2.5V/3.3V SiGe Differential Receiver/Driver with RSECL* Outputs

*Reduced Swing ECL

The SG16 is a Silicon Germanium differential receiver/driver. The device is functionally equivalent to the EP16 and LVEP16 devices with much higher bandwidth and lower EMI capabilities.

Inputs incorporate internal 50 Ω termination resistors and accept NECL (Negative ECL), PECL (Positive ECL), HSTL, GTL, TTL, CMOS, CML, or LVDS. Outputs are RSECL (Reduced Swing ECL), 400 mV.

The V_{BB} and V_{MM} pins are internally generated voltage supplies available to this device only. The V_{BB} is used for single–ended NECL or PECL inputs and the V_{MM} pin is used for CMOS inputs. For all single–ended input conditions, the unused differential input is connected to V_{BB} or V_{MM} as a switching reference voltage. V_{BB} or V_{MM} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{MM} via a 0.01 μ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} and V_{MM} outputs should be left open.

- Maximum Frequency > 12 GHz Typical
- 120 ps Typical Propagation Delay
- 40 ps Typical Rise and Fall Times
- RSPECL Output with Operating Range: $V_{CC} = 2.375$ V to 3.465 V with $V_{EE} = 0$ V
- RSNECL Output with RSNECL or NECL Inputs with Operating Range: $V_{CC} = 0$ V with $V_{EE} = -2.375$ V to -3.465 V
- RSECL Output Level (400 mV Peak–to–Peak Output), Differential Output Only
- 50 Ω Internal Input Termination Resistors
- Compatible with Existing 2.5 V/3.3 V LVEP, EP, and LVEL Devices
- V_{BB} and V_{MM} Reference Voltage Output

ON Semiconductor[™]

http://onsemi.com

W = Work Week

*For further details, refer to Application Note AND8002/D

ORDERING INFORMATION

Device	Package	Shipping
NBSG16BA	4x4 mm FCBGA–16	810 Units/Tray
NBSG16BAR2	4x4 mm FCBGA–16	2500/Tape & Reel
NBSG16BA100	4x4 mm FCBGA–16	100 Units/Tray
NBSG16BA500R2	4x4 mm FCBGA–16	500/Tape & Reel

Board	Description
SG16EVB	NBSG16BA Evaluation Board

Figure 1. Pinout (Top View)

NOTE: The NC pins are electrically connected to the die and MUST be left open or both pins can be tied to V_{CC} .

PIN DESCRIPTION

PIN	FUNCTION
D*, <u>D</u> **	ECL, HSTL, GTL, TTL, CMOS. CML, LVDS compatible inputs
Q, <u>Q</u>	RSECL Data Outputs
VTD, VTD	50 Ω Internal Input Termination Resistor
V _{MM}	CMOS Reference Voltage Output, (V _{CC} -V _{EE})/2
V _{BB}	ECL Reference Voltage Output
V _{CC}	Positive Supply
V _{EE}	Negative Supply
NC	No Connect

* Pin will default low when left open.

** Pin will default to a slightly higher potential than D when both are left open.

Figure 2. Logic Diagram

INTERFACING OPTIONS	CONNECTIONS
CML	Connect VTD and $\overline{\text{VTD}}$ to V_{CC}
LVDS	Connect VTD and $\overline{\text{VTD}}$ together
AC-COUPLED	Bias VTD and VTD Inputs within (VIHCMR) Common Mode Range
RSECL, PECL, NECL	Standard ECL Termination Techniques

ATTRIBUTES

Characteristics	Value	
Internal Input Pulldown Resistor (D, \overline{D})		75 kΩ
Internal Input Pullup Resistor (D)		36.5 kΩ
ESD Protection	Human Body Model Machine Model	> 2 kV > 100 V
Moisture Sensitivity (Note 1)		Level 3
Flammability Rating		UL 94 V–0 @ 0.125 in
Oxygen Index	28 to 34	
Transistor Count	167	
Meets or exceeds JEDEC Spec EIA/JESD7	8 IC Latchup Test	

1. For additional information, see Application Note AND8003/D.

MAXIMUM RATINGS (Note 2)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{CC}	Positive Power Supply	$V_{EE} = 0 V$		3.6	V
V_{EE}	Negative Power Supply	$V_{CC} = 0 V$		-3.6	V
VI	Positive Input Negative Input	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{c} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$	3.6 -3.6	V V
l _{out}	Output Current	Continuous Surge		25 50	mA mA
I _{BB}	V _{BB} Sink/Source			1	mA
I _{MM}	V _{MM} Sink/Source			1	mA
ТА	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction to Ambient) (Note 3)	0 LFPM 500 LFPM	16 FCBGA 16 FCBGA	108 86	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction to Case)	1S2P (Note 3)	16 FCBGA	5	°C/W
T _{sol}	Wave Solder	< 15 sec.		225	°C

Maximum Ratings are those values beyond which device damage may occur.
JEDEC standard multilayer board – 1S2P (1 signal, 2 power)

		-40°C				25°C		85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	17	23	29	17	23	29	17	23	29	mA
V _{OH}	Output HIGH Voltage (Note 5)	1450	1530	1575	1525	1565	1600	1550	1590	1625	mV
V _{PP}	Output P–P Voltage	350	410	525	350	410	525	350	410	525	mV
V _{IH}	Input HIGH Voltage (Single Ended) (Note 6)	V _{THR} + 75 mV	V _{CC} – 1.0*	V _{CC}	V _{THR} + 75 mV	V _{CC} – 1.0*	V _{CC}	V _{THR} + 75 mV	V _{CC} – 1.0*	V _{CC}	V
VIL	Input LOW Voltage (Single Ended) (Note 6)	V _{EE}	V _{CC} – 1.4*	V _{THR} – 75 mV	V _{EE}	V _{CC} – 1.4*	V _{THR} – 75 mV	V _{EE}	V _{CC} – 1.4*	V _{THR} – 75 mV	V
V _{BB}	PECL Output Voltage Reference	1080	1140	1200	1080	1140	1200	1080	1140	1200	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Note 7)	1.2		2.5	1.2		2.5	1.2		2.5	V
V _{MM}	CMOS Output Voltage Reference V _{CC} /2	1200	1250	1400	1200	1250	1400	1200	1250	1400	mV
R _T	Internal Termination Resistor	45	50	55	45	50	55	45	50	55	Ω
IIH	Input HIGH Current (@ VIH)		30	100		30	100		30	100	μA
IIL	Input LOW Current (@ VIL)		25	50		25	50		25	50	μA

DC CHARACTERISTICS, INPUT WITH RSPECL OUTPUT V_{CC} = 2.5 V: V_{EE} = 0 V (Note 4)

NOTE: SiGe circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.

4. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.125 V to -0.965 V.

5. All loading with 50 ohms to V_{CC} =2.0 volts. 6. V_{THR} is the voltage applied to the complementary input, typically V_{BB} or V_{MM} .

7. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.

*Typicals used for testing purposes.

DC CHARACTERISTICS, INPUT WITH RSPECL OUTPUT V_{CC} = 3.3 V; V_{EE} = 0 V (Note 8)

		–40°C			25°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	17	23	29	17	23	29	17	23	29	mA
V _{OH}	Output HIGH Voltage (Note 9)	2250	2330	2375	2325	2365	2400	2350	2390	2425	mV
V _{PP}	Output P–P Voltage	350	410	525	350	410	525	350	410	525	mV
V _{IH}	Input HIGH Voltage (Single Ended) (Note 10)	V _{THR} + 75 mV	V _{CC} – 1.0*	V _{CC}	V _{THR} + 75 mV	V _{CC} – 1.0*	V _{CC}	V _{THR} + 75 mV	V _{CC} – 1.0*	V _{CC}	V
V _{IL}	Input LOW Voltage (Single Ended) (Note 10)	V _{EE}	V _{CC} – 1.4*	V _{THR} – 75 mV	V _{EE}	V _{CC} – 1.4*	V _{THR} – 75 mV	V _{EE}	V _{CC} – 1.4*	V _{THR} – 75 mV	V
V _{BB}	PECL Output Voltage Reference	1880	1940	2000	1880	1940	2000	1880	1940	2000	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Note 11)	1.2		3.3	1.2		3.3	1.2		3.3	V
V _{MM}	CMOS Output Voltage Reference $V_{CC}/2$	1600	1650	1800	1600	1650	1800	1600	1650	1800	mV
R _T	Internal Termination Resistor	45	50	55	45	50	55	45	50	55	Ω
I _{IH}	Input HIGH Current (@ VIH)		30	100		30	100		30	100	μΑ
IIL	Input LOW Current (@ VIL)		25	50		25	50		25	50	μA

NOTE: SiGe Circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.

8. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.925 V to -0.165 V.

9. All loading with 50 ohms to V_{CC}-2.0 volts.

10. V_{THR} is the voltage applied to the complementary input, typically V_{BB} or V_{MM}.

11. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

*Typicals used for testing purposes.

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	17	23	29	17	23	29	17	23	29	mA
V _{OH}	Output HIGH Voltage (Note 13)	-1050	-970	-925	-975	-935	-900	-950	-910	-875	mV
V _{PP}	Output P-P Voltage	350	410	525	350	410	525	350	410	525	mV
V _{IH}	Input HIGH Voltage (Single Ended) (Note 14)	V _{THR} + 75 mV	V _{CC} – 1.0*	V _{CC}	V _{THR} + 75 mV	V _{CC} – 1.0*	V _{CC}	V _{THR} + 75 mV	V _{CC} – 1.0*	V _{CC}	V
V _{IL}	Input LOW Voltage (Single Ended) (Note 14)	V _{EE}	V _{CC} – 1.4*	V _{THR} – 75 mV	V _{EE}	V _{CC} – 1.4*	V _{THR} – 75 mV	V _{EE}	V _{CC} – 1.4*	V _{THR} – 75 mV	V
V _{BB}	NECL Output Voltage Reference	-1420	-1360	-1300	-1420	-1360	-1300	-1420	-1360	-1300	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 15)	V _{EE} +	-1.2	0.0	V _{EE} 4	-1.2	0.0	V _{EE} +	+1.2	0.0	V
V _{MM}	CMOS Output Voltage Reference (Note 16)	V _{MMT} – 50	V _{MMT}	V _{MMT} + 150	V _{MMT} – 50	V _{MMT}	V _{MMT} + 150	V _{MMT} – 50	V _{MMT}	V _{MMT} + 150	mV
I _{IH}	Input HIGH Current (@ VIH)		30	100		30	100		30	100	μΑ
IIL	Input LOW Current (@ VIL)		25	50		25	50		25	50	μΑ

DC CHARACTERISTICS, NECL OR RSNECL INPUT WITH NECL OUTPUT V_{CC} = 0 V; V_{EE} = -3.465 V to -2.375 V (Note 12)

NOTE: SiGe circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.

12. Input and output parameters vary 1:1 with V_{CC} . 13. All loading with 50 ohms to V_{CC} –2.0 volts. 14. V_{THR} is the voltage applied to the complementary input, typically V_{BB} or V_{MM} . 15. V_{HCMR} min varies 1:1 with V_{EE} , V_{HCMR} max varies 1:1 with V_{CC} . The V_{HCMR} range is referenced to the most positive side of the differential input varies 1:1 with V_{EE} . input signal.

16. V_{MM} typical = $|V_{CC} - V_{EE}|/2 + V_{EE} = V_{MMT}$ *Typicals used for testing purposes.

			–40°C		25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Мах	Min	Тур	Max	Unit
f _{max}	Maximum Frequency (See Figure 3. F _{max} /JITTER) (Note 17)	10.709	> 12		10.709	> 12		10.709	> 12		GHz
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential	90	110	130	100	120	140	105	125	145	ps
t _{SKEW}	Duty Cycle Skew (Note 18)		3	15		3	15		3	15	ps
^t JITTER	Cycle-to-Cycle Jitter (RMS) (See Figure 3. F _{max} /JITTER) (Note 17)		0.3	< 1		0.3	< 1		0.3	< 1	ps
V _{INPP}	Input Voltage Swing/Sensitivity (Differential) (Note 19)	75		2600	75		2600	75		2600	mV
t _r t _f	Output Rise/Fall Times Q, \overline{Q} (20% – 80%)	30	45	75	20	40	65	20	40	65	ps

AC CHARACTERISTICS Voc = 0 V: VEE = -3,465 V to -2,375 V or Voc = 2,375 V to 3,465 V: VEE = 0 V

17. Measured using a 400 mV source, 50% duty cycle clock source. All loading with 50 ohms to V_{CC}-2.0 V.

18. See Figure 5. $t_{skew} = |t_{PLH} - t_{PHL}|$ for a nominal 50% differential clock input waveform.

19. VINPP(max) cannot exceed V_{CC} - V_{EE}

Figure 3. F_{max}/Jitter

X = 17ps/Div Y = 70 mV/Div

Figure 4. 10.709 Gb/s Diagram (3.0 V, 25°C)

Figure 5. AC Reference Measurement

Figure 6. Typical Termination for Output Driver and Device Evaluation (Refer to Application Note AND8020 – Termination of ECL Logic Devices)

PACKAGE DIMENSIONS

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS 2. INTERPRET DIMENSIONS AND TOLERANCES
- PER ASME Y14.5M. 1994. DIMENSION b IS MEASURED AT THE MAXIMUM
- _3. SOLDER BALL DIAMETER, PARALLEL TO DATUM PLANE Z.
- /4.
- LATUM Z (SEATING PLANE) IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS. PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF ∕₅. PACKAGE

	MILLIMETERS								
DIM	MIN	MAX							
Α	1.40	MAX							
A1	0.25	0.35							
A2	1.20	REF							
b	0.30	0.50							
D	4.00	BSC							
Е	4.00	BSC							
е	1.00	1.00 BSC							
S	0.50	BSC							

ON Semiconductor and I are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemity and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor

P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031 Phone: 81-3-5740-2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.