TOSHIBA TLP747J

TOSHIBA PHOTOCOUPLER GaAs IRED & PHOTO-THYRISTOR

TLP747J

OFFICE MACHINE
HOUSEHOLD USE EQUIPMENT
SOLID STATE RELAY
SWITCHING POWER SUPPLY

The TOSHIBA TLP747J consists of a photo-thyristor optically coupled to a gallium arsenide infrared emitting diode in a six lead plastic DIP.

• Peak Off-State Voltage: 600V Min.

• Trigger LED Current: 15mA Max.

• On-State Current : 150mA Max.

• UL Recognized : UL1577, File No. E67349

BSI Approved : BS EN60065:1994,

Certificate No. 7364 BS EN60950:1992, Certificate No. 7365

SEMKO Approved : SS4330784, Certificate No. 9325163, 9522142

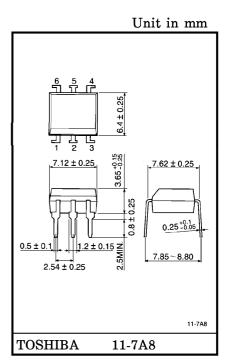
Isolation Voltage: 4000Vrms Min.

• Option (D4) type

VDE Approved : DIN VDE0884/06.92

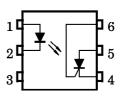
Certificate No. 74286, 91808

Maximum Operating Insulation Voltage : 630, 890VpK Highest Permissible Over Voltage : 6000, 8000VpK


(Note) When a VDE0884 approved type is needed, Please designate the "Option (D4)"

7.62mm pich 10.16mm pich

TLP×××F type


standard type

Creepage Distance : 7.0mm (Min.) 8.0mm (Min.)
Clearance : 7.0mm (Min.) 8.0mm (Min.)
Isolation Thickness : 0.5mm (Min.) 0.5mm (Min.)

Weight: 0.42g

PIN CONFIGURATIONS (TOP VIEW)

1: ANODE

2: CATHODE

3 : NC

4 : CATHODE

5: ANODE

6: GATE

2001-06-01

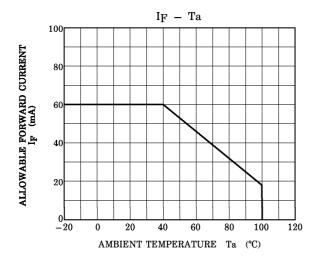
MAXIMUM RATINGS (Ta = 25°C)

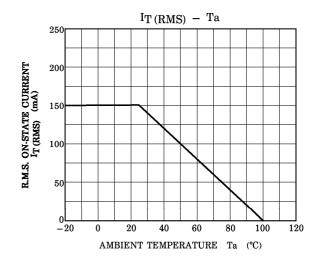
	CHARACTERISTIC	SYMBOL	RATING	UNIT
	Forward Current	$I_{\mathbf{F}}$	60	mA
Q	Forward Current Derating (Ta≥39°C)	ΔI _F /°C	-0.7	mA/°C
臼	Peak Forward Current (100 µs pulse, 100 pps)	I_{FP}	1	A
П	Reverse Voltage	v_{R}	5	V
	Junction Temperature	$T_{ m j}$	125	°C
	Peak Forward Voltage ($R_{GK} = 27k\Omega$)	$v_{ m DRM}$	600	V
R	Peak Reverse Voltage (R _{GK} =27kΩ)	v_{RRM}	600	V
0	On-StateCurrent	IT (RMS)	150	mA
Т	On-StateCurrent Derating (Ta≥25°C)	∆I _T /°C	-2.0	mA/°C
၁	Peak On-StateCurrent (100 µs pulse, 120 pps)	I_{TP}	3	A
臼	Peak One Cycle Surge Current	I_{TSM}	2	A
L	Peak Reverse Gate Voltage	v_{GM}	5	V
田田	Power Dissipation	$P_{\mathbf{D}}$	150	mW
	Power Dissipation Derating (Ta≥25°C)	△P _D /°C	-2.0	mW/°C
	Junction Temperature	$T_{ m j}$	100	°C
S	torage Temperature Range	$\mathrm{T_{stg}}$	-55~125	°C
0	perating Temperature Range	${ m T_{opr}}$	-40~100	°C
\mathbf{L}	ead Soldering Temperatur (10s)	Tsol	260	°C
Т	otal Package Power Dissipation	P_{T}	250	mW
	otal Package Power Dissipation Derating Ta≥25°C)	$\Delta P_{\mathrm{T}}/^{\circ}\mathrm{C}$	-3.3	mW/°C
Is	solation Voltage (AC, 1min., R. H. \leq 60%) (Note)	$BV_{\mathbf{S}}$	4000	Vrms

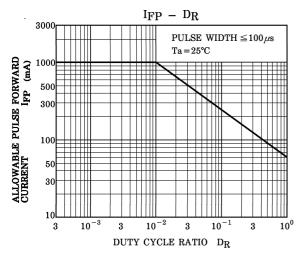
(Note) Device considered a two terminal device: Pins 1, 2 and 3 shorted together, and pins 4, 5 and 6 shorted together.

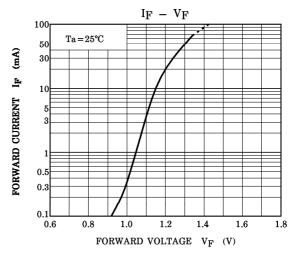
RECOMMENDED OPERATING CONDITIONS

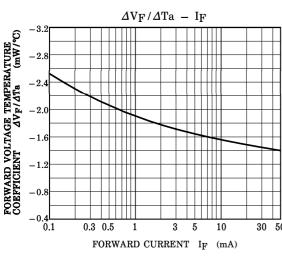
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	v_{AC}	_	_	240	Vac
Forward Current	$I_{\mathbf{F}}$	20	_	25	mA
Operating Temperature	$\mathrm{T}_{\mathrm{opr}}$	-25	_	85	$^{\circ}\mathrm{C}$
Gate to Cathode Resistance	R_{GK}	_	10	27	$\mathbf{k}\Omega$
Gate to Cathode Capacity	c_{GK}	_	0.01	0.1	$\mu \mathbf{F}$

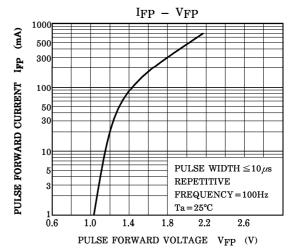

INDIVIDUAL ELECTRICAL CHARACTERISTICS (Ta = 25°C)

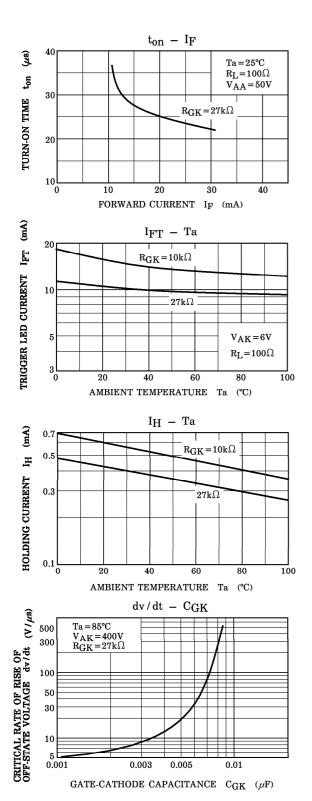

CHARACTERISTIC		SYMBOL	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
LED	Forward Voltage	$ m V_{ m F}$	$I_{\mathbf{F}} = 10 \text{mA}$		1.0	1.15	1.3	V
	Reverse Current	$I_{\mathbf{R}}$	$V_R = 5V$		_	_	10	μ A
	Capacitance	C_{T}	V=0, f=1MHz		_	30	_	pF
DETECTOR	Off-State Current I _{DRM}	T	$V_{AK} = 400V$	Ta=25°C	_	10	5000	nA
		$R_{GK} = 27k\Omega$	Ta=85°C	_	1	100	μ A	
	Reverse Current I _{RRM}	Topas	$V_{KA} = 400V$	Ta = 25°C	_	10	5000	nA
		$R_{GK} = 27k\Omega$	Ta=85°C	_	1	100	μ A	
	On-State Voltage	$V_{ extbf{TM}}$	$I_{TM} = 100 mA$		_	0.9	1.3	V
	Holding Current	$I_{ m H}$	$R_{GK} = 27k\Omega$		_	0.2	_	mA
	Off-State dv/dt	dv / dt	V_{AK} =280V, R_{GK} =27k Ω		5	10	_	$V/\mu s$
	Capacitance C _j	V=0, Anod	le to Gate		20		pF	
		f=1MHz Gate	to Cathode	_	350	_	pr	

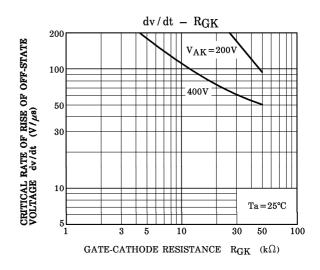

COUPLED CHARACTERISTICS (Ta = 25°C)

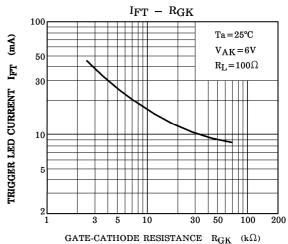

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Trigger LED Current	$I_{ ext{FT}}$	I_{FT} $V_{AK}=6V, R_{GK}=27k\Omega$			15	mA
Turn-on Time	$t_{ m ON}$	$I_F = 30 \text{mA}, V_{AA} = 50 \text{V}$ $R_{GK} = 27 \text{k}\Omega$		10	_	μs
Coupled dv/dt	dv/dt	V_S =500V, R_{GK} =27k Ω	500	1	_	V/μs
Capacitance (Input to Output)	c_{S}	$V_S=0$, f=1MHz	_	0.8	1	pF
Isolation Resistance	$R_{\mathbf{S}}$	$V_S = 500V, R.H. \le 60\%$	1×10^{12}	10^{14}	_	Ω
		AC, 1 minute	4000 —	_	37	
Isolation Voltage	$BV_{\mathbf{S}}$	AC, 1 second, in oil	_	10000	_	Vrms
		DC, 1 minute, in oil	_	_ 10000	_	Vdc

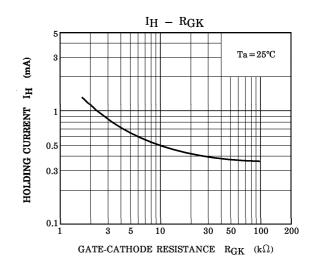

3 2001-06-01











4 2001-06-01

5 2001-06-01

RESTRICTIONS ON PRODUCT USE

000707EBC

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- ◆ The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.