MC10137

Universal Decade Counter

The MC10137 is a high speed synchronous counter that can count up, down, preset, or stop count at frequencies exceeding 100 MHz . The flexibility of this device allows the designer to use one basic counter for most applications. The synchronous count feature makes the MC10137 suitable for either computers or instrumentation.

Three control lines (S1, S2, and $\overline{\text { Carry In }}$) determine the operation mode of the counter. Lines S1 and S2 determine one of four operations; preset (program), increment (count up), decrement (count down), or hold (stop count). Note that in the preset mode a clock pulse is necessary to load the counter, and the information present on the data inputs (D0, D1, D2, and D3) will be entered into the counter. $\overline{\text { Carry Out goes low on the terminal count. The } \overline{\text { Carry Out }} \text { on the }}$ MC10137 is partially decoded from Q1 and Q2 directly, so in the preset mode the condition of the $\overline{\text { Carry Out }}$ after the Clock's positive excursion will depend on the condition of Q1 and/or Q2. The counter changes state only on the positive going edge of the clock. Any other input may change at any time except during the positive transition of the clock. The sequence for counting out of improper states is as shown in the State Diagrams.

- $P_{D}=625 \mathrm{~mW}$ typ/pkg (No Load)
- $\mathrm{f}_{\text {count }}=150 \mathrm{MHz}$ typ
- $\mathrm{t}_{\mathrm{pd}}=3.3 \mathrm{~ns}$ typ $(\mathrm{C}-\mathrm{Q})$
- $=7.0 \mathrm{~ns}$ typ $\left(\mathrm{C}-\overline{\mathrm{C}}_{\text {out }}\right)$
- $=5.0 \mathrm{~ns} \operatorname{typ}\left(\overline{\mathrm{C}}_{\mathrm{in}}-\overline{\mathrm{C}}_{\text {out }}\right)$

STATE DIAGRAMS

DIP PIN ASSIGNMENT

Pin assignment is for Dual-in-Line Package. For PLCC pin assignment, see the Pin Conversion Tables on page 18 of the ON Semiconductor MECL Data Book (DL122/D).

ON Semiconductor

http://onsemi.com
MARKING
DIAGRAMS

FUNCTION SELECT TABLE

S1	S2	Operating Mode
L	L	Preset (Program)
L	H	Increment (Count Up)
H	L	Decrement (Count Down)
H	H	Hold (Stop Count)

ORDERING INFORMATION

Device	Package	Shipping
MC10137L	CDIP-16	25 Units / Rail
MC10137P	PDIP-16	25 Units / Rail
MC10137FN	PLCC-20	46 Units / Rail

NOTE: Flip-flops will toggle when all T inputs are low.

SEQUENTIAL TRUTH TABLE*

INPUTS								OUTPUTS				
S1	S2	D0	D1	D2	D3	$\overline{\overline{\text { Carry }}}$	Clock	Q0	Q1	Q2	Q3	$\begin{gathered} \overline{\text { Carry }} \\ \overline{\text { Out }} \end{gathered}$
L	L	H	H	H	L	X	H	H	H	H	L	H
L	H	X	X	X	X	L	H	L	L	L	H	H
L	H	X	X	X	X	L	H	H	L	L	H	L
L	H	X	X	X	X	L	H	L	L	L	L	H
L	H	X	X	X	X	L	H	H	L	L	L	H
L	H	X	x	X	X	H	L	H	L	L	L	H
L	H	x	X	X	X	H	H	H	L	L	L	H
H	H	X	X	X	X	X	H	H	L	L	L	H
L	L	H	H	L	L	X	H	H	H	L	L	H
H	L	X	X	X	X	L	H	L	H	L	L	H
H	L	X	X	X	X	L	H	H	L	L	L	H
H	L	X	X	X	X	L	H	L	L	L	L	L

* Truth table shows logic states assuming inputs vary in sequence shown from top to bottom.
** A clock H is defined as a clock input transition from a low to a high logic level.

ELECTRICAL CHARACTERISTICS

1. Individually apply $\mathrm{V}_{\text {ILmin }}$ to pin under test.
2. Measure output after clock pulse V_{IL} —— V_{IH} appears at clock input (Pin 13).
3. Before test set Q1 and Q2 outputs to a logic low.

ELECTRICAL CHARACTERISTICS (continued)

@ Test Temperature			TEST VOLTAGE VALUES (Volts)					$\begin{gathered} \left(\mathrm{VCC}_{\mathrm{Cl}}\right) \\ \mathrm{Gnd} \end{gathered}$
			$\mathrm{V}_{\text {IHmax }}$	$\mathrm{V}_{\text {ILImin }}$	$\mathrm{V}_{\text {IHAmin }}$	VILAmax	$\mathrm{V}_{\text {EE }}$	
		$\begin{aligned} & -30^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$	-0.890	-1.890	-1.205	-1.500	-5.2	
			-0.810	-1.850	-1.105	-1.475	-5.2	
			-0.700	-1.825	-1.035	-1.440	-5.2	
Characteristic	Symbol	Pin Under Test	TEST VOLTAGE APPLIED TO PINS LISTED BELOW					
			$\mathrm{V}_{\text {IHmax }}$	$\mathrm{V}_{\text {ILmin }}$	$\mathrm{V}_{\text {IHAmin }}$	VILAmax	V_{EE}	
Power Supply Drain Current	IE	8					8	1,16
Input Current	linH	$\begin{gathered} 5,6,11,12 \\ 7 \\ 9,10 \\ 13 \end{gathered}$	$\begin{gathered} \hline 5,6,11,12 \\ 7 \\ 9,10 \\ 13 \end{gathered}$				$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \\ & 1,16 \\ & 1,16 \end{aligned}$
	$\mathrm{l}_{\mathrm{inL}}$	All		Note NO TAG			8	1,16
Output Voltage Logic 1	V_{OH}	$\begin{gathered} 14 \\ \text { (NO TAG) } \end{gathered}$	12	7, 9			8	1,16
Output Voltage Logic 0	V_{OL}	$\begin{gathered} 14 \\ \text { (NO TAG) } \end{gathered}$		7, 9			8	1,16
Threshold Voltage Logic 1	VOHA	$\begin{gathered} 14 \\ \text { (NO TAG) } \end{gathered}$		7, 9	12		8	1, 16
Threshold Voltage Logic 0	VOLA	$\begin{gathered} 14 \\ \text { (NO TAG) } \end{gathered}$		7, 9		12	8	1,16
Switching Times (50Ω Load)			+1.11V	+0.31V	Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay Clock Input		14	12		13	14	8	
	t_{13+14}	14			13	14	8	1,16
	${ }^{\text {t }} 13+4+$	4	7		13	4	8	1, 16
	t13+4-	4	7		13	4	8	1,16
Carry In to Carry Out	$\begin{aligned} & \mathrm{t}_{10-4-} \\ & \mathrm{t}_{10+4+} \end{aligned}$	$\begin{gathered} 4 \text { (NO TAG) } \\ 4 \end{gathered}$	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Setup Time Data Inputs	$\begin{aligned} & \mathrm{t}_{12+13+} \\ & \mathrm{t}_{12-13+} \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$		$\begin{aligned} & 7,9 \\ & 7,9 \end{aligned}$	$\begin{aligned} & 12,13 \\ & 12,13 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Select Inputs	$\begin{aligned} & \mathrm{t}_{9+13+} \\ & \mathrm{t}_{7+13+} \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$			$\begin{aligned} & 9,13 \\ & 7,13 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Carry In Inputs	$\begin{aligned} & \mathrm{t}_{10-13+} \\ & \mathrm{t}_{13+10+} \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	9 9	$\begin{aligned} & 10,13 \\ & 10,13 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Hold Time Data Inputs	$\begin{aligned} & \mathrm{t}_{13+12+} \\ & \mathrm{t}_{13+12-} \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$		$\begin{aligned} & 7,9 \\ & 7,9 \end{aligned}$	$\begin{aligned} & 12,13 \\ & 12,13 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Select Inputs	$\begin{aligned} & t_{13+9+} \\ & t_{13+7+} \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$			$\begin{aligned} & 9,13 \\ & 7,13 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Carry In Inputs	$\begin{aligned} & \mathrm{t}_{13+10-} \\ & \mathrm{t}_{10+13+} \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	7 7	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & 10,13 \\ & 10,13 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	8	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Counting Frequency	${ }^{f}$ countup fcountdown	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	7 9		$\begin{aligned} & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Rise Time (20 to 80\%)	$\begin{gathered} \mathrm{t}_{4+} \\ \mathrm{t}_{14+} \end{gathered}$	$\begin{gathered} 4 \\ 14 \end{gathered}$	$\begin{aligned} & 7 \\ & 7 \end{aligned}$		$\begin{aligned} & 13 \\ & 13 \end{aligned}$	$\begin{gathered} 4 \\ 14 \end{gathered}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Fall Time (20 to 80\%)	$\begin{gathered} \mathrm{t}_{4-} \\ \mathrm{t}_{14} \end{gathered}$	$\begin{gathered} 4 \\ 14 \end{gathered}$	$\begin{aligned} & 7 \\ & 7 \end{aligned}$		$\begin{aligned} & 13 \\ & 13 \end{aligned}$	$\begin{gathered} 4 \\ 14 \end{gathered}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$

1. Individually test each input; apply $\mathrm{V}_{\text {ILmin }}$ to pin under test.
2. Measure output after clock pulse
$\mathrm{V}_{\mathrm{IL}} \longrightarrow \mathrm{V}_{\mathrm{IH}}$ appears at clock input (Pin 13).
3. Before test set all Q outputs to a logic high.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained.

Outputs are terminated through a $50-\mathrm{ohm}$ resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ $25^{\circ} \mathrm{C}$

NOTE:
$t_{\text {setup }}$ is the minimum time before the positive transition of the clock pulse (C) that information must be present at the input D or S .
thold is the minimum time after the positive transition of the clock pulse (C) that information must remain unchanged at the input D or S.

Input Pulse
$t+=t-=2.0 \pm 0.2 \mathrm{~ns}$
(20 to 80\%)

(a) is the minimum time to wait after the counter has been enabled to clock it.
(b) is the minimum time before the counter has been disabled that it may be clocked.
(c) is the minimum time before the counter is enabled that a clock pulse may be applied with no effect on the state of the counter.
(d) is the minimum time to wait after the counter is disabled that a clock pulse may be applied with no effect in the state of the counter.
(b) and (c) may be negative numbers.

50 -ohm termination to ground located in each scope channel input.
All input and output cables to the scope are equal lengths of 50 -ohm coaxial cable. Wire length should be $<1 / 4$ inch from $\mathrm{TP}_{\text {in }}$ to input pin and TP out to output pin.
Unused outputs are connected to a $50-$ ohm resistor to ground.

MC10137

PACKAGE DIMENSIONS

PLCC-20
FN SUFFIX
PLASTIC PLCC PACKAGE
CASE 775-02
ISSUE C

MC10137

PACKAGE DIMENSIONS

PDIP-16
P SUFFIX
PLASTIC DIP PACKAGE

CASE 648-08
ISSUE R
notes:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH
3. DIMENSION L TO CENTER OF LEADS WHEN

FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH
5. ROUNDED CORNERS OPTIONAL.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.740	0.770	18.80	19.55
B	0.250	0.270	6.35	6.85
C	0.145	0.175	3.69	4.44
D	0.015	0.021	0.39	0.53
F	0.040	0.70	1.02	1.77
G	0.100	BSC	2.54 BSC	
H	0.050	BSC	1.27 BSC	
J	0.008	0.015	0.21	0.38
K	0.110	0.130	2.80	3.30
L	0.205	0.305	7.50	7.74
M	0°	10°	0°	10°
S	0.020	0.040	0.51	1.01

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
EUROPE: LDC for ON Semiconductor - European Support
German Phone: (+1) 303-308-7140 (M-F 2:30pm to 5:00pm Munich Time)
Email: ONlit-german@hibbertco.com
French Phone: (+1) 303-308-7141 (M-F 2:30pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com
English Phone: (+1) 303-308-7142 (M-F 1:30pm to 5:00pm UK Time) Email: ONlit@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support
Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong 800-4422-3781
Email: ONlit-asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-8549
Phone: 81-3-5740-2745
Email: r14525@onsemi.com
Fax Response Line: 303-675-2167 800-344-3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.

