China Hong Kong Manhattan Building
Beijing, 100027, P.R.C.
Tel: 86-10-85282100 Fax: 86-10-85282104

China - Shanghai

Microchip Technology
Unit B701, Far East International Plaza,
No. 317, Xianxia Road
Shanghai, 200051, P.R.C
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

Hong Kong

Microchip Asia Pacific
Unit 2101, Tower 2
Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2-401-1200 Fax: 852-2-401-3431
India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
I Floor, Wing A (A3/A4)
No. 11, O'Shaugnessey Road
Bangalore, 560 027, India
Tel: 91-80-207-2165 Fax: 91-80-207-2171

Japan

Microchip Technology Intl. Inc.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471-6166 Fax: 81-45-471-6122

Korea

Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea
Tel: 82-2-554-7200 Fax: 82-2-558-5934

ASIA/PACIFIC (continued)

Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
\#07-02 Prime Centre
Singapore, 188980
Tel: 65-334-8870 Fax: 65-334-8850

Taiwan

Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Denmark ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 4544209895 Fax: 4544209910

France

Arizona Microchip Technology SARL
Parc d'Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany

Arizona Microchip Technology GmbH
Gustav-Heinemann-Ring 125
D-81739 München, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy
Arizona Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 441189215858 Fax: 44-118 921-5835

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro ${ }^{\circledR}$ 8-bit MCUs, KEELOQ ${ }^{\circledR}$ code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

[^0]: LINE SOURCE TEXT OC OBJECT CODE
 VALUE

