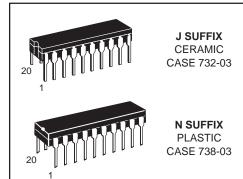

OCTAL BIDIRECTIONAL TRANSCEIVER WITH 3-STATE INPUTS/OUTPUTS

The MC74F1245 contains eight noninverting bidirectional buffers with 3-state outputs and is intended for bus-oriented applications. Current sinking capability is 24 mA at the A ports and 64 mA at the B ports. The Transmit/Receive (T/R) input determines the direction of data flow through the bidirectional transceiver. Transmit (active HIGH) enables data from A ports to B ports; Receive (active LOW) enables data from B ports to A ports. The Output Enable input, when HIGH, disables both A and B ports by placing them in a high-Z condition.

- Noninverting Buffers
- · Bidirectional Data Path
- B Outputs Sink 64 mA
- High Impedance Inputs for Reduced Loading
- Same Function and Pinout as the F245
- ESD Protection > 4000 Volts

PIN ASSIGNMENT



19 — OE 1 — O

MC74F1245

OCTAL BIDIRECTIONAL TRANSCEIVER WITH 3-STATE INPUTS/OUTPUTS

FAST™ SCHOTTKY TTL

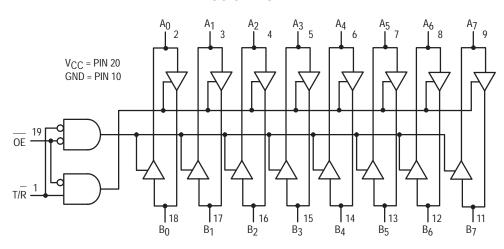
DW SUFFIX SOIC CASE 751D-03

ORDERING INFORMATION

MC74FXXXXJ Ceramic MC74FXXXXN Plastic MC74FXXXXDW SOIC

GUARANTEED OPERATING RANGES

Symbol	Parameter			Min	Тур	Max	Unit
Vcc	DC Supply Voltage		74	4.5	5.0	5.5	V
T _A	Operating Ambient Temperature Range		74	0	25	70	°C
IOH	Output Current — High	A _n Outputs	74	_	_	-3.0	mA
loL	Output Current — Low	A _n Outputs	74	_	_	24	mA
IOH	Output Current — High	B _n Outputs	74	_	_	-15	mA
l _{OL}	Output Current — Low	B _n Outputs	74	_	_	64	mA


MC74F1245

FUNCTION TABLE

Inp	uts	Inputs/Outputs			
OE	T/R	An	B _n		
L	L	A = B	Inputs		
L	Н	Inputs	B = A		
Н	X	Z	Z		

H = HIGH voltage level: L = LOW voltage level: X = Don't care: Z = HIGH impedance "off" state.

LOGIC DIAGRAM

MC74F1245

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

				Limits				Test Conditions	
Symbol	Parameter			Min	Тур	Max	Unit	(Note 1)	
VIH	Input HIGH Voltage			2.0	_	_	٧	Guaranteed Input HIGH Voltage	
VIL	Input LOW Voltage			_	_	0.8	٧	Guaranteed Input LOW Voltag	
VIK	Input Clamp Diode Voltage			_	-0.73	-1.2	V	$V_{CC} = MIN, I_{IN} = -18 \text{ mA}$	
VOH	Output HIGH Voltage An Outputs		74	2.4	3.3	_	V	1 2.0-mA	V _{CC} = 4.5 V
			74	2.7	3.3	_	V	IOH = -3.0 mA	V _{CC} = 4.75 V
V _{ОН}	Output HIGH Voltage B _n Outputs		74	2.4	3.4	_	V	1 2.01	V _{CC} = 4.5 V
			74	2.7	3.4	_	V	$I_{OH} = -3.0 \text{ mA}$	V _{CC} = 4.75 V
			74	2.0	_	_	V	I _{OH} = -15 mA	V _{CC} = 4.5 V
VOL	Output LOW Voltage An Outputs		74	_	0.35	0.5	V	I _{OL} = 24 mA	\/a = \ \AIN
VOL	Output LOW Voltage Bn Outputs		74	_	_	0.55	V	$I_{OL} = 64 \text{ mA}$ $V_{CC} = MIN$	
lozh	Output Off Current HIGH			_	_	70	μΑ	V _{CC} = MAX	V _{OUT} = 2.7 V
lozL	Output Off Current LOW			_	<u> </u>	-70	μΑ	V _{CC} = MAX, V _{OUT} = 0.5 V	
	Input HIGH Current	OE, T/R Inputs		_	_	40	μА	V _{CC} = MAX, V _{IN} = 2.7 V	
1		A _n , B _n Inputs		_	_	70	μА	V _{CC} = MAX, V _{IN} = 2.7 V	
ΙΗ		OE, T/R Inputs		_	_	100	μА	V _{CC} = 0 V, V _{IN} = 7.0 V	
		B _n Inputs		_	_	1.0	mA	V _{CC} = 0 V, V _{IN} = 5.5 V	
Iнн	Input HIGH Current	A _n I	nputs	_	_	2.0	mA	V _{CC} = 0 V, V _{IN} = 5.5 V	
	lament I OM Commant	OE, T/R Inputs		_	_	-40	μА	V _{CC} = MAX, V _{IN} = 0.5 V	
ΙΙL	Input LOW Current	A _n , B _n Inputs		_	_	-70	μА		
la a	Output Short Circuit Current	A _n Outputs B _n Outputs		-60	_	-150	mA	V _{CC} = MAX, V _{OUT} = GND	
los	(Note 2)			-100	_	-225	mA		
ICC		ICCH ICCL ICCZ		_	_	120			
	Power Supply Current			_	_	120	mA	V _{CC} = MAX	
				_	<u> </u>	130	1		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Not more than one output should be shorted at a time, nor for more than 1 second.

AC ELECTRICAL CHARACTERISTICS

		T _A = V _{CC} =	4F +25°C +5.0 V 50 pF	T _A = 0°C V _{CC} = +5. C _L = 9		
Symbol	Parameter	Min	Max	Min	Max	Unit
^t PLH ^t PHL	Propagation Delay Transparent Mode A_n to B_n or B_n to A_n	2.0 2.5	6.5 7.5	1.5 2.0	7.0 8.0	ns
^t PZH ^t PZL	Output Enable Time	3.0 4.0	8.0 10.0	2.5 3.5	9.0 11.0	ns
^t PHZ ^t PLZ	Output Disable Time	2.0 1.0	8.0 10.0	1.5 1.0	9.0 11.0	ns

FETIME BUY

Mfax is a trademark of Motorola, Inc.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and the part is an equal opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3–20–1, Minami–Azabu. Minato–ku, Tokyo 106–8573 Japan. 81–3–3440–3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852–26668334

Customer Focus Center: 1-800-521-6274

Mfax[™]: RMFAX0@email.sps.mot.com - TOUCHTONE 1–602–244–6609 Motorola Fax Back System - US & Canada ONLY 1–800–774–

US & Canada ONLY 1–800–774–1848http://sps.motorola.com/mfax/

HOME PAGE: http://motorola.com/sps/

