TOSHIBA TLP747G

TOSHIBA PHOTOCOUPLER GaAs IRED & PHOTO-THYRISTOR

TLP747G

OFFICE MACHINE
HOUSEHOLD USE EQUIPMENT
SOLID STATE RELAY
SWITCHING POWER SUPPLY

The TOSHIBA TLP747G consists of a photo-thyristor optically coupled to a gallium arsenide infrared emitting diode in a six lead plastic DIP.

Peak Off-State Voltage : 400V (Min.)
 Trigger LED Current : 15mA (Max.)
 On-State Current : 150mA (Max.)

• UL Recognized : UL1577, File No. E67349

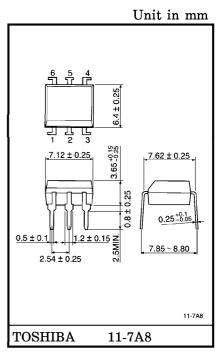
• BSI Approved : BS EN60065:1994

Certificate No. 7364 BS EN60950:1992 Certificate No. 7365

• SEMKO Approved : SS4330784, Certificate No. 9325163, 9522142

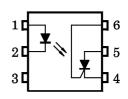
Isolation Voltage : 4000Vrms (Min.)

• Option (D4) type


VDE Approved : DIN VDE0884/06.92,

Certificate No. 74286, 91808

Maximum Operating Insulation Voltage : 630, 890VpK Highest Permissible Over Voltage : 6000, 8000VpK


(Note) When a VDE0884 approved type is needed, please designate the "Option (D4)"

			7.62mm pich standard type			10.16 mm pich TLP $\times \times \times$ F type	
•	Creepage Distance	:	7.0mm	(Min.)	8.0mm	(Min.)	
	Clearance	:	7.0mm	(Min.)	8.0mm	(Min.)	
	Insulation Thickness	:	0.5mm	(Min.)	0.5mm	(Min.)	

Weight: 0.42g

PIN CONFIGURATIONS (TOP VIEW)

1: ANODE

2: CATHODE

3 : NC

4 : CATHODE

5: ANODE

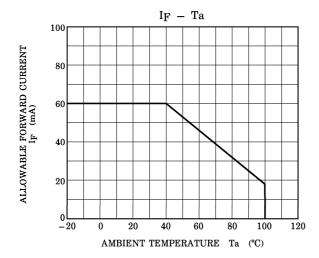
6: GATE

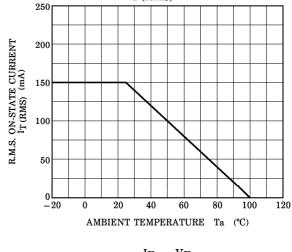
MAXIMUM RATINGS (Ta = 25°C)

	CHARACTERISTIC		SYMBOL	RATING	UNIT
	Forward Current		${ m I_F}$	60	mA
D	Forward Current Derating (Ta≥39°C)		$\Delta I_{\mathbf{F}} / {^{\circ}\mathbf{C}}$	-0.7	mA/°C
LE	Peak Forward Current (100 µs pulse, 100 pps)		$I_{ extbf{FP}}$	1	Α
	Reverse Voltage		v_{R}	5	V
	Junction Temperature		T_{j}	125	°C
	Peak Forward Voltage ($R_{GK} = 27 k\Omega$)		$v_{ m DRM}$	400	V
	Peak Reverse Voltage ($R_{GK} = 27 k\Omega$)		v_{RRM}	400	V
R			I _T (RMS)	150	mA
Τ0	On-StateCurrent Derating (Ta≥25°C)		$\Delta I_{\mathrm{T}}/{}^{\circ}\mathrm{C}$	-2.0	mA/°C
TEC	Peak On-StateCurrent (100µs pulse, 120pps)		$I_{ ext{TP}}$	3	Α
	Peak One Cycle Surge Current		I_{TSM}	2	Α
DΕ	Peak Reverse Gate Voltage		v_{GM}	5	V
	Power Dissipation		P_{D}	150	mW
	Power Dissipation Derating (Ta≥25°C)		$\Delta P_{\mathbf{D}} / {}^{\circ}\mathbf{C}$	-2.0	mW/°C
	Junction Temperature		T_{j}	100	°C
S	torage Temperature Range		$\mathrm{T_{stg}}$	-55~125	°C
0	Operating Temperature Range		$\mathrm{T_{opr}}$	-40~100	°C
L	ead Soldering Temperatur (10s)		Tsol	260	°C
Total Package Power Dissipation			P_{T}	250	mW
Т	Total Package Power Dissipation Derating (Ta≥25°C)		$\Delta P_{\mathrm{T}}/^{\circ}\mathrm{C}$	-3.3	mW/°C
Is	olation Voltage (AC, 1min., R.H.≤60%)	(Note)	$BV_{\mathbf{S}}$	4000	Vrms

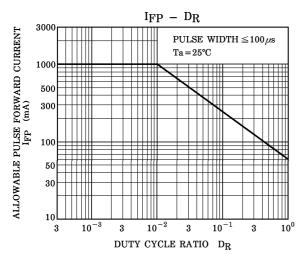
(Note) Device considered a two terminal device: pins 1, 2 and 3 shorted together, and pins 4, 5 and 6 shorted together.

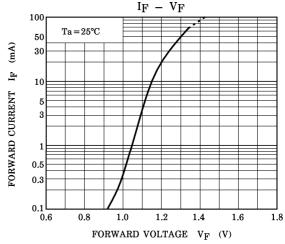
RECOMMENDED OPERATING CONDITIONS

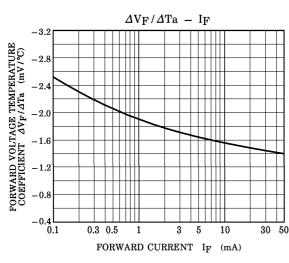

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	v_{AC}	_		120	Vac
Forward Current	${ m I_F}$	20		25	mA
Operating Temperature	${ m T_{opr}}$	-25	_	85	°C
Gate to Cathode Resistance	R_{GK}	_	27	33	$\mathbf{k}\Omega$
Gate to Cathode Capacity	c_{GK}	_	0.01	0.1	μ F

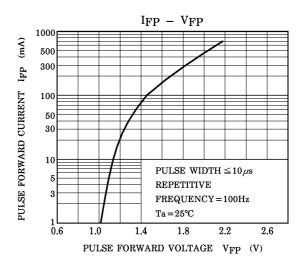

INDIVIDUAL ELECTRICAL CHARACTERISTICS (Ta = 25°C)

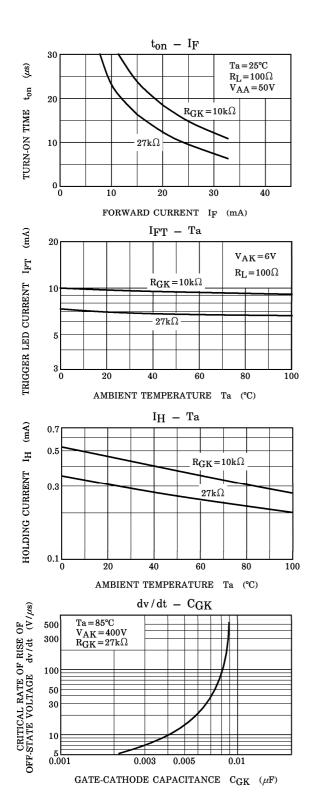
CHARACTERISTIC SYMBOL		TEST CO	MIN.	TYP.	MAX.	UNIT		
LED	Forward Voltage	$V_{\mathbf{F}}$	$I_{ m F} = 10 { m mA}$	1.0	1.15	1.3	V	
	Reverse Current	I_{R}	$V_{R}=5V$	_	1	10	μ A	
	Capacitance	C_{T}	V=0, f=1M	_	30	_	pF	
	Off-State Current I _{DRM}	T	$V_{AK} = 400V$	$Ta = 25^{\circ}C$	_	10	5000	nA
		$R_{GK} = 27k\Omega$	$Ta = 100^{\circ}C$	_	1	100	μ A	
O R	Reverse Current I _{RRM}	$V_{KA} = 400V$	Ta=25°C	_	10	5000	nA	
СТ		$R_{GK} = 27k\Omega$	$Ta = 100^{\circ}C$	_	1	100	μ A	
闰	On-State Voltage	V_{TM}	$I_{\text{TM}} = 100 \text{m}$	_	0.9	1.3	V	
ΕT	Holding Current	$I_{ m H}$	$R_{GK} = 27 k\Omega$	_	0.2	_	mA	
D	Off-State dv/dt	dv / dt	$V_{AK} = 280V$	5	10	_	V/μs	
	Canacitance C:	V=0, A	node to Gate	_	20	_	рF	
		f=1MHz G	ate to Cathode	_	350	_	pr	

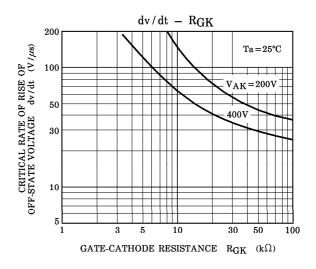

COUPLED CHARACTERISTICS (Ta = 25°C)

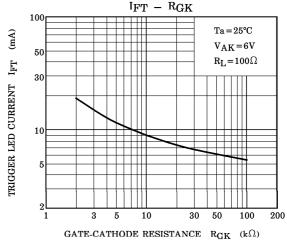

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
Trigger LED Current	$I_{ ext{FT}}$	$V_{AK}=6V, R_{GK}=27k\Omega$	_	_	15	mA	
Turn-on Time	t_{on}	$I_{ m F}\!=\!30{ m mA},~V_{ m AA}\!=\!50{ m V} \ R_{ m GK}\!=\!27{ m k}\Omega$	_	10	_	μs	
Coupled dv/dt	dv / dt	V_S =500V, R_{GK} =27k Ω	500	_		V/μs	
Capacitance(Input to Output)	$c_{\mathbf{S}}$	$V_S=0$, $f=1MHz$	_	0.8	_	pF	
Isolation Resistance	$R_{\mathbf{S}}$	V _S =500V, R.H.≦60%	1×10^{12}	10^{14}		Ω	
	BV_{S}	AC, 1 minute	4000	_	_	37	
Isolation Voltage		AC, 1 second, in oil		10000	_	Vrms	
		DC, 1 minute, in oil	_	10000	_	Vdc	

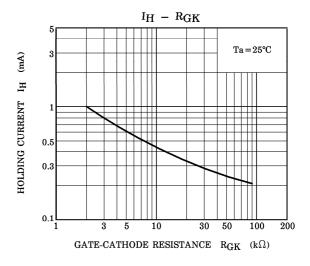





IT (RMS) - Ta







RESTRICTIONS ON PRODUCT USE

000707EBC

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- ◆ The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.