8-INPUT MULTIPLEXER WITH 3-STATE OUTPUTS

The MC54/74F251 is a high-speed 8-input digital multiplexer. It provides, in one package, the ability to select one bit of data from up to eight sources. It can be used as a universal function generator to generate any logic function of four variables. Both assertion and negation outputs are provided.

- Multifunctional Capacity
- On-Chip Select Logic Decoding
- Inverting and Noninverting 3-State Outputs

FUNCTIONAL DESCRIPTION

This device is a logical implementation of a single-pole, 8-position switch with the switch position controlled by the state of three Select inputs, $\mathrm{S}_{0}, \mathrm{~S}_{1}$, S_{2}. Both assertion and negation outputs are provided. The Output Enable input (OE) is active LOW. When it is activated, the logic function provided at the output is:

$$
\begin{aligned}
\mathrm{Z}=\overline{\mathrm{OE}} \cdot & \left(\mathrm{I}_{0} \cdot \overline{\mathrm{~S}_{0}} \cdot \overline{\mathrm{~S}_{1}} \cdot \overline{\mathrm{~S}_{2}}+\mathrm{I}_{1} \cdot \mathrm{~S}_{0} \cdot \overline{\mathrm{~S}_{1}} \cdot \overline{\mathrm{~S}_{2}}+\right. \\
& \mathrm{I}_{2} \cdot \overline{\mathrm{~S}_{0}} \cdot \frac{\mathrm{~S}_{1}}{\mathrm{~S}_{2}+\mathrm{I}_{3} \cdot \mathrm{~S}_{0} \cdot \frac{\mathrm{~S}_{1}}{\mathrm{~S}_{2}+}} \begin{aligned}
& \mathrm{I}_{4} \cdot \overline{\mathrm{~S}_{0}} \cdot \overline{\mathrm{~S}_{1}} \cdot \mathrm{~S}_{2}+\mathrm{I}_{5} \cdot \mathrm{~S}_{0} \cdot \mathrm{~S}_{1}
\end{aligned} \mathrm{~S}_{2}+ \\
& \mathrm{I}_{6} \cdot \overline{\mathrm{~S}_{0}} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{2}+\mathrm{I}_{7} \cdot \mathrm{~S}_{0} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{2}+
\end{aligned}
$$

When the Output Enable is HIGH, both outputs are in the high impedance (high Z) state. This feature allows multiplexer expansion by tying the outputs of up to 128 devices together. When the outputs of the 3 -state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. The Output Enable signals should be designed to ensure there is no overlap in the active LOW portion of the enable voltages.

CONNECTION DIAGRAM

8-INPUT MULTIPLEXER WITH 3-STATE OUTPUTS

FAST ${ }^{\text {M }}$ SCHOTTKY TTL

FUNCTION TABLE

Inputs				Outputs		
OE	$\mathrm{S}_{\mathbf{2}}$	$\mathrm{S}_{\mathbf{1}}$	$\mathrm{S}_{\mathbf{0}}$	Z	Z	
H	X	X	X	Z	Z	
L	L	L	L	I_{0}	I_{0}	
L	L	L	H	I_{1}	I_{1}	
L	L	H	L	I_{2}	I_{2}	
L	L	H	H	I_{3}	I_{3}	
L	H	L	L	I_{4}	I_{4}	
L	H	L	H	I_{5}	I_{5}	
L	H	H	L	I_{6}	I_{6}	
L	H	H	H	I_{7}	I_{7}	

[^0]L = LOW Voltage Level
X = Don't Care
Z = High Impedance

LOGIC DIAGRAM

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
V_{CC}	Supply Voltage	54, 74	4.5	5.0	5.5	V
T_{A}	Operating Ambient Temperature Range	54	-55	25	125	${ }^{\circ} \mathrm{C}$
		74	0	25	70	
${ }^{\mathrm{I} O H}$	Output Current - High	54, 74			-3.0	mA
I_{OL}	Output Current - Low	54, 74			24	mA

MC54/74F251

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter		Limits			Unit	Test Conditions	
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage	
VIL	Input LOW Voltage				0.8	V	Guaranteed Input LOW Voltage	
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage				-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$
V_{OH}	Output HIGH Voltage	54, 74	2.4	3.4		V	$\mathrm{IOH}=-3.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=4.50 \mathrm{~V}$
		74	2.7	3.4		V	$\mathrm{IOH}=-3.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage			0.35	0.5	V	$\mathrm{IOL}=24 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$
IOZH	Output Off Current - HIGH				50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$	$\mathrm{V}_{C C}=$ MAX
IOZL	Output Off Current - LOW				-50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$	$\mathrm{V}_{C C}=\mathrm{MAX}$
${ }^{\text {IH }}$	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$	$V_{C C}=$ MAX
					100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$	
IIL	Input LOW Current				-0.6	mA	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$	$V_{C C}=$ MAX
IOS	Output Short Circuit Current (Note 2)		-60		-150	mA	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	$\mathrm{V}_{C C}=\mathrm{MAX}$
ICC	Power Supply Current			15	22	mA	$\begin{aligned} & \ln , S_{n}=4.5 \mathrm{~V} \\ & \mathrm{OE}=\mathrm{GND} \end{aligned}$	$V_{C C}=$ MAX
				16	24		OE, $\mathrm{In}_{\mathrm{n}}=4.5 \mathrm{~V}$	$\mathrm{V}_{C C}=\mathrm{MAX}$

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges.
2. Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS

Symbol	Parameter							Unit
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{Cto}+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Max	Min	Max	Min	Max	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay S_{n} to \bar{Z}_{n}	$\begin{aligned} & \hline 4.0 \\ & 3.2 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \hline 3.5 \\ & 3.2 \end{aligned}$	$\begin{aligned} & \hline 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.2 \end{aligned}$	$\begin{aligned} & \hline 9.0 \\ & 8.5 \end{aligned}$	ns
tpLH tpHL	Propagation Delay S_{n} to Z_{n}	$\begin{aligned} & \hline 4.5 \\ & 4.5 \end{aligned}$	$\begin{gathered} 13 \\ 9.0 \end{gathered}$	$\begin{aligned} & \hline 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & \hline 4.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} \hline 14 \\ 10.5 \end{gathered}$	ns
tpLH tpHL	Propagation Delay $\operatorname{In} \text { to } \bar{Z}$	$\begin{aligned} & \hline 3.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 5.7 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 5.0 \end{aligned}$	ns
tPLH tPHL	Propagation Delay In to Z	$\begin{aligned} & \hline 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 9.5 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} 11.5 \\ 7.5 \end{gathered}$	$\begin{aligned} & \hline 4.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 10.5 \\ 7.5 \end{gathered}$	ns
$\begin{aligned} & \text { tpZH } \\ & \text { tpZL } \end{aligned}$	Output Enable Time OE to Z	$\begin{aligned} & \hline 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.5 \end{gathered}$	$\begin{aligned} & \hline 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	Output Disable Time OE to Z	$\begin{aligned} & \hline 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.5 \end{aligned}$	ns
$\begin{aligned} & \text { tpZH } \\ & \text { tpZL } \end{aligned}$	Output Enable Time OE to Z	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 10 \\ & 9.0 \end{aligned}$	ns
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	Output Disable Time OE to Z	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$	ns

Mfax is a trademark of Motorola, Inc.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (4) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu. Minato-ku, Tokyo 106-8573 Japan. 81-3-3440-3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852-26668334

Customer Focus Center: 1-800-521-6274
Mfax ${ }^{\text {TM }: ~ R M F A X 0 @ e m a i l . s p s . m o t . c o m ~-~ T O U C H T O N E ~ 1-602-244-6609 ~}$
Motorola Fax Back System - US \& Canada ONLY 1-800-774-1848

- http://sps.motorola.com/mfax/

HOME PAGE: http://motorola.com/sps/

[^0]: H = HIGH Voltage Level

