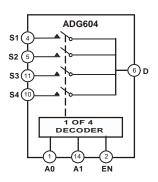


1pC Charge Injection, Low Leakage CMOS 4-Channel Multiplexer

Preliminary Technical Data

ADG604


FEATURES

1 pC Charge Injection ±2.7 V to ±5.5 V Dual Supply +2.7 V to +5.5 V Single Supply Extended Temperature Range -40°C to +125°C 100pA Leakage Currents 85Ω typ On Resistance Rail-to-Rail Operation Fast Switching Times Typical Power Consumption (<0.1 μW) TTL/CMOS Compatible Inputs 14-Lead TSSOP Package

APPLICATIONS

Automatic Test Equipment
Data Acquisition Systems
Battery Powered Instruments
Communication Systems
Sample and Hold Systems
Remote Powered Equipment
Audio and Video Signal Routing
Relay Replacement
Avionics

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The ADG604 is a CMOS analog multiplexer, comprising of four single channels. It operates from a dual supply of ± 2.7 V to ± 5.5 V, or from a single supply of ± 2.7 V to ± 5.5 V.

The ADG604 switches one of four inputs to a common output, D, as determined by the 3-bit binary address lines, A0, A1 and EN. A Logic "0" on the EN pin disables the device.

The ADG604 offers ultra-low charge injection of 1pC and leakage currents of less than 250pA at 85°C. It offers onresistance of 85 Ω typ, which is matched to within 8 Ω between channels. The ADG604 also has low power dissipation yet gives high switching speeds.

The ADG604 is available in a 14-lead TSSOP package.

PRODUCT HIGHLIGHTS

- 1. Ultra-Low Charge Injection (Q_{INJ}: 1.0 pC typ).
- 2. Leakage Current < 2 nA at 125°C
- 3.Dual \pm 2.7 V to 5 V or Single 2.7 V to 5.5 V supply.
- 4. Fully Specified at 12 5°C.
- 5. Small 14-Lead TSSOP Package.

REV. PrB 08/01

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

ADG604-SPECIFICATIONS

DUAL SUPPLY¹ ($V_{DD} = +5 \text{ V } \pm 10\%$, $V_{SS} = -5 \text{ V } \pm 10\%$, GND = 0 V. All specifications -40°C to +125°C unless noted)

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Units	Test Conditions/Comments
ANALOGSWITCH					
Analog Signal Range			V_{SS} to V_{DD}	V	
					$V_{DD} = +4.5 \text{ V}, V_{SS} = -4.5 \text{ V}$
On Resistance (R _{ON})	85			Ω typ	$V_S = \pm 3.3 \text{ V}, I_S = -1 \text{ mA},$
	110	150	165	Ω max	Test Circuit 1
On Resistance Match Between					
Channels (ΔR_{ON})	6			Ω typ	$V_S = \pm 3.3 \text{ V}, I_S = -1 \text{ mA}$
	8		10	Ω max	
On-Resistance Flatness (R _{FLAT(ON)})	25			Ω typ	$V_S = \pm 3.3 \text{ V}, I_S = -1 \text{ mA}$
		60	65	Ω max	
LEAKAGECURRENTS					$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
	. 0.01			A 4	
Source OFF Leakage I_S (OFF)	±0.01		_	nA typ	$V_S = \pm 4.5 \text{ V}, V_D = \mp 4.5 \text{ V},$
	±0.1	± 0.25	2		nA max Test Circuit 2
$DrainOFFLeakageI_D(OFF)$	± 0.01			nA typ	$V_S = \pm 4.5 \text{ V}, V_D = \mp 4.5 \text{ V},$
	±0.1	± 0.25	4	nA max	Test Circuit 2
Channel ON Leakage I _{D,} I _S (ON)	±0.01			nA typ	$V_S = V_D = \pm 4.5 \text{ V}$, Test Circuit 3
	±0.1	± 0.25	8	nA max	
DIGITALINPUTS					
Input High Voltage, V _{INH}			2.4	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current			0.0	VIIIdx	
I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
IINL OF IINH	0.000		±0.1	μA max	VIN — VINL OI VINH
C _{IN} , Digital Input Capacitance	5		±0.1	pF typ	
				pr typ	
DYNAMIC CHARACTERISTICS ²					
Transition Time	120			ns typ	$V_{S1} = +3 \text{ V}, V_{S4} = -3 \text{ V}, R_L = 300 \Omega,$
		135	150	ns max	$C_L = 35 \text{ pF}$, Test Circuit 4
t _{ON} Enable	110			ns typ	$R_L = 300 \ \Omega, \ C_L = 35 \ pF$
	TBD	130	145	ns max	$V_S = 3.3 \text{ V}$, Test Circuit 6
t _{OFF} Enable	40			ns typ	$R_L = 300 \ \Omega, \ C_L = 35 \ pF$
	TBD	50	55	ns max	$V_S = 3.3 \text{ V}$, Test Circuit 6
Break-Before-Make Time Delay, $\mathbf{t}_{\mathrm{BBM}}$				ns typ	$R_L = 300 \Omega, C_L = 35 pF,$
		85	100	ns min	$V_{S1} = V_{S2} = 3.3 \text{ V}$, Test Circuit 5
Charge Injection	±1			pC typ	$V_S = -5.5 \text{ V to } +5.5 \text{ V}, R_S = 0 \Omega,$
			±1.5	pC Max	$C_L = 1 \text{ nF}, \text{ Test Circuit 7}$
Off Isolation	TBD			dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz,$
a a				1.5	Test Circuit 8
Channel-to-Channel Crosstalk	TBD			dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz,$
					Test Circuit 10
Bandwidth –3 dB	TBD			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 9
$C_{S}(OFF)$	2			pF typ	f = 1MHz
C_{D} (OFF)	12			pF typ	f = 1MHz
$C_{D,}C_{S}(ON)$	16			pF typ	f = 1MHz
POWER REQUIREMENTS					$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
I _{DD}	0.001			μA typ	Digital Inputs = 0 V or 5.5 V
			1.0	μA max	G F
Iss	0.001			μA typ	Digital Inputs = 0 V or 5.5 V
			1.0	μA max	O P

NOTES

-2- REV. PrB

 $^{^{1}}Temperature \ ranges \ are \ as follows: Y \ Grade: -40 ^{\circ}C \ to \ +125 ^{\circ}C.$

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

SINGLE SUPPLY¹ ($V_{DD} = +5 \text{ V} \pm 10\%$, $V_{SS} = 0 \text{ V}$, GND = 0 V. All specifications -40°C to +125°C unless otherwise noted.)

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Units	Test Conditions/Comments
ANALOGSWITCH					
Analog Signal Range			$0~V~to~V_{DD}$	V	
0 0 0			55		$V_{DD} = +4.5 \text{ V}, V_{SS} = 0 \text{ V}$
On Resistance (R _{ON})	140			Ω typ	$V_S = 3.3 \text{ V}, I_S = -1 \text{ mA},$
, G1W	200	255	275	Ω max	Test Circuit 1
On Resistance Match Between					
Channels (ΔR_{ON})	6			Ω typ	$V_S = 3.3 \text{ V}, I_S = -1 \text{ mA}$
	8		10	Ω max	
On-Resistance Flatness (R _{FLAT(ON)})	75			Ω typ	$V_S = 0 \text{ V}, 3.3 \text{ V}, I_S = -1 \text{ mA}$
		90	95	Ω max	
LEAKAGE CURRENTS					$V_{DD} = +5.5 \text{ V}$
Source OFF Leakage I _S (OFF)	±0.01			nA typ	$V_{DD} = +3.3 \text{ V}$ $V_S = 1 \text{ V}/4.5 \text{ V}, V_D = 4.5 \text{ V}/1 \text{ V},$
Source Of T. Leanage 18 (Of T.)	±0.01 ±0.1	±0.25	2	nA typ	$v_S = 1 \text{ V/4.3 V}, v_D = 4.3 \text{ V/1 V},$ Test Circuit 2
Drain OFF Leakage I _D (OFF)	±0.1 ±0.01	±0.&J	۵	nA max	$V_S = 1 \text{ V}/4.5 \text{ V}, V_D = 4.5 \text{ V}/1 \text{ V},$
Diani Oli Peakage ID (OFF)	±0.01 ±0.1	±0.25	4	nA typ nA max	$V_S = 1 V/4.5 V$, $V_D = 4.5 V/1 V$, Test Circuit 2
Channel ON Leakage I _D , I _S (ON)		±0.23	4		
Chainlei Oly Leakage ID, IS (Oly)	± 0.01 ± 0.1	±0.25	8	nA typ	$V_S = V_D = +4.5 \text{ V/1 V},$ Test Circuit 3
	±0.1	±0.23	0	nA max	Test Circuit 5
DIGITALINPUTS					
Input High Voltage, V_{INH}			2.4	V min	
Input Low Voltage, V_{INL}			0.8	V max	
Input Current					
I_{INL} or I_{INH}	0.005			μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
			±0.1	μA max	
$\mathrm{C_{IN}}$, Digital Input Capacitance	5			pF typ	
DYNAMIC CHARACTERISTICS ²					
Transition Time	TBD			ns typ	$V_{S1} = +3 \text{ V}, V_{S4} = 0 \text{ V}, R_L = 300 \Omega,$
		240	270	ns max	$C_L = 35 \text{ pF, Test Circuit 4}$
t _{ON} Enable	180			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
OIV =======	TBD	210	240	ns max	$V_S = 3.3 \text{ V}$, Test Circuit 6
t _{OFF} Enable	65			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
-011	TBD	70	80	ns max	$V_S = 3.3 \text{ V}$, Test Circuit 6
Break-Before-Make Time Delay, t_{BBM}	40	-		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$,
	-	170	195	ns min	$V_{S1} = V_{S2} = 3.3 \text{ V}$, Test Circuit 5
Charge Injection	±1		= + +	pC typ	$V_S = 0 \text{ V to } +5.5 \text{ V}, R_S = 0 \Omega,$
O0			±1.5	pC max	$C_L = 1 \text{ nF}, \text{ Test Circuit 7}$
Off Isolation	TBD			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$,
				JP	Test Circuit 8
Channel-to-Channel Crosstalk	TBD			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$,
	_			J. J.	Test Circuit 10
Bandwidth -3 dB	TBD			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 9
C _S (OFF)	3			pF typ	f = 1 MHz
$C_{D}(OFF)$	13			pF typ	f = 1MHz
$C_{D_i}C_S(ON)$	16			pF typ	f = 1MHz
<u> </u>				P- 7P	
POWER REQUIREMENTS					$V_{DD} = +5.5 \text{ V}$
т	0.001				Digital Inputs = 0 V or 5.5 V
I_{DD}	0.001		1.0	μA typ	
			1.0	μA max	

REV. PrB -3-

NOTES

1 Temperature ranges are as follows: Y Grade: -40°C to +125°C.
2 Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

ADG604-SPECIFICATIONS

SINGLE SUPPLY¹ ($V_{DD} = +3 \text{ V} \pm 10\%$, $V_{SS} = 0 \text{ V}$, GND = 0 V. All specifications -40°C to +125°C unless otherwise noted.)

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Units	Test Conditions/Comments
ANALOGSWITCH					
Analog Signal Range			0 V to $V_{\rm DD}$	V	
					$V_{DD} = 3 \text{ V}, V_{SS} = 0 \text{ V}$
On Resistance (R _{ON})	220			Ω typ	$V_S = 1.5 \text{ V}, I_S = -1 \text{ mA},$
	300	365	380		Ω max Test Circuit 1
On Resistance Match Between	TTDD.				
Channels (ΔR_{ON})	TBD		TIDD	Ω typ	$V_S = 1.5 \text{ V}, I_S = -1 \text{ mA}$
			TBD	Ω max	
LEAKAGECURRENTS					$V_{\rm DD} = +3.3 \text{ V}$
Source OFF Leakage I _S (OFF)	± 0.01			nA typ	$V_S = 1 \text{ V/3 V}, V_D = 3 \text{ V/1 V},$
_	±0.1	± 0.25	2	nA max	Test Circuit 2
Drain OFF Leakage I_D (OFF)	± 0.01			nA typ	$V_S = 1 \text{ V/3 V}, V_D = 3\text{V/1 V},$
<u> </u>	± 0.1	± 0.25	4	nA max	Test Circuit 2
Channel ON Leakage I_D , I_S (ON)	±0.01			nA typ	$V_{S} = V_{D} = 1 \text{ V/3 V},$
	±0.1	± 0.25	8	nA max	Test Circuit 3
DIGITALINPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current			0.0	VIIIAX	
I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
TINE OF TINH	0.000		±0.1	μΑιγρ	$\mu A \max$
C _{IN} , Digital Input Capacitance	5		±0.1	pF typ	µ/ Y Hidax
DYNAMIC CHARACTERISTICS ²				1 31	
Transition Time	420			ne tyn	$V_{S1} = +1.5 \text{ V}, V_{S4} = 0 \text{ V}, R_L = 300 \Omega,$
Transition Time	420	480	530	ns typ ns max	$V_{S1} = +1.5 \text{ V}, V_{S4} = 0 \text{ V}, R_L = 300 \Omega_s$, $C_L = 35 \text{ pF}, \text{Test Circuit 4}$
t _{ON} Enable	390	100	330	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
ton Enable	TBD	415	460	ns max	$V_S = 1.5 \text{ V}$, Test Circuit 6
$t_{ m OFF}$ Enable	76	410	100	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
OFF LIMBIC	TBD	TBD	165	ns max	$V_S = 1.5 \text{ V}$, Test Circuit 6
Break-Before-Make Time Delay, t_{BBM}	120	TDD	103	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$,
Break Before Wake Time Belay, t _{BBM}	120	155	380	ns min	$V_{S1} = V_{S2} = 1.5 \text{ V}$, Test Circuit 5
Charge Injection	±1	100	000	pC typ	$V_{S1} - V_{S2} = 1.0 \text{ V}, \text{ Test of teat of } V_{S} = 0 \text{ V to } +3.3 \text{ V}, R_{S} = 0 \Omega,$
Charge injection	-1		±1.5	pC typ pC max	$C_L = 1 \text{ nF}, \text{ Test Circuit } 7$
OffIsolation	TBD		±1.0	dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$,
Offisolation	TDD			ub typ	Test Circuit 8
Channel-to-Channel Crosstalk	TBD			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$,
Chamer to Chamer Crosstan	TDD			ub typ	Test Circuit 10
Bandwidth –3 dB	TBD			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 9
C _S (OFF)	3			pF typ	f = 1 MHz
$C_{\rm D}({\rm OFF})$	13			pF typ	f = 1MHz
$C_{D,C_S}(ON)$	16			pF typ	f = 1MHz
POWER REQUIREMENTS				1 JF	$V_{DD} = +3.3 \text{ V}$
					Digital Inputs = 0 V or 3.3 V
I_{DD}	0.001			μA typ	
			1.0	μA max	

NOTES

-4- REV. PrB

 $^{^{1}}Temperature$ ranges are as follows: Y Grade: $-40^{\circ}C$ to $+125^{\circ}C.$

²Guaranteed by design, not subject to production test.

 $Specifications\, subject\, to\, change\, without\, notice.$

ADG604

ABSOLUTE MAXIMUM RATINGS¹

TSSOP Package, Power Dissipation	430 mW
θ_{JA} Thermal Impedance	150°C/W
θ_{JC} Thermal Impedance	. 27°C/W
Lead Temperature, Soldering (10 seconds)	300°C
IR Reflow, Peak Temperature	. +220°C

NOTES

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

 2 Overvoltages at EN, A0, A1, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

ORDERING GUIDE

Model Option	Temperature Range	Package Description	Package
ADG604YRU	-40°C to +125°C	Thin Shrink Small Outline (TSSOP)	RU-14

PIN CONFIGURATION 14-Lead TSSOP (RU-14)

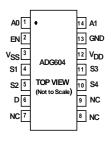


Table I. Truth Table for the ADG604

A1	A0	EN	ON Switch
X	X	0	NONE
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG604 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

REV. PrB -5-

ADG604

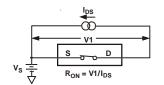
TERMINOLOGY

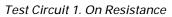
$V_{DD} \ V_{SS}$	Most Positive Power Supply Potential. Most Negative Power Supply in a Dual Supply Application. In single supply applications, this should be tied to ground at the device.
GND	Ground (0 V) Reference.
I _{DD}	Positive Supply Current.
I _{SS}	Negative Supply Current.
S	Source Terminal. May be an input or output.
D	Drain Terminal. May be an input or output.
R _{ON}	Ohmic resistance between D and S.
ΔR_{ON}	On resistance match between any two Channels i.e., R _{ON} max - R _{ON} min.
R _{FLAT(ON)}	Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.
I _S (OFF) I _D (OFF)	Source Leakage Current with the switch "OFF." Drain Leakage Current with the switch "OFF."
I_D , I_S (ON)	Channel Leakage Current with the switch "ON."
V_D , V_S	Analog Voltage on Terminals D, S.
V_{INL}	Maximum Input Voltage for Logic "0".
V_{INH}	Minimum Input Voltage for Logic "1".
$I_{INL}(I_{INH})$	Input Current of the digital Input.
C _S (OFF)	Channel input capacitance for "OFF" condition.
C_D (OFF)	Channel ouput capacitance for "OFF" condition.
C_D , C_S (ON)	"ON" Switch Capacitance.
C_{IN}	Digital Input Capacitance.
t _{ON} (EN)	Delay time between the 50% and 90% points of the digital input and switch "ON" condition.
t _{OFF} (EN)	Delay time between the 50% and 90% points of the digital input and switch "OFF" condition.
t _{TRANSITION}	Delay time between the 50% and 90% points of the digital input and switch "ON" condition when switching from one address state to another.
topy	"OFF" time or "ON" time measured between the 80% points of both switches, when switching
$t_{ m BBM}$	from one address state to another.
Charge Injection	A measure of the Glitch Impulse transfered from the Digital input to the Analog output during switching.
Crosstalk	A measure of unwanted signal that is coupled through from one channel to another as a result
	of parasitic capacitance.
Off Isolation	A measure of unwanted signal coupling through an "OFF" switch.
Bandwidth	The frequency reponse of the "ON" switch.
Insertion Loss	The Loss due to the ON resistance of the Switch.

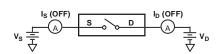
-6- REV. PrB

Typical Performance Characteristics ADG604 **TBD TBD TBD** TPC 1. TPC 2. TPC 3. **TBD TBD TBD** TPC 4. TPC 5. TPC 6. **TBD TBD TBD**

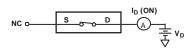
TPC 8.

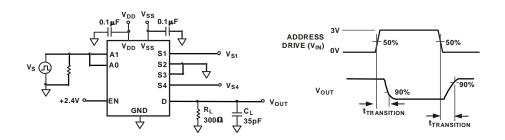

TPC 9.

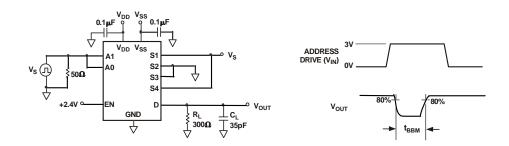

REV. PrB -7-

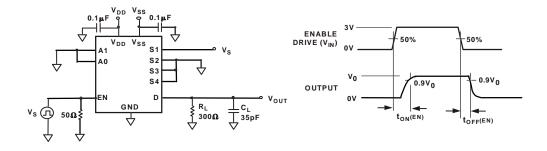

TPC 7.

ADG604

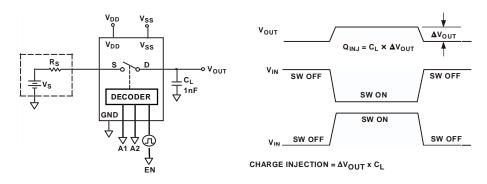

Test Circuits

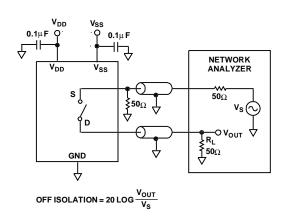



Test Circuit 2. Off Leakage

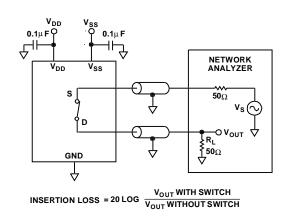

Test Circuit 3. On Leakage

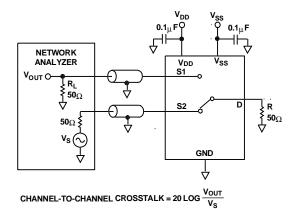
Test Circuit 4. Switching Time of Multiplexer, $t_{TRANSITION}$


Test Circuit 5. Break-Before-Make Delay, t_{BBM}


Test Circuit 6. Enable Delay, t_{ON} (EN), t_{OFF} (EN)

-8- REV. PrB


ADG604

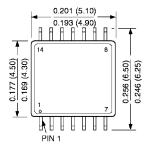

Test Circuit 7. Charge Injection

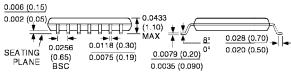
Test Circuit 8. Off Isolation

Test Circuit 9. Bandwidth

-5

Test Circuit 10. Channel-to-Channel Crosstalk


REV. PrB -9-


ADG604

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

14-Lead TSSOP Package (RU-14)

-10- REV. PrB