
 2001 Microchip Technology Inc. Preliminary DS00750A-page 1

AN750

INTRODUCTION

You’ve decided on the Microchip PIC18C452 8-bit
microcontroller. Its ample program memory space of
32 Kbytes, operating speed of 40 MHz, and extensive
set of peripherals and I/Os fit your design perfectly.
Your application is small to medium in volume and so
you choose the PIC18C452 OTP. It is a standard prod-
uct with flexible quantities and short lead times. You
can appreciate an inexpensive solution that allows for
the most recent firmware and yet maintains a rapid time
to market. Your decision has the confidence of being in
familiar territory; at some point in time, you’ve tested
your design by inserting a programmed OTP part. The
big question you now ask yourself is, “How should we
program all those parts we're about to buy?”

Here are your options to program the PIC18C452 OTP:

1. Microchip programs the part with user code
before shipping to customer. This is called
Quick-Turn-Programming (QTP). The cost and
time required for this service is minimal.

2. Program blank parts in the production line using
a programmer and assemble programmed parts
into hardware. This allows more flexibility than
QTP parts in terms of firmware design changes.

3. Implement In-Circuit Serial Programming™
(ICSP™). This allows the customer to assemble
boards with a blank device and program the
microcontroller just before shipping. This
method has a minor impact on hardware design.
To accomplish programming the user code, spe-
cial equipment and software are necessary.

4. Implement self-programming capability. This
involves a two-step programming process. The
first step is to program a bootloader into the
device. This can be accomplished by an
in-house programmer, or by Microchip via QTP.
The board is then assembled with the bootloader
programmed device. Using the bootloader, the
user code is then programmed while in circuit.
Like ICSP, this can occur just before shipping the
final assembly. The bootloader takes up some
program memory space and minimal hardware
must be added, but this method is very simple to
do. No special equipment or software are neces-
sary to program the user code.

This application note describes how to self-program the
PIC18C452 OTP (option 4). It should be noted that not
all microcontrollers have this ability. The PIC18C452
can program itself through a feature that uses special
instructions called Table Reads and Table Writes.

BOOTLOADER OVERVIEW

The bootloader program is at the heart of a
self-programming PIC18C452 application. The func-
tion of the bootloader is to process executable lines of
code from the outside world and then program them
into the memory space from which the CPU fetches
instructions. Figure 1 describes the generic environ-
ment of the bootloader. When the target memory space
is of the EPROM variety, such as in the PIC18C452, the
bootloader will only need to program it once. When the
bootloader completes its task, the microcontroller is
ready to perform its desired function.

FIGURE 1: BOOTLOAD ENVIRONMENT

Author: Tim Rovnak
Microchip Technology Incorporated

HEX FILE

MEMORYBOOTLOADER

PROGRAM

I/O

MODULE

PROGRAM

Self-Programming the PIC18C452 OTP

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

AN750

DS00750A-page 2 Preliminary  2001 Microchip Technology Inc.

SELF-PROGRAMMING
BOOTLOADER DESIGN STRATEGY

The self-programming bootloader should be designed
with as little impact as possible on both the firmware
and hardware sides of the project. This bootloader
routine must be compact and the parts list small and
standard.

The self-programming bootloader is designed with sim-
plicity in mind. The ultimate goal is to provide a reliable
method to program the PIC18C452 with standard
equipment and protocols available to even the smallest
of operations.

Firmware Design

One of the best features a bootloader program can
have is transparency. What this means is the user
should be able to freely develop code for the
PIC18C452, with little concern for the workings of the
bootloader. The only real issues should be the small
decrease in available program memory and the impact

of extra hardware. The designer should not be forced
into rearranging placement of the user code and should
not have to add any special branching within the user
code, just to allow it to run on a bootloader part. The
user code should also be able to expect RESET
defaults once the bootloader finishes execution. This
allows the development of user code to be as clean as
possible.

In order to allow the user code to be developed with
minimal constraints, the bootloader is designed in the
following manner. The bootloader is placed near the
end of program memory. Space for four words (eight
bytes) is left unprogrammed at the very end. A GOTO
statement is placed at the RESET vector, forcing exe-
cution to the start of the bootloader. When the boot-
loader executes self-programming, it takes the user
code RESET vector and programs it into the four empty
spaces at the end. The rest of the code is placed nor-
mally. Table 1 describes what happens to the program
memory map after installing the bootloader and then
programming the user code.

TABLE 1: PROGRAM MEMORY WITH BOOTLOADER AND USER CODE FOR PIC18C452 OTP

0000h RESET Vector RESET Vector -
GOTO BOOTLOADER

RESET Vector -
GOTO BOOTLOADER

0008h High Priority Interrupt High Priority Interrupt High Priority Interrupt - USER

0018h Low Priority Interrupt

Program Memory

Low Priority Interrupt

Program Memory

Low Priority Interrupt - USER

Program Memory - USER

7C5Ch

7FF7h
BOOTLOADER PROGRAM BOOTLOADER PROGRAM

7FF8h

7FFFh

USER RESET VECTOR

Blank Part from Microchip First Program Bootloader Final Program User Code

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

 2001 Microchip Technology Inc. Preliminary DS00750A-page 3

AN750

Hardware Design

The hardware design for the self-programming boot-
loader is based on two criteria:

• Programming power supply
• HEX file transmission method

A 13V power supply (VPP) must be made available to
the circuit at appropriate times for programming. This
can easily be accomplished by switching transistors
controlled by I/O lines on the PIC18C452. The HEX file
must be sent via a simple and reliable communication
medium.

This can be accomplished through one of the interface
modules on the PIC18C452. The choices are I2C™,
SPI™, or USART. The USART was chosen for several
reasons. When configured in Asynchronous Receiver
mode, it can be used as a standard RS-232 port. Hard-
ware flow control is generated on I/O lines RC3 and
RC4 (programmed as RTS and CTS). This is because
it is necessary to pause data transmission while the
PIC18C452 is busy programming. The USART
requires only one additional component, a level shifter.
This requirement can be met by a TC232, which is
inexpensive and widely available. Also, a PC becomes
available as a good download platform, using a serial
port and terminal software. Figure 2 shows a guide
schematic for the hardware design.

FIGURE 2: SELF-PROGRAMMING THE PIC18C452 OTP GUIDE SCHEMATIC

PIC18C452

TC232

2N3906

2N3904

10k
1k

10k
1k

10k

GND

LM78L05

10k

 .01 µF

S1

S2

4.7k

CTS

RTS

+13V

+5V

+5V

+5V
IN OUT

MCLR

RA1*

RA2*

RA4*

RD

TD

RTS

CTS
DB-9F

T1OUT

T2OUT

R1IN

R2IN

T1IN

T2IN

R1OUT

R2OUT

RC7/RX

RC6/TX

RC4*

RC3*

2N3904

1k

RX

TX

 * Arbitrary, based on application.

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

AN750

DS00750A-page 4 Preliminary  2001 Microchip Technology Inc.

IMPLEMENTATION

This section details the firmware and hardware issues
and the specific implementations of the self-
programming PIC18C452 OTP.

Programming the Bootloader

The bootloader is installed by a programmer. At this
time, the configuration bits will need to be set. This is
because the self-programming algorithm applies only
to user program memory space (addresses
0000h-7FFFh), and the configuration bits are located at
addresses 300000h-300006h. Since the configuration
bits are based on the hardware design, setting them at
this point poses no problem. Last minute firmware
changes should not affect the hardware design. The
Watchdog Timer Enable bit (CONFIG2H<0>) must be
given some extra consideration, however. If the user
code requires the Watchdog Timer to be enabled, the
bootloader must be modified to accommodate it. This is
because the programming pulse cannot be interrupted
by anything other than it’s intended source, in order to
guarantee good programming margins. See the Long
Write section for more information. An alternative is to
disable the Watchdog Timer in the configuration bits
and enable it in software by WDTCON<0>.

To Boot or Not To Boot

Upon power-up or RESET, the program execution
always vectors to the bootloader. The beginning of the
bootloader is located at memory address 7C5Ch. The
bootloader first checks for an indication that it should
enter the programming part of its code. In this applica-
tion, push-button S2 provides the indication.

If S2 is not pressed, it is assumed that the part is either
already programmed, or the outside world is not quite
ready to transmit. In either case, execution will jump to
the RESET vector of the user code, 7FF8h, which is
located at the end of the bootloader code. In an empty
part, there are no user RESET code instructions to exe-
cute, so the processor will simply execute NOPs, wrap
around to 0000h, jump to the top of the bootloader,
where it will try again. If the user code is in place, nor-
mal RESET vectoring will take execution to the begin-
ning of user code and the bootloader will not be
accessed again until another power-up or RESET.

If S2 is pressed on power-up or RESET, the program
execution will continue with the bootloader. Before pro-
gramming any data, however, it must be verified that
the part is indeed empty. This is accomplished by read-
ing a particular location in program memory, 7FF6h. If
that location has not been previously programmed, the
process of receiving and programming data begins.
Otherwise, the part is not empty and the bootloader will
require user input to proceed any further.

It is important to leave all peripherals and I/O’s in their
RESET default states before testing S2, because the
user code may expect RESET defaults in its execution.

Download Protocol

The protocol to download the HEX file is RS-232 with
hardware flow control. CTS (Clear to Send) and RTS
(Request to Send) are hardware handshaking lines that
become useful in this application. When the PC sends
data to the application, it must wait an undefined
amount of time while the bootloader programs the cells.
RTS tells the microcontroller that the PC would like to
send more data. CTS tells the PC that the micro-
controller is done programming and is now ready for
more data.

CTS and RTS are implemented by PORTC pins, RC3
and RC4, respectively. RC6 and RC7 are configured in
USART mode as TX and RX, respectively. The USART
module on the PIC18C452 is set to 9600 baud. The ter-
minal software is set to 9600 baud, 8 data bits, no par-
ity, one STOP bit, and hardware control.

The bootloader receives the data one line at a time.
Each line is buffered into RAM and a checksum is per-
formed before any programming is done. This is to
ensure that the transmission was successful.

HEX File Format

The bootloader expects HEX data in the INHX8M for-
mat. Please refer to Appendix A in the MPASM™
User's Guide (DS33014), for more information on HEX
file formats. The format of a line of HEX is as follows:

 :BBAAAATTHHHH...HHHHCC

A record begins with a colon ':'. The contents of the
record are as follows:

• BB - # of data bytes

• AAAA - starting address of data record
• TT - record type (00 = data, 01 = EOF,
04 = extended address)

• HHHH - HEX data word
• CC - checksum

The data in a HEX record is in ASCII format; seven bits
per character represent a binary number. These char-
acters are converted to binary within the bootloader
before programming.

The address range of the INMX8M format is 64 Kbytes.

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

 2001 Microchip Technology Inc. Preliminary DS00750A-page 5

AN750

Programming an EPROM Cell

To write an EPROM location, initially apply a program-
ming voltage pulse for the minimum programming time,
as defined in the data sheet. For the PIC18C452, the
programming voltage is between 12.75V and 13.25V,
and the minimum time is 100 µS. After one program-
ming pulse, the respective program memory location is
checked. If the data did not program successfully,
another program pulse is sent. A maximum of 25 pro-
gramming pulses may be needed to program a partic-
ular program memory word. If, after 25 programming
pulses, the word is not successfully programmed, a
program failure must be reported.

Over-programming completes the process. This is
accomplished by applying the VPP pulse to the memory
location three times longer than was determined during
the initial write/verify stage. This will ensure a solid pro-
gramming margin on the EPROM cells.

Table Reads and Table Writes

Table Reads and Writes (TBLRD, TBLWT) are instruc-
tions that move data between data memory space and
program memory space. The Table Latch (TABLAT) is
an 8-bit register used to hold data during transfers
between program memory and data memory. The
Table Pointer (TBLPTR) addresses the byte in program
memory being read or written (see Figure 3).

FIGURE 3: TABLE READS AND WRITES

Table Pointer(1) Table Latch (8-bit)

Program Memory

TBLPTRH TBLPTRL TABLATTBLPTRU

Instruction: TBLRD*

Program Memory
(TBLPTR)

Table Pointer(1) Table Latch (8-bit)

Program Memory

TBLPTRH TBLPTRL TABLAT

Program Memory
(TBLPTR)

TBLPTRU

Instruction: TBLWT*

Note 1: Table Pointer points to a byte in program memory.

TABLE READS

TABLE WRITES

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

AN750

DS00750A-page 6 Preliminary  2001 Microchip Technology Inc.

Long Write

Writing to program memory space in the PIC18C452 is
accomplished by executing a TBLWT instruction as a
’long write’. Program words consist of two bytes and the
TABLAT register is only one byte wide. Therefore, two
TBLWTs are necessary to program one word. When
long writes are enabled, and a TBLWT is made to an
even program memory address (TBLPTR<0>=0), the
contents of TABLAT are transferred to a holding regis-
ter. When a TBLWT is made to an odd program memory
address (TBLPTR<0>=1), TABLAT is written to that
address and the holding register is written to the corre-
sponding even address.

Before executing the long write, it would be a good idea
to disable or clear the WDT, so the controller is not
unintentionally interrupted while the cells are being
programmed.

The basic procedure to perform a long write follows:

1. Set the LWRT bit in the RCON register (see
Register 1).

2. Enable one interrupt; this will be used to termi-
nate the long write.

3. Set up the interrupt to trigger at the appropriate time.

4. Drive the MCLR/VPP pin to the programming
voltage.

5. Execute a TBLWT for the lower byte of the word.
6. Execute a TBLWT for the upper byte of the word;

this initiates the long write.
7. The controller is halted while the long write is

executed.
8. The interrupt terminates the long write and exe-

cution resumes.
9. MCLR/VPP pin may be released back to VDD.
10. Execute a TBLRD to verify the memory location.

REGISTER 1: RCON REGISTER (ADDRESS: FD0h)
R/W-0 R/W-0 U-0 R/W-1 R/W-1 R/W-1 R/W-0 R/W-0

IPEN LWRT — RI TO PD POR BOR

bit 7 bit 0

bit 7 IPEN: Interrupt Priority Enable

1 = Enable priority levels on interrupts
0 = Disable priority levels on interrupts (16CXXX Compatibility mode)

bit 6 LWRT: Long Write Enable
1 = Enable TBLWT to internal program memory
0 = Disable TBLWT to internal program memory.

Note: Only cleared on a POR or MCLR.
This bit has no effect on TBLWTs to external program memory.

bit 5 Unimplemented: Read as '0'

bit 4 RI: RESET Instruction Flag bit

1 = No RESET instruction occurred
0 = A RESET instruction occurred

bit 3 TO: Time-out bit
1 = After power-up, CLRWDT instruction, or SLEEP instruction
0 = A WDT time-out occurred

bit 2 PD: Power-down bit
1 = After power-up or by the CLRWDT instruction
0 = By execution of the SLEEP instruction

bit 1 POR: Power-on Reset Status bit

1 = No Power-on Reset occurred
0 = A Power-on Reset occurred

(must be set in software after a Power-on Reset occurs)

bit 0 BOR: Brown-out Reset Status bit
1 = No Brown-out Reset nor POR occurred
0 = A Brown-out Reset or POR occurred

(must be set in software after a Brown-out Reset occurs)

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

 2001 Microchip Technology Inc. Preliminary DS00750A-page 7

AN750

Status and Errors

During normal operation, the user will receive four
basic status messages:

1. A prompt to download the HEX file.
2. A series of periods (’.’), each indicating a suc-

cessfully programmed line of code.
3. A program success message followed by the

maximum write count value.

4. A prompt to initiate a RESET, which clears the
Long Write bit (LWRT) and begins user code
execution.

In the case of an unsuccessful bootload, the following
error messages are transmitted:

• Not Empty – Before programming, it was deter-
mined that the part was not empty. User input is
requested to proceed with programming.

• Checksum Error – A line of the HEX file was
received but does not match its checksum. Either
the HEX file is incorrect, or the transmission was
faulty. The bootloader reports the address of the
HEX line of code that caused the checksum error.

• Program Error – Using standard programming
procedure, a cell was unable to program correctly.
The bootloader provides the address of the bad
program memory location before halting.

• Overwrite Condition – The HEX file is too big to fit
into available program memory. Bootloader halts.

• Overrun Error – During transmission, the USART
reported an overrun. Because data may have
been lost, the bootloader halts.

Cutting Corners

This bootloader contains many features that will be
useful in getting a system up and running. Once all the
system issues have been resolved, it may be appropri-
ate to free up some resources.

Additional program memory can be gained by reducing
the size and number of error messages returned to the
user. Calls and returns can be replaced by in-line code.
The empty part check can also be removed. In this
case, a generic program error will be the only indication
of a problem. Further, RA1 (the self-reset line) can be
set free, if programming and system test stations are in
different locations.

The code, in its present form, occupies 930 bytes
(465 words) of program memory. Adopting the corner
cutting methods above should free up an additional
200-300 bytes, reducing bootloader program memory
usage to 2 percent.

SOURCE CODE

Appendix A contains flow charts for the bootloader
program code.

Appendix B contains the actual code.

CONCLUSION

There are many ways to implement a self-programming
algorithm for the PIC18C452 OTP. Design require-
ments and production resources will dictate the best
method. The material presented here offers a simple
and reliable, yet debug friendly solution to self-
programming the PIC18C452 OTP.

RESOURCE USAGE

The impact on user application resources from the
PIC18C452 OTP self-programming application is
defined below:

Program Memory (bytes) 930

Data Memory (bytes).. 0

I/O pins... 7

REFERENCES

Please refer to Appendix A in the MPASM™ User's
Guide (DS33014) for more information on HEX file
formats.

Note: The maximum write count value indi-
cates whether any cells required more
than one programming pulse. If this
value is greater than ‘1’, it is suggested
to verify the programming pulse period
and the power supply.

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

AN750

DS00750A-page 8 Preliminary  2001 Microchip Technology Inc.

APPENDIX A: BOOTLOADER PROGRAM FLOW CHART

FIGURE A-1: BOOTLOADER PROGRAM FLOW CHART

RESET

JUMP TO
BOOTLOADER

CODE AT END OF
PROGRAM
MEMORY

BOOTLOAD
BUTTON

PRESSED?

GOTO
SOURCE CODE
RESET VECTOR

EMPTY PART?

EMPTY PART?

PROCEED?

DONE

USER CODE

SET UP PORTS,
PERIPHERALS,

AND INTERRUPTS

NO

YES

YES

NO

NO

YES

YES

NO

BOOTLOAD

(Figure A-2)

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

 2001 Microchip Technology Inc. Preliminary DS00750A-page 9

AN750

FIGURE A-2: BOOTLOAD ALGORITHM FLOW CHART

OVERRUN ERROR
MESSAGE

DONE

WAIT FOR RESETEOF?

NO

YES

BOOTLOAD
START

CHECKSUM

NO

YES

INVALID RECORD

NO

YES

ERROR?

TYPE?

SUCCESSFUL NOYES

DONE

DONE

OVERRUN?

NO

YES

RECEIVE ‘:’?
NO

YES

FAIL
MESSAGE

CHECKSUM ERROR
MESSAGE

SUCCESS AND

MESSAGES
MAXWRITECOUNT

PROCESS LINE

WITH STAT CODE
OF HEX, RETURNING

WRITE?

SELF-PROGRAM

Figure A-3

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

AN750

DS00750A-page 10 Preliminary  2001 Microchip Technology Inc.

FIGURE A-3: SELF-PROGRAM ALGORITHM FLOW CHART

SUCCESSFULNO

YES

PROGRAM?

SELF-PROGRAM
START

WRITECOUNT = 0?

NO

YES

WRITE

OVERWRITE?
COUNT = 25 OR

RETURN
FAIL

RETURN
SUCCESS

DECREMENT
WRITECOUNT

100 µS PULSE
WRITE WORD

INCREMENT

CALCULATE
WRITECOUNT

READ BACK

WORD
PROGRAMMED

3*100 µS PULSE
OVERWRITE WORD

MAXWRITECOUNT

NO

YES

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

 2001 Microchip Technology Inc. Preliminary DS00750A-page 11

AN750

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the “Company”) for its PICmicro® Microcontroller is
intended and supplied to you, the Company’s customer, for use solely and exclusively on Microchip PICmicro Microcontroller prod-
ucts.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

APPENDIX B: SOURCE CODE
;---
; SELF-PROGRAMMING THE PIC18C452
;
;
; At start-up, the code checks for user input (button press) and
; either loads hex file from the USART and programs it to internal
; program memory or it vectors to user code reset. If the bootloader
; is executed successfully, a hardware reset is forced on the part
; and user code execution begins.
; This program assumes that the user hex code is in INHX8M format
; AND the user reset vector is emdedded entirely within 1 line
; of hex. However, user hex code lines can be non-sequential.
; This program is installed at the end of program memory space.
;
;
; Filename: 18cself.asm
; Author: Tim Rovnak
; Version: 1.1 (1/01)
; Hardware: Modified PICDEM-2
; PICSTART PLUS Programmer V2.10.00
; Software: MPLAB V5.11.00
; Osc: 16.00000 MHz
; Size: 930 bytes
;
;
;---

;---
; List file format, Include files
;---

 list P = 18C452 ; set processor type
 list n = 0 ; supress page breaks in list file
 #include <P18C452.INC> ; Processor Include file

;---
; CONFIG bits:
; CONFIG bits are set when programming the bootloader into a blank part.
; They are determined by the user application.
; Bootloader program could be modified to program CONFIG bits from hex
; file in INHX32 format for 32-bit addressing.
;---

; __CONFIG _CONFIG0, _CP_OFF_0
; __CONFIG _CONFIG1, _OSCS_OFF_1 & _ECIO_OSC_1
; __CONFIG _CONFIG2, _BOR_OFF_2 & _BORV_25_2 & _PWRT_ON_2
; __CONFIG _CONFIG3, _WDT_OFF_3 & _WDTPS_128_3
; __CONFIG _CONFIG5, _CCP2MX_ON_5
; __CONFIG _CONFIG6, _STVR_ON_6

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

AN750

DS00750A-page 12 Preliminary  2001 Microchip Technology Inc.

;---
; Compile Constant Definitions:
;---

#define RsetSig PORTA,1 ; Post-program reset signal
#define BurnSig PORTA,2 ; Program voltage signal
#define BootSig PORTA,4 ; SW2 button line

#define RTS PORTC,3 ; RTS line for USART
#define CTS PORTC,4 ; CTS line for USART
#define baud D’96000’ ; Baud rate

#define FOSC D’16000000’ ; Osc. frequency

; tick = (1/(Fosc/4))*prescale = 2uSec for prescale of 8
; timer primer equation: time = (0x100 - PRIMER)*tick
#define usec016 0xF8 ; TMROL primer for 16uSec @16MHz
#define usec050 0xE7 ; TMROL primer for 50uSec @16MHz
#define usec100 0xCE ; TMROL primer for 100uSec @16MHz
#define usec150 0xB5 ; TMROL primer for 150uSec @16MHz
#define usec300 0x6A ; TMROL primer for 300uSec @16MHz

; Processor dependent placements
; PIC18C452:
#define BootLoc 0x7C5C ; Placement of Boot code
#define EmptLoc 0x7FF6 ; Placement of Empty indicator
#define RsetLoc 0x7FF8 ; Placement of user reset vector

#define BuffLen D’20’ ; Size of input buffer

;---
; RAM storage declarations:
;---

 CBLOCK 0x00
 RXBuffer: BuffLen ; Location for storage of line of Hex
 Tempa ; Temps for ASCII to Hex conversion
 Tempb ;
 ByteCnt ; # of bytes in current line
 ByteCntCpy ;
 AddrH ; High Byte of address of current line
 AddrL ; Low Byte of address of current line
 RecType ; Record type of current line
 HexDataH ; High byte of current word
 HexDataL ; Low byte of current word
 LineCheckSum ; Checksum holder for current line
 Adr0Count ; Reset vector word counter
 Adr0Flag ; Reset vector indicator
 Stat ; ’retlw’ Status code holder
 WrtCnt ; # of writes current word counter
 MaxWrtCnt ; Maximum # writes counter
 AsciiCmp ; Compare for Hx2ASCII
 ENDC

;---
; Macros:
;---

Ltblptr MACRO baseaddr ; Load TBLPTR with address
 movlw LOW(baseaddr) ;
 movwf TBLPTRL ;
 movlw HIGH(baseaddr) ;
 movwf TBLPTRH ;

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

 2001 Microchip Technology Inc. Preliminary DS00750A-page 13

AN750

 movlw Upper(baseaddr) ;
 movwf TBLPTRU ;
 ENDM

;---
; Vectors:
; Only Reset. Don’t touch interrupts; leave for user code.
;---

Rset org 0x000000 ; Reset vector location
 goto BootLdr ; goto startup code

HPvect org 0x000008 ; High priority interrupt vector

LPvect org 0x000018 ; Low priority interrupt vector

;---
; Bootloader:
; Place at end of program memory space with 4 empty words reserved
; for source code reset vector. Run ’Setup’ after checking switch
; in order to leave Micro in default state for user code.
; Stat codes: 0x01 - 100% successful program
; 0x02 - Overrun Error
; 0x03 - Checksum Error
; 0x04 - Invalid Record Type
; 0x05 - Good Checksum...Program next line of code
; 0x06 - Good single line Program...Get next line of code
; 0x07 - Program Error
; 0x08 - Overwrite Bootcode error
;---

BootLdr org BootLoc ; Place appropriately

; clrwdt ; Clear the watchdog timer if enabled.

 ; Check user input---
 btfsc BootSig ; Is SW2 being pressed?
 goto RsetSrc ; No: goto RsetSrc

 ; Setup part, verify empty, ready to download calls------------------------
 rcall Setup ; Setup ports, peripherals
 rcall ChkEmpt ; Check for empty part, prog. PrgEmpt
 sublw 0x07 ; Test if code 0x07, bad prog.
 bz PrgErr ;
 Ltblptr RdyMsg ; ’Ready’ message
 rcall TXmsg ;

GoLoop ; Fill buffer w/ 1 line of code calls--------------------------------------
 rcall GetLine ; 1 line of code in RXBuffer
 movwf Stat ; Move WREG return value into Stat
 dcfsnz Stat ; Decr. Stat, skip cause >0x01
 bra Success ; Stat was 0x01, EOF and Success
 dcfsnz Stat ; Decr. Stat, skip cause >0x02
 bra OvrErr ; Stat was 0x02, Overrun Error
 dcfsnz Stat ; Decr. Stat, skip cause >0x03
 bra ChkErr ; Stat was 0x03, CheckSum Error
 dcfsnz Stat ; Decr. Stat, skip cause >0x04
 bra GoLoop ; Stat was 0x04, bad RecType, Go back
 ; otherwise 0x05, continue...

 ; Write 1 line of code to PMEM calls---------------------------------------
 movlw LOW(RXBuffer) ; Reset FSR0 to top of RXBuffer
 movwf FSR0L ;
 movlw HIGH(RXBuffer) ;

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

AN750

DS00750A-page 14 Preliminary  2001 Microchip Technology Inc.

 movwf FSR0H ;
 rcall Wrt ; Write to Program Memory
 sublw 0x07 ; Test if code <,>, or = 0x07
 bn OWtErr ; WREG 0x08 means overwrite.
 bz PrgErr ; Else must be 0x07 Program error
 Ltblptr DotMsg ; ’.’ indicating 1 good line prg.
 rcall TXmsg ;
 bra GoLoop ; good program 0x06

 ; Done Traps and Messages---
Success Ltblptr ScsMsg ; ’Success, Max. write..’ message
 rcall TXmsg ;
 movf MaxWrtCnt,W ;
 rcall TXbyte ; Send Max. write count to PC
 Ltblptr RstMsg ; ’Reset? [y]’ message
 rcall TXmsg
 rcall GetASCII ; Get a byte in RCREG and compare to
 movlw ’y’ ; ’y’, loop until true
 cpfseq RCREG ;
 bra $-6 ;
 bsf RsetSig ; BYE-BYE

OWtErr Ltblptr OWtMsg ; ’Overwrite..’ message
 rcall TXmsg
 bra $

OvrErr Ltblptr OvrMsg ; ’Overrun..’ message
 rcall TXmsg
 bra $

PrgErr Ltblptr PgEMsg ; ’Program fail at..’ message
 rcall TXmsg ;
 bra ADRmsg

ChkErr Ltblptr ChkMsg ; ’Checksum err at..’ message
 rcall TXmsg ;

ADRmsg movf AddrH,W ; Send Address bytes to PC
 rcall TXbyte
 movf AddrL,W
 rcall TXbyte
 bra $

 ;---
Setup ; Setup Ports, Initialize variables, send Ready message
 ;---

 ; Setup ports---
 clrf PORTA ; Clear PORTA output latch
 movlw B’11111001’ ; Make RA1 (rset), RA2 (burn) outputs,
 movwf TRISA ; RA4 (SW2) and rest inputs
 clrf PORTB ; Clear PORTB output latch
 clrf TRISB ; PORTB pins all outputs for LEDs
 clrf PORTC ; Clear PORTC output latch
 movlw B’10101111’ ; RC6=TX output, RC4=CTS output,
 movwf TRISC ; rest inputs (inc. RTS,RX)
 bsf CTS ; Not ready for a send yet.

 ; Setup TIMER0--
 movlw B’01000010’ ; Init. TMR0 to off, 8-bit, int. clk,
 movwf T0CON ; pre-scaler, 1:8 pre-scaler value.
 ; @16Mhz=> (1/4Mhz)*8 = 2usec Tick
 bsf INTCON,TMR0IE ; Enable TMR0 overflow interrupt

 ; Setup USART---

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

 2001 Microchip Technology Inc. Preliminary DS00750A-page 15

AN750

 movlw D’25’ ; Load baud rate generator for 9.6kbd
 movwf SPBRG ; @ 16Mhz device frequency.
 movlw B’00100000’ ; Enable USART transmit, set baud
 movwf TXSTA ; rate generator for low speed.
 movlw B’10010000’ ; Enable USART for continuous reception,
 movwf RCSTA ; enable USART

 ; Init. vars, enable Long Writes--
 movlw 0x3A ;
 movwf AsciiCmp ;
 clrf WrtCnt ; Initialize WrtCnt, MaxWrtCnt to 0
 clrf MaxWrtCnt ;
 bsf RCON,LWRT ; Enable Long writes to PMEM
 movlw D’1’ ; Init ByteCntCpy to 1 for WrtLoop
 movwf ByteCntCpy ; to program EmptLoc
 clrf HexDataH ; For Emptchk also
 clrf HexDataL ;
 return ;

 ;---
ChkEmpt ; Check byte in program memory indicating if part has been
 ; previously programmed. Prompt user to continue.
 ;---

 Ltblptr EmptLoc ; Set TBLPTR to EmptLoc
 TBLRD* ; Read EmptLoc Hi-byte
 movf TABLAT,W ; Store in W
 btfss STATUS,Z ; Test if zero
 bra WrtLoop ; Go write PrgEmpt code (0x00)
 ; Returns 0x06 or 0x07 to main when done
 Ltblptr NtEMsg ; ’Not empty..proceed? [y]’ message
 rcall TXmsg ;
 rcall GetASCII ; Get a byte in RCREG and compare to
 movlw ’y’ ; ’y’, loop until true
 cpfseq RCREG ;
 bra $-6 ;
 retlw 0x06 ; Return a dummy 0x06 to continue

 ;---
GetLine ; Receive line of HEX from PC through USART and place in
 ; RXBuffer. Performs error checking and returns error/success
 ; code.
 ;---

 ; Get ASCII byte, look for start of line (’:’)--------------------------------
 rcall GetASCII ; Get a byte in RCREG and compare to
 movlw ’:’ ; ’:’, loop until true
 cpfseq RCREG ;
 bra GetLine ;

 ; Initialize Address 0 control and LFSR0 each new line------------------------
 movlw D’4’ ; Initialize Adr0Count to maximum
 movwf Adr0Count ; size of Source Reset vector
 movlw D’2’ ; Initialize Adr0Flag to 2 in order
 movwf Adr0Flag ; to decr. test 2 bytes of address
 movlw LOW(RXBuffer) ; Point to the RXBuffer using FSR0
 movwf FSR0L ; NOTE: Avoid ’lfsr’!
 movlw HIGH(RXBuffer) ;
 movwf FSR0H ;

 ; Get byte count---
 rcall GetHex8 ; Conv. to Hex
 movwf ByteCnt ;
 movwf LineCheckSum ; Add to Checksum
 rrncf ByteCnt,F ; Divide by 2 for word count

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

AN750

DS00750A-page 16 Preliminary  2001 Microchip Technology Inc.

 movff ByteCnt,ByteCntCpy ; Make copy for write routine

 ; Get Hi address byte--
 rcall GetHex8 ; Conv. to Hex
 movwf AddrH ; Hibyte of address
 bnz notz1 ; Test for Hibyte of Reset vector(0x00)
 decf Adr0Flag,F ; Decr. flag ...could be reset
notz1 addwf LineCheckSum,F ; Add to Checksum

 ; Get Lo address byte--
 rcall GetHex8 ; Conv. to Hex
 movwf AddrL ; Lobyte of address
 bnz notz2 ; Test for Lobyte of Reset vector(0x00)
 decf Adr0Flag,F ; Decr. flag ...could be reset
notz2 addwf LineCheckSum,F ; Add to checksum

 ; Set Address of Table pointer---
 movff AddrL,TBLPTRL ; Default TBLPTR to Addrl and AddrH
 movff AddrH,TBLPTRH ;
 clrf TBLPTRU ; Clear TBLPTR upper-byte
 negf Adr0Flag ; Test if Adr0Flag is set
 bnz GetRec ; No-> Keep default, branch to GetRec
 Ltblptr RsetSrc ; Yes-> change write address to
 ; RsetSrc temporarily

GetRec ; Get record type--
 rcall GetHex8 ; Conv. Record type to Hex
 movwf RecType ;
 addwf LineCheckSum,F ; Add to Checksum

GetData ; Get data bytes loop--
 ; Chk EOL
 movf ByteCnt,F ; Check ByteCnt
 bz ChkChkSm ; If 0->calculate LineCheckSum
 ; Lo
 rcall GetHex8 ; Get LoByte and store in RXBuffer,
 movwf POSTINC0 ; incr. FSR0, and then add to
 addwf LineCheckSum,F ; LineCheckSum
 ; Hi
 rcall GetHex8 ; Get HiByte and store in RXBuffer,
 movwf POSTINC0 ; incr. FSR0, and then add to
 addwf LineCheckSum,F ; LineCheckSum
 decf ByteCnt,F ; Decr. line Byte counter
 bra GetData ; Get next word

ChkChkSm ; Test for overrun, verify Checksum then return status code-----------------
 rcall GetHex8 ; Convert last ASCII byte to hex
 addwf LineCheckSum,F ; Add to Checksum
 btfsc RCSTA,OERR ; Check overrun bit in RCSTA
 retlw 0x02 ; Return 0x02 for overrun
 tstfsz LineCheckSum ; CheckSum=0->test for EOF, then return
 retlw 0x03 ; Return code 0x03 for CheckSum Error
 movf RecType,F ; Check Record type
 bnz Eof ; Branch to Eof if not 0x00
 retlw 0x05 ; Return code 0x05 for continue
Eof decfsz RecType,F ; Decr. Record type
 retlw 0x04 ; Return code 0x04 for invalid format
 retlw 0x01 ; EOF All good, No burn. code 0x01

 ;--
Wrt ; Write 1 line of data to Internal Program Memory
 ;--

 ; Load current RXBuffer value to HexDataH/L--------------------------------
 movff POSTINC0,HexDataH ; Move RXBuffer data to HexDataH/L

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

 2001 Microchip Technology Inc. Preliminary DS00750A-page 17

AN750

 movff POSTINC0,HexDataL ;

ChkOvw ; Check for overwrite condition--
 movlw HIGH(BootLoc) ; Load W Hi-byte Boot code location
 subwf AddrH,W ; Subtract W from AddrH, result in W
 bn WrtLoop ; Branch to WrtLoop if AddrH is lower
 ; than HIGH(BootLoc)
 btfss STATUS,Z ; Go test Lo if Hi-bytes are eq.
 retlw 0x08 ; Return Error cause AddrH is greater
 ; than HIGH(BootLoc)
 movlw LOW(BootLoc) ; Load W Lo-byte Boot code location
 cpfslt AddrL ; Compare with AddrL, Skip to Wrtloop
 retlw 0x08 ; if AddrL is less than LOW(BootLoc)
 ; else return Error

WrtLoop ; Write 1 word to Program Memory---
; clrwdt ; Clear the watchdog timer if enabled.

 movlw D’25’ ; Load W with max # of wrt attempts
 cpfslt WrtCnt ; Compare with WrtCnt
 retlw 0x07 ; WrtCnt=25-> Code 0x07 bad progr.
 bsf BurnSig ; ON Programming Voltage
 movlw usec100 ; Load W with 100uSec delay value
 rcall DoWrt ; Do Write
 bcf BurnSig ; OFF Programming voltage
 incf WrtCnt,F ; Incr. Write Counter

 ; Verify write---
 TBLRD* ; Read back first PMEM byte written
 movf TABLAT,W ; Store in W
 cpfseq HexDataH ; Compare to original data
 bra WrtLoop ; Not Equal-> ReWrite
 TBLRD+* ; Read back second PMEM byte written
 movf TABLAT,W ; Store in W
 cpfseq HexDataL ; Compare to original data
 bra WrtLoop ; Not Equal-> ReWrite
 TBLRD*- ; Move pointer back to 1st Pbyte
 movf MaxWrtCnt,W ; Move MaxWrtCnt to W
 cpfslt WrtCnt ; If WrtCnt>MaxWrtCnt, Max.=WrtCnt
 movff WrtCnt,MaxWrtCnt ;

OverPrg ; 3*WrtCnt over-programming---
; clrwdt ; Clear the watchdog timer if enabled.

 bsf BurnSig ; ON Programming Voltage
 movlw usec300 ; Load W with 300uSec delay value
 rcall DoWrt ; Do Write
 decfsz WrtCnt,F ; Decr. Write Counter
 bra OverPrg ; Not 0-> Keep writing
 bcf BurnSig ; OFF Programming voltage
 TBLRD*+ ; Dummmy reads
 TBLRD*+ ;

 ; Update vars then burn next word OR return-------------------------------
 incf AddrL,F ; Incr. AddrL
 infsnz AddrL,F ; Incr. AddrL, skip if not 0
 incf AddrH,F ; 0-> Overflow, inc. AddrH
 negf Adr0Flag ; Was it Reset vector?
 bnz ChkCnt ; No-> Check Byte count
 decfsz Adr0Count,F ; Decr. Adr0Count. Last Reset vector word?
 bra ChkCnt ; No-> Check Byte count
 movff AddrL,TBLPTRL ; Point TBLPTR to Addrl and AddrH again
 movff AddrH,TBLPTRH ;
 clrf TBLPTRU ;
 movlw D’2’ ; Reinit Adr0Flag to 0x02

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

AN750

DS00750A-page 18 Preliminary  2001 Microchip Technology Inc.

 movwf Adr0Flag ;
ChkCnt decfsz ByteCntCpy ; Check ByteCntCpy
 bra Wrt ; Go back to write
 retlw 0x06 ; Code 0x06 for Good Programming

;---
; Subroutines:
;---

TXmsg ; Transmit Message from PMEM to PC thru USART-------------------------------
 btfss PIR1,TXIF ; Wait until the USART is not busy.
 bra TXmsg ;
 tblrd*+ ; Read byte from PMEM, incr. Table ptr
 movf TABLAT,W ; Check if byte read is 0
 bz TXDone ; 0-> done
 movwf TXREG ; Put byte in Transmit register
 bra TXmsg ; and loop back for next byte
TXDone return ; ---

TXbyte ; Transmit byte from Wreg to PC thru USART---------------------------------
 rcall Hx2ASCII ; convert W to 2 ASCII bytes (TempA/B)
 btfss PIR1,TXIF ; Wait until the USART is not busy.
 bra $-2 ;
 movff Tempa,TXREG ; Put byte in Transmit register
 nop ;
 btfss PIR1,TXIF ; Wait until the USART is not busy.
 bra $-2 ;
 movff Tempb,TXREG ; Put byte in Transmit register
 return ; ---

Hx2ASCII ; Convert Hex byte to 2 ASCII bytes--
 ; Return with Tempa High, Tempb low
 movwf Tempa ; Keep copy of HEX in Tempa
 andlw 0x0F ; Mask out lower nibble
 addlw 0x30 ; add 0x30
 cpfsgt AsciiCmp ; If W less than 0x3A, done
 addlw 0x07 ; Else, add 0x07, then done
 movwf Tempb ;
 swapf Tempa,W ; Swap nibbles Tempa, place in Wreg
 andlw 0x0F ; Mask out lower nibble
 addlw 0x30 ; add 0x30
 cpfsgt AsciiCmp ; If W less than 0x3A, done
 addlw 0x07 ; Else, add 0x07, then done
 movwf Tempa ;
 return ; --

GetASCII ; Receive ASCII byte thru USART using CTS/RTS (H/W cntrl)-----------------
 btfsc RTS ; Check RTS=0-> PC wants to send data
 bra GetASCII ; If RTS=1-> PC not sending, check again.
 bcf CTS ; Set CTS=0-> micro Clear to Send
RXwait btfss PIR1,RCIF ; Test Recv. interrupt flag
 bra RXwait ; not set, keep checking
 bsf CTS ; Set CTS=1-> micro NOT Clear To Send
 movf RCREG,W ; Move Recv. buffer to W, CLEARS RCIF
 return ; --

GetHex8 ; Receive 2 ASCII chars, convert to one 8-bit HEX #-----------------------
 ; Hi byte
 rcall GetASCII ; Get 1st ASCII char thru USART
 rcall ASCII2Hx ; Convert to Hex
 movwf Tempa ; Move to Tempa
 swapf Tempa,F ; swap nibbles in Tempa
 ; Lo byte
 rcall GetASCII ; Get 2nd ASCII char thru USART

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

 2001 Microchip Technology Inc. Preliminary DS00750A-page 19

AN750

 rcall ASCII2Hx ; Covert to Hex
 iorwf Tempa,F ; combine nibbles into 1 byte
 movf Tempa,W ; move result to W
 return ; --------------------------------------

ASCII2Hx ; Convert ASCII byte of data to binary----------------------------------
 movwf Tempb ; Move W to Tempb
 movlw ’0’ ; Load W with ASCII ’0’, (0x30)
 subwf Tempb,F ; Subtract from Tempb
 movlw 0xF0 ; Load W B’11110000’
 andwf Tempb,W ; Mask out Tempb Upper nibble
 bz DoneASC ; If 0-> We had a number, now it’s good.
 movlw ’A’-’0’-0x0a ; Had a letter, subtract off additional
 subwf Tempb,F ; amount
DoneASC movf Tempb,W ;
 return ; --------------------------------------

DoWrt ; PMEM write with built-in delay--
 movwf TMR0L ; Prime TMR0L
 bcf INTCON,TMR0IF ; Clear TMR0 overflow flag
 bsf T0CON,TMR0ON ; ON TMR0
 movff HexDataH,TABLAT ;
 TBLWT*+ ;
 movff HexDataL,TABLAT ;
 TBLWT*- ; Should pause here until TMR0 interrupt
 bcf T0CON,TMR0ON ; OFF TMR0
 return ; --------------------------------------

;---
; Messages:
;---

DotMsg data ".",0
RdyMsg data "\r\nReady to Receive Hex File.\r\n",0
PgEMsg data "\r\nProgram Failed at: 0x",0
ScsMsg data "\r\nProgram Success! Maximum Write Count: 0x",0
ChkMsg data "\r\nChecksum Error in Address Block: 0x",0
OvrMsg data "\r\nOverrun Error.",0
NtEMsg data "\r\nPart Not Empty. Proceed? [y]",0
RstMsg data "\r\nReset? [y]",0
OWtMsg data "\r\nOverwrite Bootcode Error.",0

;---
; Empty part indicator will be programmed here
;---

 ORG EmptLoc
 data 0xFFFF

;---
; RESET Vector for source code will be programmed here
;---

RsetSrc ORG RsetLoc ; Space for 4 program words
 res 8 ; to be programmed by Bootloader

 end ; End of File AND End of PMEM

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

AN750

DS00750A-page 20 Preliminary  2001 Microchip Technology Inc.

NOTES:

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

 2001 Microchip Technology Inc. Preliminary DS00750A - page 21

“All rights reserved. Copyright © 2001, Microchip Technology
Incorporated, USA. Information contained in this publication
regarding device applications and the like is intended through
suggestion only and may be superseded by updates. No rep-
resentation or warranty is given and no liability is assumed by
Microchip Technology Incorporated with respect to the accu-
racy or use of such information, or infringement of patents or
other intellectual property rights arising from such use or oth-
erwise. Use of Microchip’s products as critical components in
life support systems is not authorized except with express
written approval by Microchip. No licenses are conveyed,
implicitly or otherwise, under any intellectual property rights.
The Microchip logo and name are registered trademarks of
Microchip Technology Inc. in the U.S.A. and other countries.
All rights reserved. All other trademarks mentioned herein are
the property of their respective companies. No licenses are
conveyed, implicitly or otherwise, under any intellectual prop-
erty rights.”

Trademarks

The Microchip name, logo, PIC, PICmicro, PICMASTER, PIC-
START, PRO MATE, KEELOQ, SEEVAL, MPLAB and The
Embedded Control Solutions Company are registered trade-
marks of Microchip Technology Incorporated in the U.S.A. and
other countries.

Total Endurance, ICSP, In-Circuit Serial Programming, Filter-
Lab, MXDEV, microID, FlexROM, fuzzyLAB, MPASM,
MPLINK, MPLIB, PICDEM, ICEPIC, Migratable Memory,
FanSense, ECONOMONITOR, SelectMode and microPort
are trademarks of Microchip Technology Incorporated in the
U.S.A.

Serialized Quick Term Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2001, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999. The
Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs and microperipheral
products. In addition, Microchip’s quality
system for the design and manufacture of
development systems is ISO 9001 certified.

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by
updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual
property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with
express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, except as maybe explicitly expressed herein, under any intellec-
tual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights
reserved. All other trademarks mentioned herein are the property of their respective companies.

DS00750A-page 22 Preliminary  2001 Microchip Technology Inc.

All rights reserved. © 2001 Microchip Technology Incorporated. Printed in the USA. 4/01 Printed on recycled paper.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com
Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307
Austin
Analog Product Sales
8303 MoPac Expressway North
Suite A-201
Austin, TX 78759
Tel: 512-345-2030 Fax: 512-345-6085
Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821
Boston
Analog Product Sales
Unit A-8-1 Millbrook Tarry Condominium
97 Lowell Road
Concord, MA 01742
Tel: 978-371-6400 Fax: 978-371-0050
Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924
Dayton
Two Prestige Place, Suite 130
Miamisburg, OH 45342
Tel: 937-291-1654 Fax: 937-291-9175
Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260
Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338
Mountain View
Analog Product Sales
1300 Terra Bella Avenue
Mountain View, CA 94043-1836
Tel: 650-968-9241 Fax: 650-967-1590

New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955
Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755
China - Beijing
Microchip Technology Beijing Office
Unit 915
New China Hong Kong Manhattan Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104
China - Shanghai
Microchip Technology Shanghai Office
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
Hong Kong
Microchip Asia Pacific
RM 2101, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431
India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062
Japan
Microchip Technology Intl. Inc.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122

ASIA/PACIFIC (continued)
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-334-8870 Fax: 65-334-8850
Taiwan
Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Denmark
Microchip Technology Denmark ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Arizona Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Arizona Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Germany
Analog Product Sales
Lochhamer Strasse 13
D-82152 Martinsried, Germany
Tel: 49-89-895650-0 Fax: 49-89-895650-22
Italy
Arizona Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/30/01

WORLDWIDE SALES AND SERVICE

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

	INTRODUCTION
	BOOTLOADER OVERVIEW
	SELF-PROGRAMMING BOOTLOADER DESIGN STRATEGY
	Firmware Design
	Hardware Design

	IMPLEMENTATION
	Programming the Bootloader
	To Boot or Not To Boot
	Download Protocol
	HEX File Format
	Programming an EPROM Cell
	Table Reads and Table Writes
	Long Write
	Status and Errors
	Cutting Corners

	Source Code
	CONCLUSION
	Resource Usage
	References
	Appendix A: Bootloader Program Flow chart
	Appendix B: Source Code
	Worldwide Sales and Service

