
TOSHIBA BIPOLAR DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TD62650F,TD62651F,TD62652F

5V POWER SUPPLY & SUPPLY MONITORING + COMMUNICATIONS IC

The TD62650F series covers products developed for use in microcomputer systems applicable to automatic vending machines. They produce an output voltage of 5 V \pm 0.5 V without need for adjustment, through their accurate reference voltage and amplifier circuit.

The 5V section can reset the system by outputting reset signals at power-on, and also output a reset signal when the 5 V output voltage drops below the specified 92% (TD62650F / 652F) or 85% (TD62651F) because of external disturbances or other problem. It also incorporates a watchdog timer for self-diagnosing the system. When the system malfunctions, the IC generates reset pulses intermittently to prevent the system from running away. The interface section incorporates three serial ports corresponding to the typical 24-V 4800 bps system in microcomputers.

Weight: 0.63 g (Typ.)

FEATURES

 $5V \pm 0.25 \text{ V}$ Accurate output

Output PNP Tr incorporated : Current capacity; 300 mA (max)

Power-on Reset timer incorporated

Watchdog timer incorporated

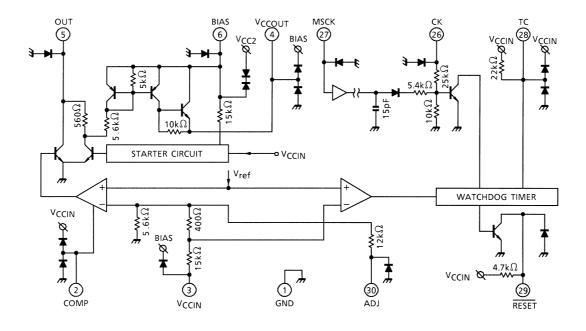
Small flat package sealing : SSOP30 pin (1 mm pitch)

Difference 1

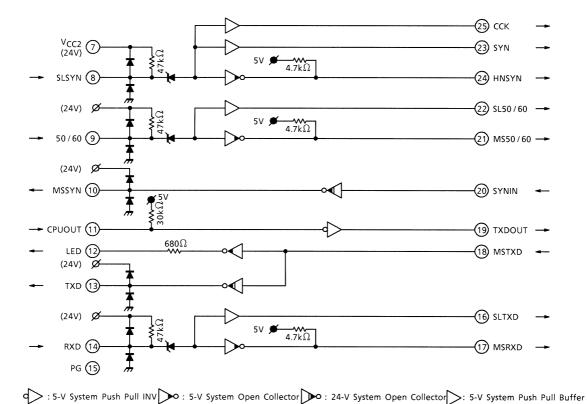
CHARACTERISTIC	TD62650 / 652F	TD62651F
Reset Detecting Voltage	5V / 92%	5V / 85%

Difference 2

Time setting resistance $22 \text{ k}\Omega$ for power-on reset / watchdog timer, and PULL resistance of $4.7~\text{k}\Omega$ for RESET pin.

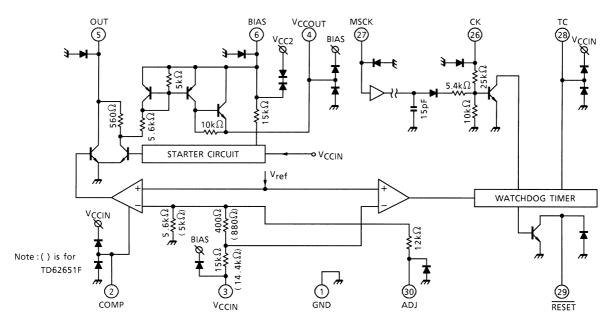

TD62650F	TD62651F	TD62652F
Built-in	None	None

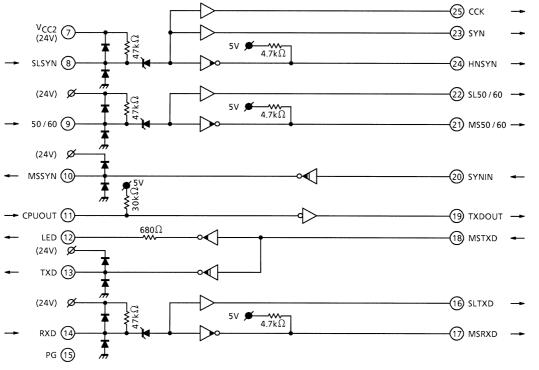
PIN CONNECTION



TD62650F BLOCK DIAGRAM

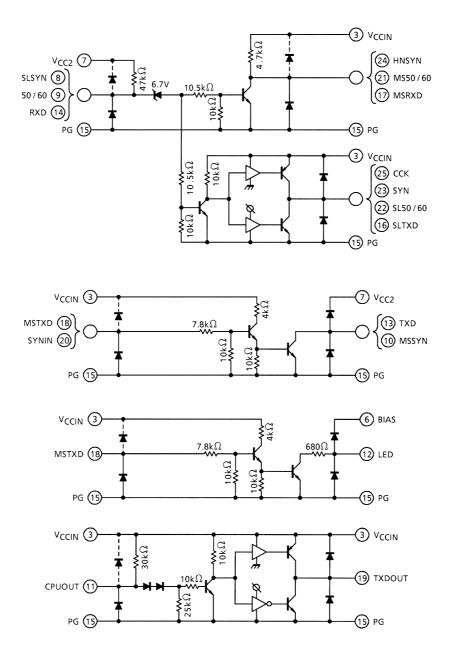
5V POWER SUPPLY + SUPPLY MONITORING


INTERFACE


2

TD62651F / TD62652F BLOCK DIAGRAM

5V POWER SUPPLY + SUPPLY MONITORING


INTERFACE

: 5-V System Push Pull INV : 5-V System Open Collector : 24-V System Open Collector : 5-V System Push Pull Buffer

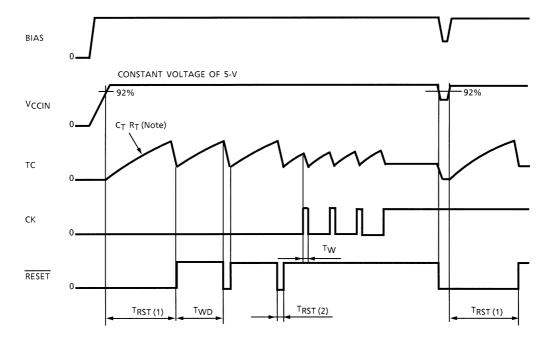
3

INTERFACE INPUT / OUTPUT CIRCUITS

4

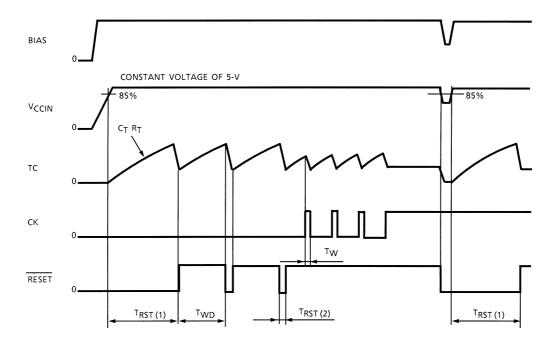
PIN FUNCTION

PIN No.	PIN NAME	PIN FUNCTION
1	GND	GND pin for 5 V power supply and supply monitoring.
2	COMP	Phase compensation pin for output stabilization.
3	V _{CCIN}	Power supply pin for internal circuit. The output voltage can also be detected at this pin.
4	VCCOUT	Output pin for built–in Power Tr, having a current capacitance of 300 mA (max). It is also used as an output pin for 5 V constant power supply through shorting with V_{CCIN} pin.
5	OUT	Connected to the base of an external PNP transistor so that the output voltage is stabilized. Current design suitable for load capacities is thus possible. Since the recommended I _{OUT} current is 5 mA, an output current of 300 mA is assured if the external transistor has an hFE of 60. When the internal transistor is used, it can be opened.
6	BIAS	Power supply starting pin. The starting current is supplied through a resistor to which the input voltage is applied. When V _{CCIN} rises above 3.0 V, the starting current is absorbed in the internal circuit; instead, I _{OUT} is supplied via V _{CCIN} .
7	V _{CC2}	Power supply pin for the 24–V system.
8	SLSYN	Input pin for the 24–V system interface. Pull–up resistor 47 k Ω is incorporated at V _{CC2} pin.
9	50 / 60	Input pin for 24–V system interface. Pull–up resistor 47 k Ω is incorporated at V $_{CC2}$ pin.
10	MSSYN	Output pin for the 24-V system open collector.
11	CPUOUT	Input pin for the 5-V system Push / Pull inverter. Pull-up resistor 30 k Ω is incorporated at VCCIN pin.
12	LED	LED lighting pin for the 8 system open collector. 680 Ω limiting resistor is incorporated.
13	TXD	Output pin for the 24-V system open collector.
14	RXD	Input pin for the 24–V system interface. Pull–up resistor 47 k Ω is incorporated at the V $_{CC2}$ pin.
15	PG	GND pin for the 5-V / 24-V system interfaces.
16	SLTXD	Output pin for the 5-V system open collector. Pull-up resistor 4.7 k Ω is incorporated at the V _{CCIN} pin.
17	MSRXD	Output pin for the 5-V system Push-Pull buffer.
18	MSTXD	Input pin for the 5-V system interface, for input at LED (12 pin) and TXD (13 pin) pins.
19	TXDOUT	Output pin for the 5-V system Push / Pull inverter (CPUOUT : 11 pin).
20	SYNIN	Input pin for the 5-V system interface.
21	MS50 / 60	Output pin for the 5–V system open collector. Pull–up resistor 4.7 k Ω is incorporated at V _{CCIN} pin.
22	SL50 / 60	Output pin for the 5-V system Push / Pull buffer.
23	SYN	Output pin for the 5-V system Push-Pull buffer.
24	HNSYN	Output pin for the 5-V system open collector. Pull-up resistor 4.7 k Ω incorporated at V _{CCIN} pin.
25	ССК	Output pin for the 5-V system Push-Pull buffer.


TOSHIBA

PIN No.	PIN NAME	PIN FUNCTION
26	СК	Input pin for watchdog timer. The pin is pulled up to V _{CCIN} if the IC is used only as a power–on reset timer.
27	MSCK	To input clock pulses, one-shot pulses can be generated for CK (26 pin) inputs at the rise edge. When the pin is not used, short it with GND.
28	TC	Time setting pin for the reset and watchdog timers.
29	RESET	NPN transistor open-collector output. (1) The signal goes low when the output voltage drops below the specified 92% (TD62650 / 652) or 85% (651F) level. (2) The pin generates a reset signal that is determined by the external condenser connected to the TC pin. (3) The pin generates reset pulses intermittently if no clock is attached to the CK pin. This function can be used as a watchdog timer for microcomputers.
30	ADJ	Output voltage adjusting pin. The voltage will increase when a resistor is connected between ADJ and GND (1 pin). It can reduce the voltage when the resistor is inserted between ADJ and V_{CCIN} (3 pin). The voltage can be changed by a maximum of \pm 1V.

6 2001-07-04



TIMING CHART (TD62650F, TD62652F)

Note: TD6250F incorporates RT (22k Ω (Typ.) only for C_T.)

TIMING CHART (TD62651F)

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT	PIN
	VV _{CC24}	-0.4~35	V	V _{CC2} , BIAS
Input Voltage	VV _{CCIN}	-0.4~7	V	VCCIN
	V _{IN24} (Condition 1) (Condition 2)	-0.4~W _{CC2} + 0.4-0.4~30	V	SLSYN, 50 / 60, RXD
	V _{IN5}	-0.4~VV _{CCIN} + 0.4	V	CPUOUT, MSCK, ADJ, COMP, CK, TC, SYNIN, MSTXD
	V _{OUT24}	-0.4~VV _{CC2} + 0.4	٧	MSSYN, TXD
	VV _{CCOUT}	-0.4~V _{BIAS} + 0.4	٧	V _{CCOUT} , OUT
Output Voltage	V _{LED} (Condition 3) (Condition 4)	-0.4~V _{BIAS} + 0.4-0.4~10	V	LED
	V _{OUT5}	-0.4~VV _{CCIN} + 0.4	V	RESET, CCK, HNSYN, SYN, SL50 / 60, MS50 / 60, TXDOUT, MSRXD, SLTXD
	lout	10	mA	OUT
	I _{RESET}	4	mA	RESET
Output Current	I _{OUT} Push / Pull	±4	mA / ch	CCK, SYN, SL50 / 60, TXDOUT, SLTXD
	I _{OUT5}	10	m / ch	HNSYN, MS50 / 60, LED, MSRXD
	I _{OUT24}	24	mA / ch	MSSYN, TXD
	IV _{CCOUT}	300	mA	Vccouт
Power Dissipation	P _D (Note 5)	1.47	W	
Operating Temperature	T _{opr}	-40~85	°C	
Storage Temperature	T _{stg}	-55~150	°C	

8

Condition 1: $VV_{CC2} \le 29.6 \text{ V}$ Condition 2: $VV_{CC2} > 29.6 \text{ V}$ Condition 3: $V_{BIAS} \le 9.6 \text{ V}$ Condition 4: $V_{BIAS} > 9.6 \text{ V}$

Note 5: Board mounting time ($50 \times 50 \times 1.6$ mm, Cu = 30%)

DC ELECTRICAL CHARACTERISTICS (Ta = 25°C, V_{CCIN} = 5 V)

Interface Section

CHARACTERISTIC	SYMBOL	PIN	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	V _{IH5}	(Note 1)			V _{CCIN} × 70%	_	_	
Input Voltage	V_{IL5}	(Note 1)	_		1	-	V _{CCIN} × 30%	V
	V _{IH24}	(Note 1)			13	-	V _{CC2} + 0.4	
	V _{IL24}				-0.4	_	7	
	I _{IH5-1}	(Note 3)		V _{IN} = 5 V	320	462	600	μA / ch
	I _{IL5-1}	(Note 3)		V _{IN} = 0 V	_	0	10	
	I _{IH5-2}	(Note 7)		V _{IN} = 5 V	480	690	940	μA
Input Current	I _{IL5-2}	(Note 1)	_	V _{IN} = 0 V	115	170	240	1
	I _{IH24}	(Note 2)		V _{IN} = 24 V	1.1	1.6	2.1	mA / ch
	I _{IL24}			V _{IN} = 0 V	350	510	690	μΑ
	V _{OH5-1}	(Note 4)	_	I _{OH} = -20 μA	V _{CC} - 0.1	_	_	V
	V _{OH5-2}			I _{OH} = -4 mA	V _{CCIN} × 70%	_	_	
	V _{OL5-1}			I _{OL} = 20 μA	_		0.1	
Output Voltage	V _{OL5-2}			I _{OL} = 4 mA	-	_	V _{CCIN} × 30%	
	V _{OL5-3}	(Note 5)		I _{IN} = 500 μA I _{OL} = 10 mA	-	_	0.5	
	V _{OL} LED	LED		I _{IN} = 200 μA I _{OL} = 1 mA	-	_	1.4	
	V _{OL24}	(Note 6)		I _{IN} = 200 μA I _{OL} = 24 mA	1	-	0.5	
Output Impedance	R _{OL} LED	LED		(Note 8)	540	680	1000	Ω
Output impedance	R _{OH5}	(Note 5)		(Note 9)	3.2	4.7	6.2	kΩ
Current Consumption 24	IV _{CC2}		_	VV _{CC2} = 24 V	_	1.6	2.1	mA
Leakage Current	I _{LEAK24}	(Note 6)		V _{OH} = 24.0 V	_	_	10	μA
	I _{LEAK5}	(Note 4)		V _{OH} = 5 V	_	_	10	μΛ
Output Shorting Current	I _{OS} (Note)	(Note 4)	_	V _{CCIN} = 5.25 V V _{OH} = 0 V	_	17.5	_	mA

Note: Two outputs or more must not be shorted at the same time.

Shorting duration must be limited to less than 1 second.

Note 1: CPUOUT, SYNIN, MSTXD Note 5: HNSYN, MS50 / 60, MSRXD

Note 2: SLSYN, 50 / 60, RXD Note 6: MSSYN, TXD Note 3: SYNIN, MSTXD Note 7: CPUOUT

Note 4: CCK, SYN, SL50 / 60, TXDOUT, SLTXD Note 8: $(V_{OL} (@I_{OL} = 5 \text{ mA}) - V_{OL} (@I_{OL} = 1 \text{ mA})) \div 4 \text{ mA}$

Note 9: $4 \text{ V} \div (@I_{OH} \text{ (V}_{OH} = 0 \text{ V)} - @I_{OH} \text{ (V}_{OH} = 4 \text{ V))}$

DC ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, V_{BIAS} = 7 to 17 V, Ta = -40 to 85°C) 5V power supply, supply monitoring section

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
Output Voltage	V _{CCOUT}	_	IV _{CCOUT} = 0.1 A	4.75	5.0	5.25	V
Input Stability	V _{CCOUT} LINE	_	V _{BIAS} = 7~35 V	_	0.1	0.5	%
Load Stability	VCCOUT LOAD	_	IV _{CCOUT} = 1~150 mA	_	0.1	0.5	%
Temperature Coefficient	V _{CCOUT} t	_		_	0.01	_	% / °C
Output Voltage	V _{OL} RESET	_	I _{OL} = 2 mA	_	_	0.5	V
Output Leakage Current	<u>lleak</u> RESET		V _{RESET} = 7 V		_	5	μΑ
Input Current	I _{TC}	_	V _{TC} = 0 to 3.5 V (Note 8)	-3	_	3	μA
Threshold Voltage	V _{TC} H	_	RESET "High" to "Low"	_	80% × V _{CCIN}	_	V
Through Value	V _{TC} L		RESET "Low" to "High"	_	40% × V _{CCIN}	_	v
Input Current	I _{CK}	_	V _{IN} = 5 V (Note 8)	_	0.3	0.7	mA
Input Voltage	V _{IH}		(Note 4)	V _{CCIN} × 70%	_	_	V
	V _{IL}		(Note 4)	_	_	V _{CCIN} × 30%	
Reset Detecting Voltage	V _{CC} RESET		TD62650 / 652F	89% × V _{CCIN}	92% × V _{CCIN}	95% × V _{CCIN}	- V
Neset Detecting voltage	VCC KESET		TD62651F	82% × V _{CCIN}	85% × V _{CCIN}	88% × V _{CCIN}	
Output Impedance	ROH_ RESET	_	TD62650F (Note 1)	3.2	4.7	6.2	kΩ
	R _{OH} TC		TD62650F (Note 1)	15	22	29	
Current Consumption 5	IV _{CCIN}	_	(Note 2)	_	5	6.5	mA
	- CCIIV		(Note 5)	_	11.5	15.0	
Bias Current Consumption	I _{BIAS}	_	V _{BIAS} = 8V (Note 7)	_	1.73	2.25	mA
Watchdog Timer	T _{WD}	_	TD62650F (Note 6)	15.4 × CT	24.2 × CT	33.0 × CT	ms
Tracerdog fillion	טעעיי		TD62651 / 2F	0.9 × CTRT	1.1 × CTRT	1.3 × CTRT	s
Reset Timer (1) (Note 3)	Te-= (4)		TD62650F (Note 6)	24.2 × CT	35.2 × CT	48.4 × CT	ms
Reset Timer (1) (Note 3)	T _{RST} (1)	_	TD62651 / 2F	1.3 × CTRT	1.6 × CTRT	1.9 × CTRT	s
Reset Timer (Note 3)	T _{RST} (2)	_	(Note 6)	300 × CT	600 × CT	900 × CT	ms

TOSHIBA

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
Clock Input Pulse width	TW CK	_		3	_	-	μs
Maximum Response Frequency 1	f _{MAX} MSCK	_		2	_	_	kHz
Maximum Response Frequency 2	f _{MAX} CK	_		10	_	_	kHz
Msck Pin Input Signal Rise Time	tr MSCK	_	(Note 9)	_	_	500	ns
Minimum Input / Output Voltage Difference	V _{OH} V _{CCOUT}		IV _{CCOUT} = 0.1 A	_	_	1.5	V

Note 1: $4 \text{ V} \div (@I_{OH} (V_{OH} = 0 \text{ V}) - @I_{OH} (V_{OH} = 4 \text{ V})$

Note 2: V_{BIAS} = 8 V, V_{CCIN} - V_{CCOUT} Short

Open Collector I / O : Open
Push-Pull I / O : Open
MSCK Input : Open

Note 3: Reset Timer (1) : Power On Reset Time

Reset Timer (2) : Watchdog Reset Time

Note 4: MSCK, CK Pins

Note 5: HNSYN, MS50 / 60, MSRXD Pull / UP Resistance + CCK, SYN, SL50 / 60, TXDOUT, SLTXD Driving Current

11

Note 6: CT Unit (µF)

Note 7: V_{CCIN}, V_{CCOUT} Open Note 8: Only TD62651F, TD62652F Note 9: Input Condition 5 V : 0 to 100%

AC ELECTRICAL CHARACTERISTICS (Ta = 25°C)

CHARACTERISTIC	CHARACTERISTIC / INPUT CONDITION	SYMBOL	TEST CIR- CUIT	OUTPUT CONDITION	MIN	TYP.	MAX	UNIT
	SLSYN-CCK	tpLH		(Nata 4)	_	0.6	_	
	(Note 1)	tpHL		(Note 4)	_	1.5	_	
	SLSYN-SYN	tpLH		(Note 4)	_	0.6	_	
	(Note 1)	tpHL		(Note 4)	_	1.5	_	
	SLSYN-HNSYN	tpLH		(Note 5)	_	0.5	_	
	(Note 1)	tpHL		(14016-3)	1	0.1	_	
	50 / 60-MS50 / 60	tpLH		(Note 5)	1	0.5	_	
	(Note 1)	tpHL		(14010-3)	_	0.1	_	
	50 / 60-SL50 / 60	tpLH		(Note 4)	-	0.6	_	
	(Note 1)	tpHL		(14010 4)	-	1.5	_	
Propagation Delay Time (tpLH: 50%-50%,	SYNIN-MSSYN	tpLH		(Note 3)		1.0	_	μs
tpHL: 50%-50%)	(Note 2)	tpHL		(14010-3)	_	0.1	_	μσ
	CPUOUT-TXDOUT	tpLH		(Note 4)	_	1.0	_	
	(Note 2)	tpHL		(Note 4)	1	1.2	_	
	MSTXD-LED (Note 2)	tpLH		(Note 5)	1	0.5	_	
		tpHL		(14010-3)	_	0.1	_	
	MSTXD-TXD (Note 2)	tpLH		(Note 3)	_	1.0	_	
		tpHL		(14010-0)	1	0.1	_	
	RXD-SLTXD (Note 1)	tpLH		(Note 4)	_	0.6	_	
		tpHL		(11010 4)	_	1.5	_	
	RXD-MSRXD	tpLH		(Note 5)	_	0.5	_	
	(Note 1)	tpHL		(14010-0)	1	0.1	_	
	MS50 / 60				1	0.3	_	
	SL50 / 60					0.2	_	
	LED				-	0.2	_	
	MSSYN					1.1	_	
	TXDOUT				_	0.2	_	
Rise Time (tr: 10%-90%)	TXD	tr	_		_	1.1	_	μs
(4.1.070 0070)	SYN				1	0.2	_	
	CCK				_	0.2		
	HNSYN					0.3		
	SLTXD					0.2		
	MSRXD				_	0.3	_	

CHARACTERISTIC	CHARACTERISTIC / INPUT CONDITION	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	MS50 / 60				_	0.1	_	
	SL50 / 60				_	0.5	_	
	LED				_	0.1	_	
	MSSYN				_	0.1	_	
Fall Time	TXDOUT				_	0.5	_	
(tr: 90%-10%)	TXD	tf	_		_	0.1	_	μs
(11. 90 /0 – 10 /0)	SYN				_	0.5	_	
	CCK				_	0.5	_	
	HNSYN				_	0.1	_	
	SLTXD				_	0.5	_	
	MSRXD				_	0.1	_	

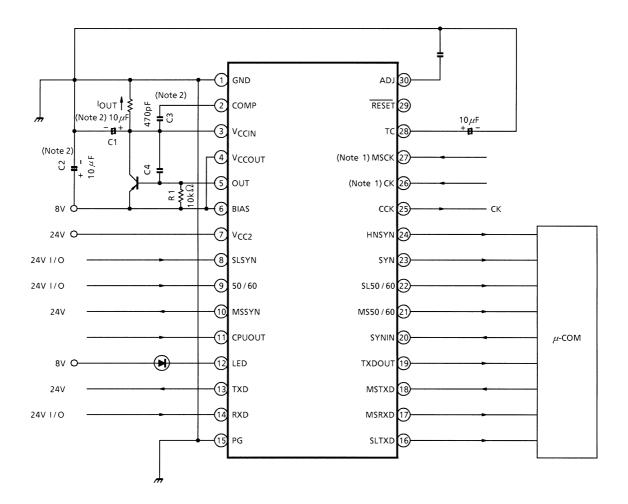
Input / Output Conditions

Input Condition

Note 1: 24-V System : 0.2µs at 2 to 22-V Note 2: 5-V System : 0.1µs at 30 to 70%

Output Conditions

Note 3: 24-V System : $C_L = 50 \text{ pF}$ Note 4: 5-V System : $C_L = 50 \text{ pF}$


 $R_L = 5 kΩ$: $C_1 = 50 pF$

Note 5: 5-V System : $C_L = 50 pF$

APPLICATION CIRCUIT

When using an external PNP transistor:

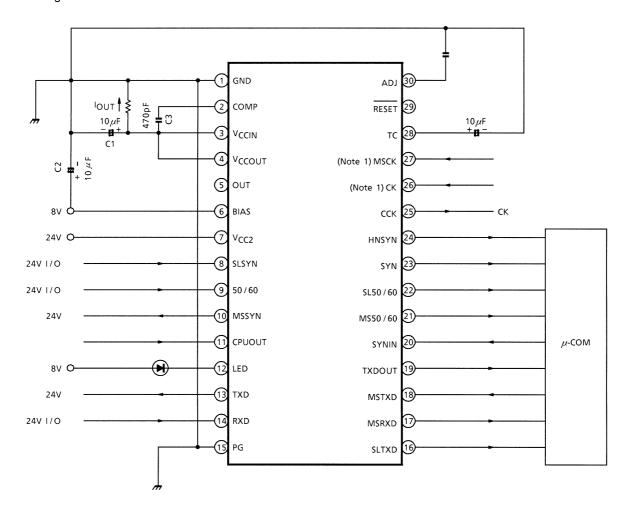
Note 1: When using the MSCK pin, short circuit the CK pin with GND. When using the CK pin, short circuit the MSCK pin with GND.

Note 2: C1 and C2 are necessary to absorb external noise, etc. Connect them as close to the IC as possible.

C3 is used for phase correction, but this also must be connected as close to the IC as possible.

We recommend that C4 be connected between OUT and V_{CCIN}.

PRECAUTIONS for USING


This IC does not integrate protection circuits such as overcurrent and overvoltage protectors.

Thus, if excess current or voltage is applied to the IC, the IC may be damaged. Please design the IC so that excess current or voltage will not be applied to the IC.

Utmost care is necessary in the design of the output line, VCC (VCCIN, VCCOUT, BIAS, VCC2) and GND line since IC may be destroyed due to short-circuit between outputs, air contamination fault, or fault by improper grounding.

When using a built-in PNP transistor:

Note 1: When using the MSCK pin, short the CK pin with GND. When using the CK pin, short the MSCK pin with GND.

Note 2: C1 and C2 are necessary to absorb external noise, etc. Connect them as close to the IC as possible.

C3 is used for phase correction, but this also must be connected as close to the IC as possible.

PACKAGE DIMENSIONS

SSOP30-P-375-1.00

Unit: mm

30

16

2042/201

15.9MAX

15.4±0.2

15.9MAX

15.4±0.2

15.9MAX

15.4±0.2

15.9MAX

15.4±0.2

15.9MAX

15.4±0.2

Weight: 0.63 g (Typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.