TOSHIBA TLP741G

TOSHIBA PHOTOCOUPLER GaAs IRED & PHOTO-THYRISTOR

# **TLP741G**

OFFICE MACHINE
HOUSEHOLD USE EQUIPMENT
SOLID STATE RELAY
SWITCHING POWER SUPPLY

The TOSHIBA TLP741G consists of a photo-thyristor optically coupled to a gallium arsenide infrared emitting diode in a six lead plastic DIP package.

Peak Off-State Voltage : 400V (Min.)
 Trigger LED Current : 10mA (Max.)
 On-State Current : 150mA (Max.)

• UL Recognized : UL1577, File No. E67349

• BSI Approved : BS EN60065:1994

Certificate No. 6617 BS EN60950:1992 Certificate No. 7366

• Isolation Voltage :  $4000V_{rms}$  (Min.)

Option (D4) type

VDE Approved : DIN VDE0884/08, 87

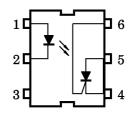
Certificate No. 65640

Maximum Operating Insulation Voltage :  $630V_{PK}$ Highest Permissible Over Voltage :  $6000V_{PK}$ 

(Note) When a VDE0884 approved type is needed, please designate the "Option (D4)"

7.62mm pich 10.16mm pich standard type (LF2) type

Creepage Distance : 7.0mm (Min.) 8.0mm (Min.)
 Clearance : 7.0mm (Min.) 8.0mm (Min.)


Insulation Thickness : 0.5mm (Min.) 0.5mm (Min.)

11-7B1

Weight: 0.35g

**TOSHIBA** 

PIN CONFIGURATIONS (TOP VIEW)



1: ANODE

2 : CATHODE

3: NC

4 : CATHODE

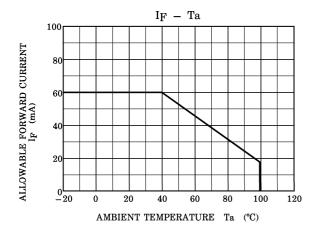
5: ANODE

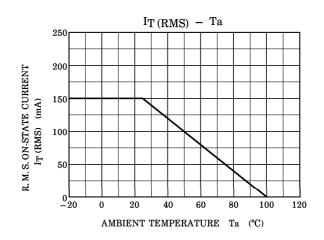
6 : **GATE** 

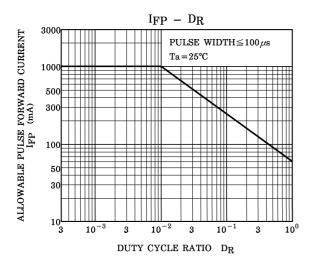
### MAXIMUM RATINGS (Ta = 25°C)

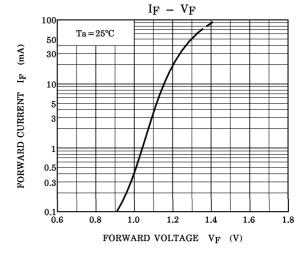
|        | CHARACTERISTIC                                    | SYMBOL                            | RATING  | UNIT             |
|--------|---------------------------------------------------|-----------------------------------|---------|------------------|
| LED    | Forward Current                                   | $I_{\mathbf{F}}$                  | 60      | mA               |
|        | Forward Current Derating (Ta≥39°C)                | ΔI <sub>F</sub> /°C               | -0.7    | mA/°C            |
|        | Peak Forward Current (100 µs pulse, 100 pps)      | $I_{\mathrm{FP}}$                 | 1       | A                |
|        | Power Dissipation                                 | $P_{\mathbf{D}}$                  | 100     | mW               |
|        | Power Dissipation Derating (Ta≥25°C)              | $\Delta P_{\mathbf{D}}/^{\circ}C$ | -1.0    | mW/°C            |
|        | Reverse Voltage                                   | $v_{R}$                           | 5       | V                |
|        | Junction Temperature                              | $T_j$                             | 125     | °C               |
|        | Peak Forward Voltage ( $R_{GK} = 27k\Omega$ )     | $v_{ m DRM}$                      | 400     | V                |
|        | Peak Reverse Voltage ( $R_{GK} = 27k\Omega$ )     | $V_{RRM}$                         | 400     | V                |
|        | On-State Current                                  | I <sub>T (RMS)</sub>              | 150     | mA               |
| OR     | On-State Current Derating (Ta≥25°C)               | ΔI <sub>T</sub> /°C               | -2.0    | mA/°C            |
| DETECT | Peak On-State Current (100 $\mu$ s pulse, 120pps) | I <sub>TP</sub>                   | 3       | A                |
| ΤE     | Peak One Cycle Surge Current                      | $I_{TSM}$                         | 2       | A                |
| DE     | Peak Reverse Gate Voltage                         | $v_{GM}$                          | 5       | V                |
|        | Power Dissipation                                 | $P_{\mathbf{D}}$                  | 150     | mW               |
|        | Power Dissipation Derating (Ta≥25°C)              | $\Delta P_{\mathbf{D}}/^{\circ}C$ | -2.0    | mW/°C            |
|        | Junction Temperature                              | $T_{j}$                           | 100     | °C               |
| Sto    | rage Temperature Range                            | $T_{ m stg}$                      | -55~125 | °C               |
| Оре    | rating Temperature Range                          | $T_{ m opr}$                      | -55~100 | °C               |
| Lea    | d Soldering Temperature (10s)                     | T <sub>sol</sub>                  | 260     | °C               |
| Tot    | al Package Power Dissipation                      | PT                                | 250     | mW               |
|        | al Package Power Dissipation Derating<br>≥ 25°C)  | ΔP <sub>T</sub> /°C               | -3.3    | mW/°C            |
| Isol   | ation Voltage (AC, 1 min., R.H.≤60%)              | $BV_S$                            | 4000    | V <sub>rms</sub> |

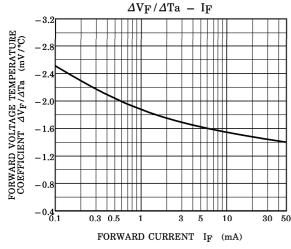
### RECOMMENDED OPERATING CONDITIONS

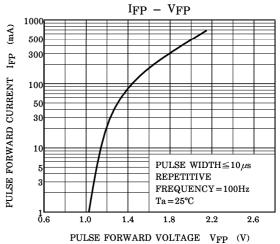

| CHARACTERISTIC             | SYMBOL           | MIN. | TYP. | MAX. | UNIT               |
|----------------------------|------------------|------|------|------|--------------------|
| Supply Voltage             | $v_{AC}$         | _    | _    | 120  | Vac                |
| Forward Current            | $I_{\mathbf{F}}$ | 15   | 20   | 25   | mA                 |
| Operating Temperature      | $T_{ m opr}$     | -25  | _    | 85   | °C                 |
| Gate to Cathode Resistance | $R_{GK}$         | _    | 27   | 33   | $\mathbf{k}\Omega$ |
| Gate to Cathode Capacity   | $c_{GK}$         | _    | 0.01 | 0.1  | $\mu \mathbf{F}$   |

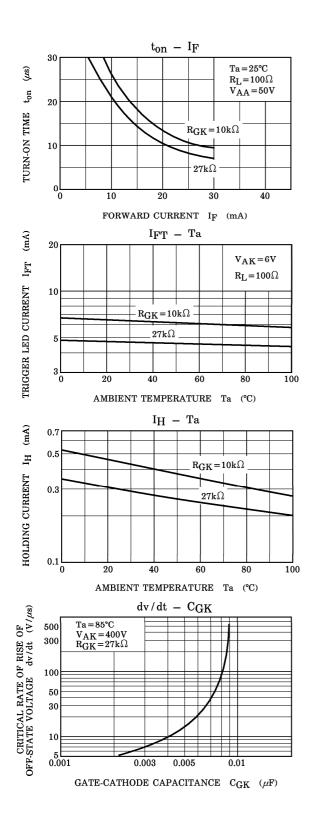

# INDIVIDUAL ELECTRICAL CHARACTERISTICS (Ta = 25°C)

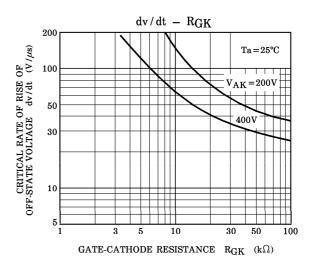

| CHARACTERISTIC |                            | SYMBOL                    | TEST CONDITION                      |               | MIN. | TYP. | MAX. | UNIT      |
|----------------|----------------------------|---------------------------|-------------------------------------|---------------|------|------|------|-----------|
| LED            | Forward Voltage            | $V_{\mathbf{F}}$          | I <sub>F</sub> =10mA                |               | 1.0  | 1.15 | 1.3  | V         |
|                | Reverse Current            | $I_{\mathbf{R}}$          | $V_R=5V$                            |               | _    | _    | 10   | $\mu$ A   |
|                | Capacitance                | $\mathrm{C}_{\mathrm{T}}$ | V=0, f=1MHz                         |               | _    | 30   | _    | pF        |
| DETECTOR       | Off-State Current          | $I_{ m DRM}$              | $V_{AK} = 400V$                     | Ta=25°C       | _    | 10   | 5000 | nA        |
|                |                            |                           | $R_{GK} = 27k\Omega$                | Ta=100°C      | _    | 1    | 100  | $\mu$ A   |
|                | Reverse Current            | $I_{RRM}$                 | $V_{KA} = 400V$                     | Ta=25°C       | _    | 10   | 5000 | nA        |
|                |                            |                           | $R_{GK} = 27k\Omega$                | Ta=100°C      | _    | 1    | 100  | $\mu$ A   |
|                | On-State Voltage           | $ m V_{TM}$               | $I_{TM} = 100 mA$                   |               | _    | 0.9  | 1.3  | V         |
|                | Holding Current            | ${ m I_H}$                | $R_{GK} = 27k\Omega$                |               | _    | 0.2  | _    | mA        |
|                | Off-State dv/dt            | dv / dt                   | $V_D$ =280V, $R_{GK}$ =27k $\Omega$ |               | 5    | 10   | _    | $V/\mu s$ |
|                | Capacitance C <sub>j</sub> | C.                        | V=0, f=1MHz                         | Anode to Gate | _    | 20   | _    | Tr        |
|                |                            | v = 0, 1 = 1MH2           | Gate to Cathode                     | _             | 350  | _    | pF   |           |

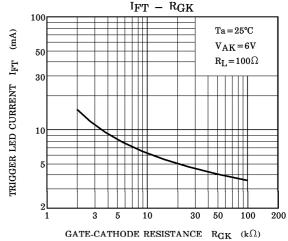

## COUPLED CHARACTERISTICS (Ta = 25°C)

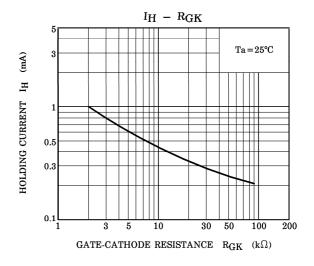

| CHARACTERISTIC                   | SYMBOL            | TEST CONDITION                                                                  |                    | TYP.      | MAX. | UNIT                        |  |
|----------------------------------|-------------------|---------------------------------------------------------------------------------|--------------------|-----------|------|-----------------------------|--|
| Trigger LED Current              | $I_{\mathrm{FT}}$ | $V_{AK}=6V, R_{GK}=27k\Omega$                                                   | _                  | 4         | 10   | mA                          |  |
| Turn-on Time                     | $t_{ m ON}$       | $I_{\mathrm{F}}$ =30mA, $V_{\mathrm{AA}}$ =50V, $R_{\mathrm{GK}}$ =27k $\Omega$ | _                  | 10        | _    | $\mu$ s                     |  |
| Coupled dv/dt                    | dv / dt           | $V_S$ =500V, $R_{GK}$ =27k $\Omega$                                             | 500                |           |      | V/μs                        |  |
| Capacitance<br>(Input to Output) | $c_{S}$           | $V_S=0$ , $f=1MHz$                                                              | _                  | 0.8       | _    | pF                          |  |
| Isolation Resistance             | $R_{\mathbf{S}}$  | $V_S = 500V$                                                                    | $1 \times 10^{12}$ | $10^{14}$ | _    | Ω                           |  |
|                                  |                   | AC, 1 minute                                                                    | 4000 —             |           | 37   |                             |  |
| Isolation Voltage                | $^{ m BV}_{ m S}$ | AC, 1 second, in oil                                                            | _                  | 10000     | _    | $\left  V_{ m rms} \right $ |  |
|                                  |                   | DC, 1 minute, in oil                                                            | _                  | 10000     | _    | $v_{dc}$                    |  |














#### **RESTRICTIONS ON PRODUCT USE**

000707EBC

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- ◆ The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.