

QUAD, Parallel-Input, Voltage Output, 12-/10-Bit Digital-to-Analog Converter

AD5582/AD5583

FEATURES

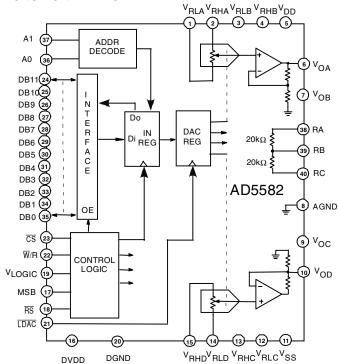
12-Bit Linearity and Monotonic -40°C to +125°C
Single +5V to +12V or dual ±5V supply
Unipolar or Bipolar Operation
Double Buffered Registers Enable Simultaneous MultiChannels Update
4 Separate Rail-to Rail Reference Inputs
Parallel Interface
Data Readback Capability
5µs Settling Time

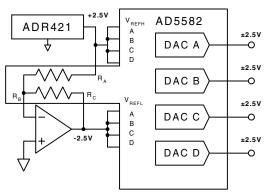
APPLICATIONS

Process Control Equipment Closed Loop Servo Control Data Acquisition Systems Digitally Controlled Calibration Motor Control

GENERAL DESCRIPTION

The AD5582/AD5583 family of quad, 12-/10-bit, voltage-output digital-to-analog converter is designed to operate from a single +5 to +15 volt or a dual ±5V supply. Built using a CBCMOS process, this monolithic DAC offers the user low cost, and ease-of-use in single or dual-supply systems.


The applied external reference V_{REF} determines the full-scale output voltage. Valid V_{REF} values include $V_{SS} < V_{REF} < V_{DD}$ resulting in a wide selection of full scale outputs. For multiplying applications AC inputs can be as large as $|V_{DD} - V_{SS}|$. Two on-board precision trimmed resistors are available for 4-Quadrant configurations.


A doubled-buffered parallel interface offers 25Mbps data load rates. A common level-sensitive load-DAC strobe ($\overline{\text{LDAC}}$) input allows simultaneous update of all DAC outputs from previously loaded Input Registers. Additionally, an internal power ON reset forces the output voltage to zero at system turn ON. An external asynchronous reset ($\overline{\text{RS}}$) also forces all registers to the zero code state.

Both parts are offered in the same pin-out to allow users to select the amount of resolution appropriate for their application without circuit card redesign.

The AD5582/AD5583 are specified over the extended industrial (-40°C to +125°C) temperature range. Packages available include thin 1.1 mm TSSOP-48 package.

FUNCTIONAL DIAGRAM

DIGITAL CIRCUITRY OMITTED FOR CLARITY

Figure 1 Using Onboard Offset resistors to generate a negative voltage REF

AD5582/AD5583

ELECTRICAL CHARACTERISTICS at V_{DD} =+5V, V_{SS} = -5V, V_L = +5V±10%, V_{REFH} = +2.5V, V_{REFL} = -2.5V, -40°C < T_A < +125°C, unless otherwise noted.

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
STATIC PERFORMANCE		1	•			1
Resolution ¹	N	AD5582		12		Bits
Resolution ¹	N	AD5583		10		Bits
Relative Accuracy ²	INL		-1		+1	LSB
Differential Nonlinearity ²	DNL	Monotonic	-1		_	LSB
Zero-Scale Error	V _{ZSE}	$Data = 000_{\text{H}}$			2	LSB
Full-Scale Voltage Error	v_{FSE}	Data = FFF _H			2	LSB
Full-Scale Tempco ³	TCV_{FS}			10		ppm/°C
REFERENCE INPUT	_					
V _{REFH} Input Range ⁴	V_{REFH}		V_{SS}		$V_{_{ m DD}}$	V
V _{REFL} Input Range ⁴	v_{REFL}		V_{SS}		$V_{_{ m DD}}$	V
Input Resistance ⁸	R_{REF}	$Data = 555_{H}$	10			$K\Omega^5$
Input Capacitance ³	C_{REF}			80		pF
REF Input Current	IREF				500	μA
REF Multiplying Bandwidth	BW _{REF}					Hz
ANALOG OUTPUT	1.01		1			ı
Output Current	IOUT	Data = 800_{H} , $\Delta V_{\text{OUT}} = 4\text{LSB}$			±2	mA
Capacitive Load ³	$c_{ m L}$	No Oscillation		500		pF
LOGIC INPUTS			1	ı	ı	
Logic Input Low Voltage	V _{IL}	$V_{L} = 5V \pm 10\%$			0.8	V
Logic Input High Voltage	v_{IH}	$V_{L} = 5V \pm 10\%$	2.4			V
Input Leakage Current	IIL					μΑ
Input Capacitance ³	C _{IL}					pF
Output Voltage High	V _{OH}	$I_{OH} = -0.8 \text{mA}$	2.4			V
Output Voltage Low	V _{OL}	$I_{OL} = 1.6 \text{mA}$			0.4	v
AC CHARACTERISTICS	OE OE	1 02				ı
Output Slew Rate	SR	Data = 000_{H} to FFF_{H} to 000_{H}		2		V/µs
Settling Time ⁷	t_{S}	To ±0.1% of Full Scale		5		μs
Shutdown Recovery	t_{SDR}					μs
DAC Glitch	Q	Code 7FF _H to 800 _H to 7FF _H		100		nVs
Digital Feed Through	V_{OUT}/t_{CS}	Data=800 _H , CS toggles at f=16MHz		5		nVs
Analog Crosstalk	V _{OUT} /V _{REF}	$V_{REF} = 1.5V_{DC} + 1V_{P-P}$, Data = 000 _H , f=100KHz		-80		dB
Output Noise	$e_{ m N}$			40		nV√Hz
SUPPLY CHARACTERISTICS		·				·
Positive Supply Current	I _{DD}	$V_{IL} = 0V$, No Load			3	mA
Negative Supply Current	I_{SS}	$V_{IL} = 0V$, No Load			3	mA
Power Dissipation	P _{DISS}	$V_{IL} = 0V$, No Load			30	mW
Power Supply Sensitivity	PSS	$\Delta V_{DD} = \pm 5\%$		30	1	ppm/V
NOTES:		DD	1	L	L	

NOTES:

- 1. DAC Output Equation: $V_{OUT} = V_{REFL} + [(V_{REFH} V_{REFL})*Code/2^N]$, where Code = data loaded in corresponding DAC register A, B, C, D and N equals the DAC resolution AD5582 = 12, AD5583 = 10 bits. One LSB = VREF/4096V for the 12-bit AD5582.
- 2. The first two codes (000H, 001H) are excluded from the linearity error measurement in single supply operation.
- 3. These parameters are guaranteed by design and not subject to production testing.
- 4. When V_{REF} is connected to either the V_{DD} or the V_{SS} power supply the corresponding V_{OUT} voltage will program between ground and the supply voltage minus the offset voltage of the output buffer, which is the same as the V_{ZSE} error specification. See additional discussion in the operation section of the data sheet
- 5. Typical specifications represent average readings measured at 25°C.
- 6. The settling time specification does not apply for negative going transitions within the last 3 LSBs of ground in single supply operation.

AD5582/AD5583

ELECTRICAL CHARACTERISTICS at V_{DD} =+15V, V_{SS} = 0V, V_L =+5V±10%, V_{REFH} = +10V, V_{REFL} = 0V, -40°C < T_A < +125°C, unless otherwise noted.

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
STATIC PERFORMANCE			I	1	1	
Resolution ¹	N	AD5582		12		Bits
Resolution ¹	N	AD5583		10		Bits
Relative Accuracy ²	INL		-1		+1	LSB
Differential Nonlinearity ²	DNL	Monotonic	-1		_	LSB
Zero-Scale Error	V _{ZSE}	$Data = 000_{\text{H}}$			2	LSB
Full-Scale Voltage Error	v_{FSE}	$Data = FFF_{H}$			2	LSB
Full-Scale Tempco ³	TCV _{FS}			10		ppm/°C
REFERENCE INPUT	1		ı	1	1	I .
V _{REFH} Input Range ⁴	V_{REFH}		V_{SS}		V_{DD}	V
V _{REFL} Input Range ⁴	v_{REFL}		0		V_{DD}	V
Input Resistance ⁸	R _{REF}	$Data = 555_{H}$	10			$K\Omega^5$
Input Capacitance ³	C_{REF}			80		pF
REF Input Current	I_{REF}				500	μΑ
REF Multiplying Bandwidth	BW_{REF}					Hz
ANALOG OUTPUT	-		I			l .
Output Current	IOUT	Data = 800_{H} , $\Delta V_{\text{OUT}} = 4L\text{SB}$			+5	mA
Capacitive Load ³	c_{L}	No Oscillation		500		pF
LOGIC INPUTS/OUTPUTS	-		I			l .
Logic Input Low Voltage	v_{IL}				0.8	V
Logic Input High Voltage	v_{IH}		2.4			V
Input Leakage Current	$I_{ m IL}$					μΑ
Input Capacitance ³	c_{IL}					pF
Output Voltage High	V_{OH}	$I_{OH} = -0.8 \text{mA}$	2.4			V
Output Voltage Low	V_{OL}	$I_{OL} = 1.6 \text{mA}$			0.4	V
AC CHARACTERISTICS			T	1	1	T
Output Slew Rate	SR	Data = 000_{H} to FFF_{H} to 000_{H}		2		V/µs
Settling Time ⁷	t_{S}	To ±0.1% of Full Scale		5		μs
Shutdown Recovery	t_{SDR}					μs
DAC Glitch	Q	Code 7FF _H to 800 _H to 7FF _H		100		nVs
Digital Feed Through	V_{OUT}/t_{CS}	Data= 800_H , \overline{CS} toggles at f= $16MHz$		5		nVs
Analog Crosstalk	V _{OUT} /V _{REF}	$V_{REFH} = 2.5V_{DC} + 1V_{P-P}$, Data = 000_{H} , f=100KHz		-80		dB
Output Noise	e_N			40		nV√Hz
SUPPLY CHARACTERISTICS			ı	1	1	ı
Positive Supply Current	I_{DD}	$V_{IL} = 0V$, No Load			3	mA
Power Dissipation	P _{DISS}	$V_{IL} = 0V$, No Load			45	mW
Power Supply Sensitivity	PSS	$\Delta V_{DD} = \pm 5\%$		30		ppm/V

NOTES:

- DAC Output Equation: V_{OUT} = V_{REFL} + [(V_{REFH}-V_{REFL})*Code/2^N], where Code = data loaded in corresponding DAC register A, B, C, D and N equals the DAC resolution AD5582 = 12, AD5583 = 10 bits. One LSB = VREF/4096V for the 12-bit AD5582.
- 2. The first two codes (000H, 001H) are excluded from the linearity error measurement in single supply operation.
- 3. These parameters are guaranteed by design and not subject to production testing.
- 4. When V_{REF} is connected to either the V_{DD} or the V_{SS} power supply the corresponding V_{OUT} voltage will program between ground and the supply voltage minus the offset voltage of the output buffer, which is the same as the V_{ZSE} error specification. See additional discussion in the operation section of the data sheet.
- 5. Typical specifications represent average readings measured at 25 $^{\circ}\text{C}.$
- 6. The settling time specification does not apply for negative going transitions within the last 3 LSBs of ground in single supply operation.

AD5582/AD5583

ELECTRICAL CHARACTERISTICS at V_{DD} =+15V, V_{SS} = 0V, V_L =+5V±10%, V_{REFH} = +10V, V_{REFL} = 0V, -40°C < T_A < +125°C, unless otherwise noted.

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
INTERFACE TIMING ^{1,2}						
Clock Frequency	f_{CLK}				25	MHz
Chip Select Write Pulsewidth	t_{WCS}		30			ns
Write Setup	t_{WS}	$t_{WCS} = 50 \text{ ns}$	0			ns
Write Hold	$t_{ m WH}$	$t_{WCS} = 50 \text{ ns}$	0			ns
Address Setup	t_{AS}		0			ns
Address Hold	t_{AH}		0			ns
Load Setup	t_{LS}		70			ns
Load Hold	t_{LH}		30			ns
Write Data Setup	$t_{ m WDS}$	$t_{WCS} = 50 \text{ ns}$	0			ns
Write Data Hold	$t_{ m WDH}$	$t_{WCS} = 50 \text{ ns}$	0			ns
Load Data Pulsewidth	$t_{ m LDW}$		50			ns
Reset Pulsewidth	t_{RESET}		50			ns
Chip Select Read Pulsewidth	t_{RCS}		130			ns
Read Data Hold	t_{RDH}	$t_{RCS} = 130 \text{ ns}$	0			ns
Read Data Setup	t_{RDS}	$t_{RCS} = 130 \text{ ns}$	0			ns
Data to Hi Z	t_{DZ}	$C_L = 10pF$		100		ns
Chip Select to Data	t_{CSD}	$C_L = 100pF$		100		ns
Chip Select Repetitive Pulsewidth	t_{CSP}		10			ns
Load Setup in Double Buffer Mode	t_{LDS}		20			ns

NOTES:

- 1. All input control signals are specified with $t_R = t_F = 2$ ns (10% to 90% of +3V) and timed from a voltage level of 1.5V.
- 2. Typicals represent average readings measured at 25°C.

ABSOLUTE MAXIMUM RATINGS

V _{DD} to VSS0.3V to +16.5V
$V_{\mbox{\scriptsize DD}}$ to GND0.3V to 5.5V
V _{SS} to GND+0.3V to -5.5V
V_{DD} to V_{REF+} 0.3V to $(V_{DD}\text{-}V_{SS})$
V_{REF-} to V_{SS} 0.3V to $(V_{DD}-V_{SS})$
V_{REFH} to V_{REFL} 0.3V to $(V_{DD}-V_{SS})$
Logic Inputs to GND V_{SS} – 0.3V, V_{DD} + 0.3V
V_{OUT} to GND V_{SS} – 0.3V, V_{DD} + 0.3V
I _{OUT} Short Circuit to GND
Thermal Resistance θ_{JA}
TSSOP-48 Lead (RU-48)xxx°C/W

Maximum Junction Temperature (T _J MAX)150°C
Package Power Dissipation = $(T_J MAX - T_A)/\theta_{JA}$
Operating Temperature Range40°C to +125°C
Storage Temperature Range65°C to +150°C
Lead Temperature:
RU-48 (Vapor Phase, 60 secs)xxx°C
RU-44 (Infrared, 15 secs)xxx°C

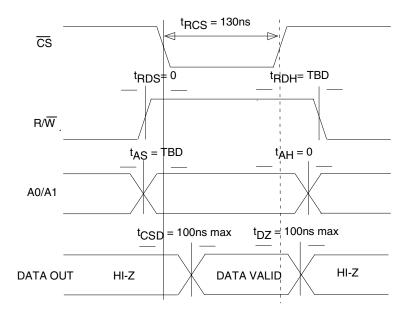
Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ORDERING GUIDE:

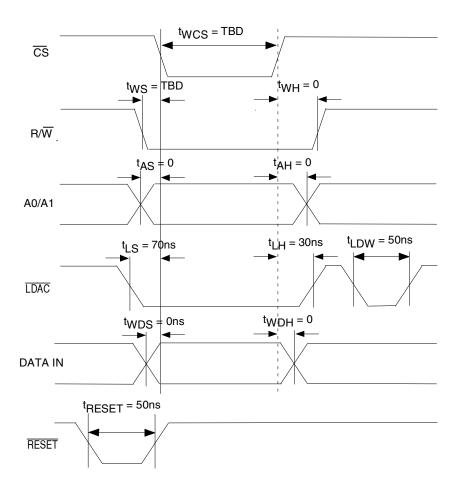
MODEL	Resolution (Bits)	TEMP RANGE	Package Description	Package Option	Container Qty
AD5582BRU-REEL7	12	-40/+125°C	TSSOP-48	RU-48	
AD5583BRU-REEL7	10	-40/+125°C	TSSOP-48	RU-48	

The AD5582 contains xxx transistors. The die size measures 108 mil X 144 mil.

AD5582/AD5583

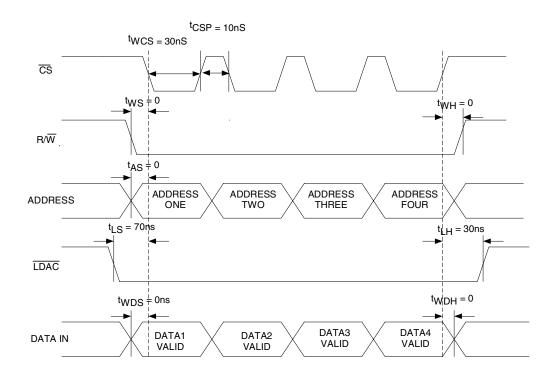

PIN CONFIGURATION

CO	MIGOI	MIIO
1		48
2		47
3		46
4		45
5		44
6		43
7		42
8		41
9		40
10		39
11		38
12		37
13		36
14		35
15		34
16		33
17		32
18		31
19		30
20		29
21		28
22		27
23		26
24		25

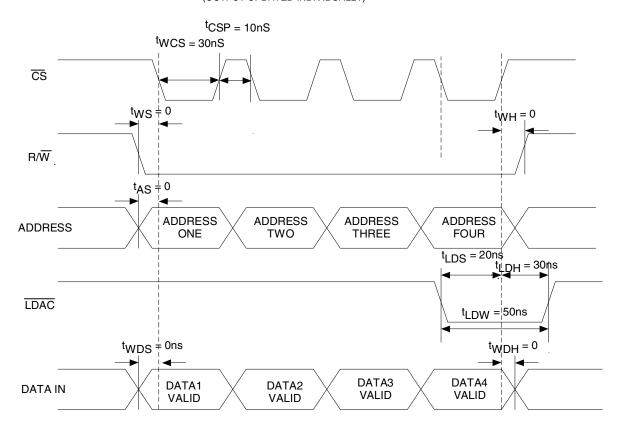

NOTE: Pin Out not finalized! Please contact Analog Devices Inc. for final version

Pin#	Name	Description
	VRLA	Voltage Reference Low Input Terminal DAC A
	VRHA	Voltage Reference High Input Terminal DAC A
	VRLB	Voltage Reference Low Input Terminal DAC B
	VRHB	Voltage Reference High Input Terminal DAC B
	VDD	Positive Power Supply
	VOA	DAC A Output
	VOB	DAC B output
	RA	End Tap Offset Resistor
	RB	Center Tap Offset Resistor
	RC	End Tap Offset Resistor
	AGND	Analog Ground
	VOC	Voltage Out DAC C
	VOD	DAC D Output
	VSS	Negative Power Supply
	VRLC	Voltage Reference Low Input Terminal DAC C
	VRHC	Voltage Reference High Input Terminal DAC C
	VRLD	Voltage Reference Low Input Terminal DAC D
	VRHD	Voltage Reference High Input Terminal DAC D
	DGND	Digital Ground
	DVDD	
	LDAC	DAC Register Load, active low level sensitive
	RS	Reset strobe
	MSB	Reset Mode: $MSB=0$ Code = 000_H , $MSB=1$ Code 800_H
	VL	Logic Supply Voltage
	W/R	Write Read Mode select
	CS	Chip Select, active low
	DB0	Data Bit 0
	DB1	Data Bit 1
	DB2	Data Bit 2
	DB3	Data Bit 3
	DB4	Data Bit 4
	DB5	Data Bit 5
	DB6	Data Bit 6
	DB7	Data Bit 7
	DB8	Data Bit 8
	DB9	Data Bit 9
	DB10	Data Bit 10
	DB11	Data Bit 11
	A0	Address Input 0
	A1	Address Input 1

AD5582/AD5583



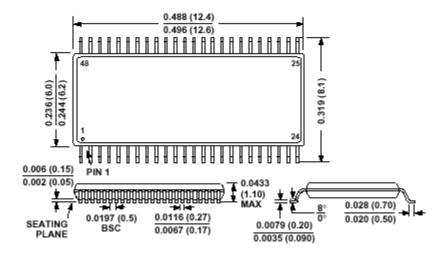
DATA OUTPUT (READ TIMING)



DATA WRITE (INPUT AND OUTPUT REGISTERS) TIMING

AD5582/AD5583

SINGLE BUFFER MODE (OUTPUT UPDATED INDIVIDUALLY)



DOUBLE BUFFER MODE (OUTPUT UPDATED SIMULTANEOUSLY)

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm)

48-Lead TSSOP (RU Suffix)

