

CD4541B

CMOS Programmable Timer High Voltage Types (20V Rating)

July 1998

Features

- Low Symmetrical Output Resistance, Typically 100Ω at $V_{DD} = 15V$
- Built-In Low-Power RC Oscillator
- Oscillator Frequency Range DC to 100kHz
- External Clock (Applied to Pin 3) can be Used Instead of Oscillator
- Operates as 2^N Frequency Divider or as a Single-**Transition Timer**
- Q/Q Select Provides Output Logic Level Flexibility
- AUTO or MASTER RESET Disables Oscillator During **Reset to Reduce Power Dissipation**
- **Operates With Very Slow Clock Rise and Fall Times**
- · Capable of Driving Six Low Power TTL Loads, Three Low-Power Schottky Loads, or Six HTL Loads Over the Rated Temperature Range
- Symmetrical Output Characteristics
- 100% Tested for Quiescent Current at 20V
- 5V, 10V, and 15V Parametric Ratings
- Meets All Requirements of JEDEC Standard No. 13B, "Standard Specifications for Description of 'B' Series **CMOS Devices**"

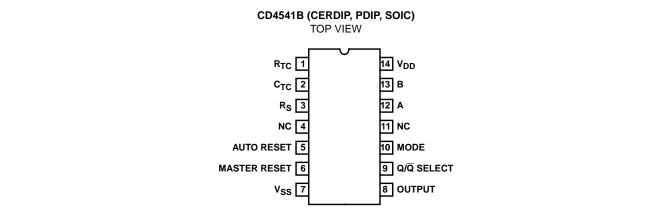
Ordering Information

PART NUMBER	TEMP. RANGE (^o C)	PACKAGE	PKG. NO.
CD4541BF	-55 to 125	14 Ld CERDIP	F14.3
CD4541BE	-55 to 125	14 Ld PDIP	E14.3
CD4541BH	-55 to 125	Chip	-
CD4541BM	-55 to 125	14 Ld SOIC	M14.15

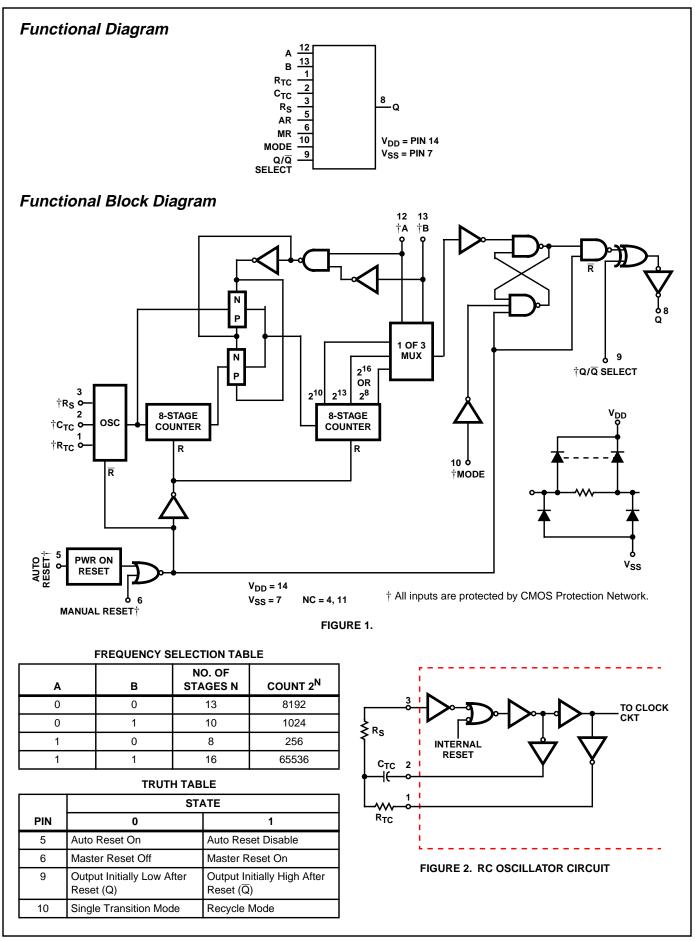
Description

CD4541B programmable timer consists of a 16-stage binary counter, an oscillator that is controlled by external R-C components (2 resistors and a capacitor), an automatic power-on reset circuit, and output control logic. The counter increments on positive-edge clock transitions and can also be reset via the MASTER RESET input.

The output from this timer is the Q or \overline{Q} output from the 8th, 10th, 13th, or 16th counter stage. The desired stage is chosen using time-select inputs A and B (see Frequency Select Table). The output is available in either of two modes selectable via the MODE input, pin 10 (see Truth Table). When this MODE input is a logic "1", the output will be a continuous square wave having a frequency equal to the oscillator frequency divided by 2^N. With the MODE input set to logic "0" and after a MASTER RESET is initiated, the output (assuming Q output has been selected) changes from a low to a high state after 2^{N-1} counts and remains in that state until another MASTER RESET pulse is applied or the MODE input is set to a logic "1".


Timing is initialized by setting the AUTO RESET input (pin 5) to logic "0" and turning power on. If pin 5 is set to logic "1", the AUTO RESET circuit is disabled and counting will not start until after a positive MASTER RESET pulse is applied and returns to a low level. The AUTO RESET consumes an appreciable amount of power and should not be used if low-power operation is desired. For reliable automatic power-on reset, V_{DD} should be greater than 5V.

The RC oscillator, shown in Figure 2, oscillates with a frequency determined by the RC network and is calculated using:


and $\approx 2R_{TC}$

$$f = \frac{1}{2.3 \text{ R}_{TC}C_{TC}} \qquad \begin{array}{l} \text{Where f is between 1kHz} \\ \text{and 100kHz} \\ \text{and } R_S \geq 10 k\Omega \text{ and } \approx 2R \end{array}$$

Pinout

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures. Copyright C Harris Corporation 1998

Absolute Maximum Ratings

DC Supply - Voltage Range, V _{DD}
Voltages Referenced to V _{SS} Terminal0.5V to +20V
Input Voltage Range, All Inputs0.5V to V _{DD} +0.5V
DC Input Current, Any One Input ±10mA
Device Dissipation Per Output Transistor
For T _A = Full Package Temperature Range
(All Package Types) 100mW

Operating Conditions

Temperature Range T _A	55°C to 125°C
Supply Voltage Range	
For T Full Dockago Tomporaturo Pongo	$2 \sqrt{(Min)} \frac{10}{(T_{10})}$

For T_A = Full Package Temperature Range 3V (Min), 18V (Typ)

Thermal Information

Thermal Resistance (Typical, Note 1)	θ_{JA} (^o C/W)	θ _{JC} (^o C/W)
PDIP Package	90	N/A
CERDIP Package	90	36
SOIC Package	120	N/A
Maximum Junction Temperature (Plastic F	Package)	150 ⁰ C
Maximum Storage Temperature Range (T	STG)65	5 ⁰ C to 150 ⁰ C
Maximum Lead Temperature (Soldering 1	0s)	
At Distance 1/16in \pm 1/32in (1.59mm \pm 0).79mm)	
from case for 10s Maximum		265 ⁰ C
(SOIC - Lead Tips Only)		

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications

	co	ONDITION	IS			AT INDICA	ATED TEN	PERATU	LIMITS AT INDICATED TEMPERATURES (^o C)					
		.,							25		1			
PARAMETER	V _O (V)	V _{IN} (V)	V _{DD} (V)	-55	-40	85	125	MIN	ТҮР	MAX				
Quiescent Device	-	0, 5	5	5	5	150	150	-	0.04	5	μΑ			
Current, (Note 2) I _{DD} (Max)	-	0, 10	10	10	10	300	300	-	0.04	10	μA			
	-	0, 15	15	20	20	600	600	-	0.04	20	μA			
	-	0, 20	20	100	100	3000	3000	-	0.08	100	μA			
Output Low (Sink)	0.4	0, 5	5	1.9	1.85	1.26	1.08	1.55	3.1	-	μA			
Current I _{OL} (Min)	0.5	0, 10	10	5	4.8	3.3	2.8	4	8	-	μA			
	1.5	0, 15	15	12.6	12	8.4	7.2	10	20	-	μA			
Output High (Source)	4.6	0, 5	5	-1.9	-1.85	-1.26	-1.08	-1.55	-3.1	-	mA			
Current, I _{OH} (Min)	2.5	0, 5	5	-6.2	-6	-4.1	-3	-5	-10	-	mA			
	9.5	0, 10	10	-5	-4.8	-3.3	-2.8	-4	-8	-	mA			
	13.5	0, 15	15	-12.6	-12	-8.4	-7.2	-10	-20	-	mA			
Output Voltage:	-	0, 5	5	-		0.05		-	0	0.05	mA			
Low-Level, V _{OL} (Max)	-	0, 10	10	-		0.05		-	0	0.05	mA			
	-	0, 15	15	-		0.05		-	0	0.05	mA			
Output Voltage:	-	0, 5	5	-		4.95		4.95	5	-	mA			
High-Level, V _{OH} (Min)	-	0, 10	10	-		9.95		9.95	10	-	mA			
	-	0, 15	15	-		14.95		14.95	15	-	mA			
Input Low Voltage,	0.5, 4.5	-	5	-		1.5		-	-	1.5	V			
V _{IL} (Max)	1, 9	-	10	-		3		-	-	3	V			
	1.5, 13.5	-	15	-		4		-	-	4	V			

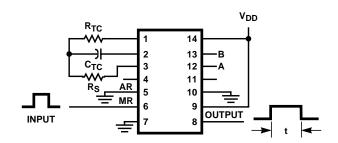
Electrical Specifications (Continued)

	CONDITIONS				MITS AT INDICATED TEMPERATURES (⁰ C)						
	Ve	V	V						25		
PARAMETER	V _O (V)	V _{IN} (V)	V _{DD} (V)	-55	-40	85	125	MIN	ТҮР	MAX	UNITS
Input High Voltage,	0.5, 4.5	-	5	-		3.5		3.5	-	-	V
V _{IH} (Min)	1, 9	-	10	-		7		7	-	-	V
	1.5, 13.5	-	15	-		11		11	-	-	V
Input Current, I _{IN} (Max)	-	0, 18	18	±0.1	±0.1	±1	±1	-	±10 ⁻⁵	±0.1	μΑ

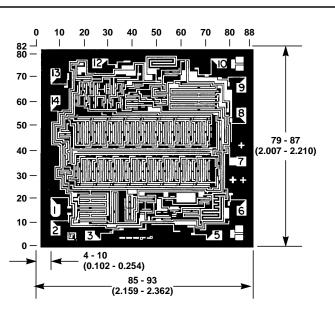
NOTE:

2. With AUTO RESET enabled, additional current drain at 25°C is: $7\mu A$ (Typ), 200 μA (Max) at 5V;

30μA (Typ), 350μA (Max) at 30, 30μA (Typ), 350μA (Max) at 10V;

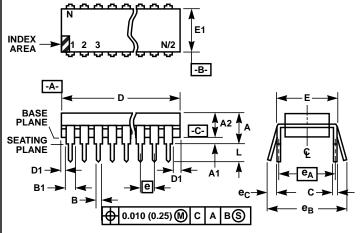

80μA (Typ), 500μA (Max) at 15V

$\label{eq:Dynamic Electrical Specifications} \quad T_A = 25^o \text{C}, \text{ Input } t_r, \, t_f = 20 \text{ns}, \, \text{C}_L = 50 \text{pF}, \, \text{R}_L = 200 \text{k} \Omega$


PARAMETER	SYMBOL	V _{DD} (V)	MIN	TYP	МАХ	UNITS
Propagation Delay Times Clock to Q	(2 ⁸) t _{PHL} , t _{PLH}	5	-	3.5	10.5	μs
		10	-	1.25	3.8	μs
		15	-	0.9	2.9	μs
	(2 ¹⁶) t _{PHL} , t _{PLH}	5	-	6.0	18	μs
		10	-	3.5	10	μs
		15	-	2.5	7.5	μs
Transition Time	t _{THL}	5	-	100	200	ns
		10	-	50	100	ns
		15	-	40	80	ns
	t _{THL}	5	-	180	360	ns
		10	-	90	180	ns
		15	-	65	130	ns
MASTER RESET, CLOCK Pulse Width		5	900	300	-	ns
		10	300	100	-	ns
		15	225	85	-	ns
Maximum Clock Pulse Input	fCL	5	-	1.5	-	MHz
Frequency		10	-	4	-	MHz
		15	-	6	-	MHz
Maximum Clock Pulse Input Rise or Fall time	t _r , t _f	5, 10, 15		Unlimited		μs

Digital Timer Application

A positive pulse on MASTER RESET resets the counters and latch. The output goes high and remains high until the number of pulses, selected by A and B, are counted. This circuit is retriggerable and is as accurate as the input frequency. If additional accuracy is desired, an external clock can be used on pin 3. A setup time equal to the width of the one-shot output is required immediately following initial power up, during which time the output will be high.

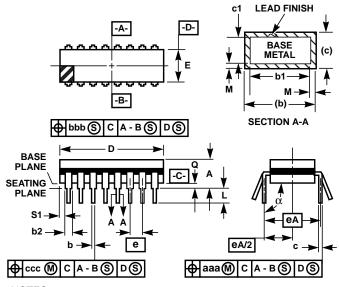


NOTE: Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch) .

FIGURE 4. DIMENSIONS AND PAD LAYOUT FOR CD4541B

Dual-In-Line Plastic Packages (PDIP)

NOTES:


- 1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- 3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
- 4. Dimensions A, A1 and L are measured with the package seated in JEDEC seating plane gauge GS-3.
- D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).
- 6. E and $\boxed{e_A}$ are measured with the leads constrained to be perpendicular to datum $\boxed{-C_-}$.
- 7. e_B and e_C are measured at the lead tips with the leads unconstrained. e_C must be zero or greater.
- 8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25mm).
- 9. N is the maximum number of terminal positions.
- Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 -1.14mm).

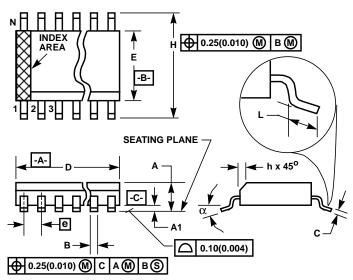
E14.3 (JEDEC MS-001-AA ISSUE D) 14 LEAD DUAL-IN-LINE PLASTIC PACKAGE

	INC	HES	MILLIM	ETERS	
SYMBOL	MIN	MAX	MIN	MAX	NOTES
A	-	0.210	-	5.33	4
A1	0.015	-	0.39	-	4
A2	0.115	0.195	2.93	4.95	-
В	0.014	0.022	0.356	0.558	-
B1	0.045	0.070	1.15	1.77	8
С	0.008	0.014	0.204	0.355	-
D	0.735	0.775	18.66	19.68	5
D1	0.005	-	0.13	-	5
E	0.300	0.325	7.62	8.25	6
E1	0.240	0.280	6.10	7.11	5
е	0.100	BSC	2.54 BSC		-
e _A	0.300	BSC	7.62 BSC		6
е _В	-	0.430	-	10.92	7
L	0.115	0.150	2.93	3.81	4
N	1	4	1	4	9

Rev. 0 12/93

Ceramic Dual-In-Line Frit Seal Packages (CERDIP)

NOTES:


- 1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
- 2. The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
- 3. Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.
- 4. Corner leads (1, N, N/2, and N/2+1) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.
- 5. This dimension allows for off-center lid, meniscus, and glass overrun.
- 6. Dimension Q shall be measured from the seating plane to the base plane.
- 7. Measure dimension S1 at all four corners.
- 8. N is the maximum number of terminal positions.
- 9. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 10. Controlling dimension: INCH.

F14.3 MIL-STD-1835 GDIP1-T14 (D-1, CONFIGURATION A)
14 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE

	INC	HES	MILLIM	ETERS	
SYMBOL	MIN	MAX	MIN	MAX	NOTES
А	-	0.200	-	5.08	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
С	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	0.785	-	19.94	5
Е	0.220	0.310	5.59	7.87	5
е	0.100	BSC	2.54	-	
eA	0.300	BSC	7.62	-	
eA/2	0.150	BSC	3.81	-	
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	6
S1	0.005	-	0.13	-	7
α	90 ⁰	105 ⁰	90 ⁰	105 ⁰	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
CCC	-	0.010	-	0.25	-
М	-	0.0015	-	0.038	2, 3
Ν	1	4	1	4	8

Rev. 0 4/94

Small Outline Plastic Packages (SOIC)

NOTES:

- 1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side.
- 4. Dimension "E" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.
- 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
- 6. "L" is the length of terminal for soldering to a substrate.
- 7. "N" is the number of terminal positions.
- 8. Terminal numbers are shown for reference only.
- 9. The lead width "B", as measured 0.36mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch).
- 10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

M14.15 (JEDEC MS-012-AB ISSUE C) 14 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE

	INC	HES	MILLIM	ETERS	
SYMBOL	MIN	MAX	MIN	MAX	NOTES
А	0.0532	0.0688	1.35	1.75	-
A1	0.0040	0.0098	0.10	0.25	-
В	0.013	0.020	0.33	0.51	9
С	0.0075	0.0098	0.19	0.25	-
D	0.3367	0.3444	8.55	8.75	3
E	0.1497	0.1574	3.80	4.00	4
е	0.050	BSC	1.27	-	
Н	0.2284	0.2440	5.80	6.20	-
h	0.0099	0.0196	0.25	0.50	5
L	0.016	0.050	0.40	1.27	6
N	14		1	7	
α	0 ⁰	8 ⁰	0 ⁰	8 ⁰	-

Rev. 0 12/93