

HM-65262

16K x 1 Asynchronous CMOS Static RAM

March 1997

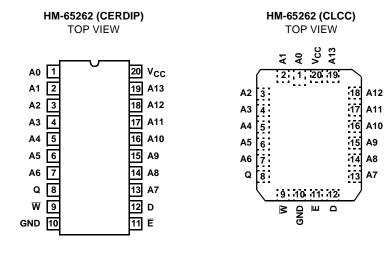
Features

- Low Standby Current......50μA Max
- Low Operating Current 50mA Max
- Data Retention at 2.0V......20μA Max
- TTL Compatible Inputs and Outputs
- JEDEC Approved Pinout
- No Clocks or Strobes Required
- Temperature Range+55°C to +125°C
- Equal Cycle and Access Time
- Single 5V Supply
- Gated Inputs-No Pull-Up or Pull-Down Resistors Required

Description

The HM-65262 is a CMOS 16384 x 1-bit Static Random Access Memory manufactured using the Intersil Advanced SAJI V process. The device utilizes asynchronous circuit design for fast cycle times and ease of use. The HM-65262 is available in both JEDEC standard 20 pin, 0.300 inch wide CERDIP and 20 pad CLCC packages, providing high board-level packing density. Gated inputs lower standby current, and also eliminate the need for pull-up or pull-down resistors.

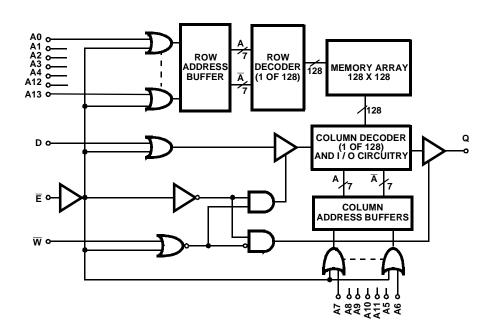
The HM-65262, a full CMOS RAM, utilizes an array of six transistor (6T) memory cells for the most stable and lowest possible standby supply current over the full military temperature range. In addition to this, the high stability of the 6T RAM cell provides excellent protection against soft errors due to noise and alpha particles. This stability also improves the radiation tolerance of the RAM over that of four transistor (4T) devices.


Ordering Information

PACKAGE	TEMP. RANGE	70ns/20 μ A (NOTE 1)	85ns/20 μ A (NOTE 1)	(NOTE 1) 85ns/400 μ A	PKG. NO.	
CERDIP -40°C to +85°C HM1-652		HM1-65262B-9	HM1-65262-9	-	F20.3	
JAN # -55°C to +125°C		29109BRA	29103BRA	-	F20.3	
SMD#	-55°C to +125°C	8413203RA	8413201RA	-	F20.3	
CLCC (SMD#)	-55°C to +125°C	8413203YA	8413201YA	-	J20.C	

NOTE:

1. Access Time/Data Retention Supply Current.


Pinouts

A0 - A13	Address Input				
Ē	Chip Enable/Power Down				
Q	Data Out				
D	Data In				
V _{SS} /GND	Ground				
V _{CC}	Power (+5)				
W	Write Enable				

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a trademark of Intersil Americas Inc. Copyright © Intersil Americas Inc. 2002. All Rights Reserved 1

Functional Diagram

Absolute Maximum Ratings	Thermal Information				
Supply Voltage +7.0V Input or Output Voltage Applied for all grades -0.3V to V _{CC} +0.3V Typical Derating Factor .5mA/MHz Increase in ICCOP ESD Classification	$\begin{array}{llllllllllllllllllllllllllllllllllll$				
	Die Characteristics				
	Gate Count				
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may ca of the device at these or any other conditions above those indicated in the open	use permanent damage to the device. This is a stress only rating and operation ational sections of this specification is not implied.				

Operating Conditions

DC Electrical Specifications	$V_{CC} = 5V \pm 10\%$; $T_A = -40^{\circ}C$ to $+85^{\circ}C$ (HM-65262B-9, HM-65262C-9) HM-65262C-9)
------------------------------	---

	LIMITS						
SYMBOL	PARAMETER	MIN	MIN MAX		TEST CONDITIONS		
ICCSB1	Standby Supply Current	-od	50	μΑ	$\label{eq:HM-65262B-9, HM-65262-9, IO = 0mA,} \\ \overline{E} = V_{CC} \text{ -0.3V}, \ V_{CC} = 5.5 \text{V}$		
		-	900	μΑ	$\label{eq:HM-65262C-9, IO = 0mA,} \begin{split} & HM-65262C-9, IO = 0mA, \\ & \overline{E} = V_{CC} - 0.3V, V_{CC} = 5.5V \end{split}$		
ICCSB	Standby Supply Current	-	5	mA	\overline{E} = 2.2V, IO = 0mA, V _{CC} = 5.5V		
ICCEN	Enabled Supply Current	-	50	mA	\overline{E} = 0.8V, IO = 0mA, V _{CC} = 5.5V		
ICCOP	Operating Supply Current (Note 1)	-	50	mA	\overline{E} = 0.8V, IO = 0mA, f = 1MHz, V _{CC} = 5.5V		
ICCDR	Data Retention Supply Current	-	20	μΑ	HM-65262B-9, HM-65262-9, $V_{CC} = 2.0V, \overline{E} = V_{CC}$		
		-	400	μΑ	HM-65262C-9, $V_{CC} = 2.0V$, $\overline{E} = V_{CC}$		
ICCDR1	Data Retention Supply Current	-	30	μΑ	HM-65262B-9, HM-65262-9, $V_{CC} = 3.0V, \overline{E} = V_{CC}$		
		-	550	μΑ	HM-65262C-9, $V_{CC} = 3.0V$, $\overline{E} = V_{CC}$		
VCCDR	Data Retention Supply Voltage	2.0	-	V			
II	Input Leakage Current	-1.0	+1.0	μΑ	$VI = V_{CC}$ or GND, $V_{CC} = 5.5V$		
IOZ	Output Leakage Current	-1.0	+1.0	μΑ	$VIO = V_{CC} \text{ or GND}, V_{CC} = 5.5V$		
VIL	Input Low Voltage	-0.3	0.8	V	$V_{CC} = 4.5V$		
VIH	Input High Voltage	2.2	V _{CC} +0.3	V	$V_{CC} = 5.5V$		
VOL	Output Low Voltage	-	0.4	V	$IO = 8.0 mA, V_{CC} = 4.5 V$		
VOH1	Output High Voltage	2.4	-	V	IO = -4.0mA, V _{CC} = 4.5V		
VOH2	Output High Voltage (Note 2)	V _{CC} -0.4	-	V	$IO = -100\mu A, V_{CC} = 4.5V$		

Capacitance $T_A = +25^{\circ}C$

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CI	Input Capacitance (Note 2)	10	pF	f = 1MHz, All measurements are
CIO	Input/Output Capacitance (Note 2)	12 pF reference		referenced to device GND

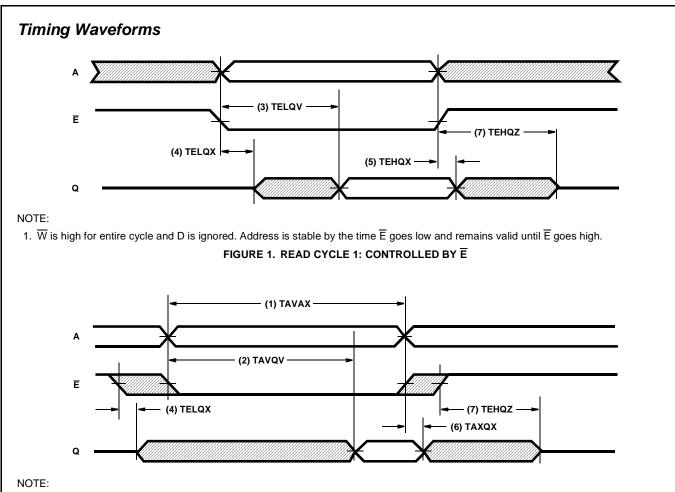
NOTES:

1. Typical derating 5mA/MHz increase in ICCOP.

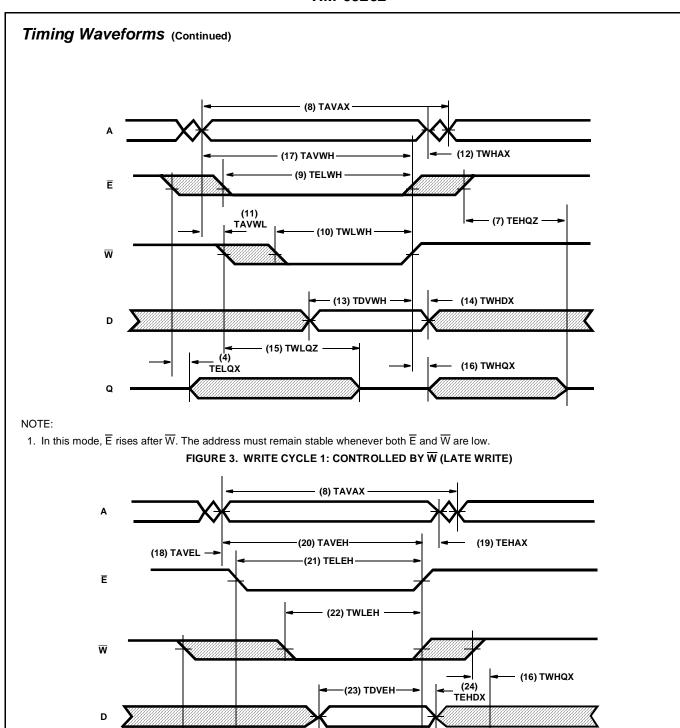
2. Tested at initial design and after major design changes.

HM-65262

			LIMITS							
SYMBOL			HM-65262B-9		HM-65262-9		HM-65262C-9		1	TFOT
		PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	TEST CONDITIONS
READ	CYCLE					•		•	•	
(1)	TAVAX	Read/Cycle Time	70	-	85	-	85	-	ns	(Notes 1, 3)
(2)	TAVQV	Address Access Time	-	70	-	85	-	85	ns	(Notes 1, 3)
(3)	TELQV	Chip Enable Access Time	-	70	-	85	-	85	ns	(Notes 1, 3)
(4)	TELQX	Chip Enable Output Enable Time	5	-	5	-	5	-	ns	(Notes 2, 3)
(5)	TEHQX	Chip Disable Output Hold Time	5	-	5	-	5	-	ns	(Notes 2, 3)
(6)	TAXQX	Address Invalid Output Hold Time	5	-	5	-	5	-	ns	(Notes 2, 3)
(7)	TEHQZ	Chip Enable Output Disable Time	-	30	-	30	-	30	ns	(Notes 2, 3)
WRIT	E CYCLE					-				
(8)	TAVAX	Write Cycle Time	70	-	85	-	85	-	ns	(Notes 1, 3)
(9)	TELWH	Chip Selection to End of Write	55	-	65	-	65	-	ns	(Notes 1, 3)
(10)	TWLWH	Write Enable Pulse Width	40	-	45	-	45	-	ns	(Notes 1, 3)
(11)	TAVWL	Address Setup Time	0	-	0	-	0	-	ns	(Notes 1, 3)
(12)	TWHAX	Address Hold Time	0	-	0	-	0	-	ns	(Notes 1, 3)
(13)	TDVWH	Data Setup Time	30	-	35	-	35	-	ns	(Notes 1, 3)
(14)	TWHDX	Data Hold Time	0	-	0	-	0	-	ns	(Notes 1, 3)
(15)	TWLQZ	Write Enable Output Disable Time	-	30	-	30	-	30	ns	(Notes 2, 3)
(16)	TWHQX	Write Disable Output Enable Time	0	-	0	-	0	-	ns	(Notes 2, 3)
(17)	TAVWH	Address Valid to End of Write	55	-	65	-	65	-	ns	(Notes 1, 3
(18)	TAVEL	Address Setup Time	0	-	0	-	0	-	ns	(Notes 1, 3
(19)	TEHAX	Address Hold Time	0	-	0	-	0	-	ns	(Notes 1, 3
(20)	TAVEH	Address Valid to End of Write	55	-	65	-	65	-	ns	(Notes 1, 3
(21)	TELEH	Enable Pulse Width	55	-	65	-	65	-	ns	(Notes 1, 3
(22)	TWLEH	Write Enable Pulse Setup Time	40	-	45	-	45	-	ns	(Notes 1, 3
(23)	TDVEH	Chip Setup Time	30	-	35	-	35	0	ns	(Notes 1, 3
(24)	TEHDX	Data Hold Time	0	-	0	-	0	-	ns	(Notes 1, 3


NOTES:

1. Input pulse levels: 0 to 3.0V; Input rise and fall times: 5ns (max); Input and output timing reference level: 1.5V; Output load: 1 TTL gate equivalent and C_L = 50pF (min) - for C_L greater than 50pF, access time is derated by 0.15ns per pF.


2. Tested at initial design and after major design changes.

3. V_{CC} = 4.5 and 5.5V.

HM-65262

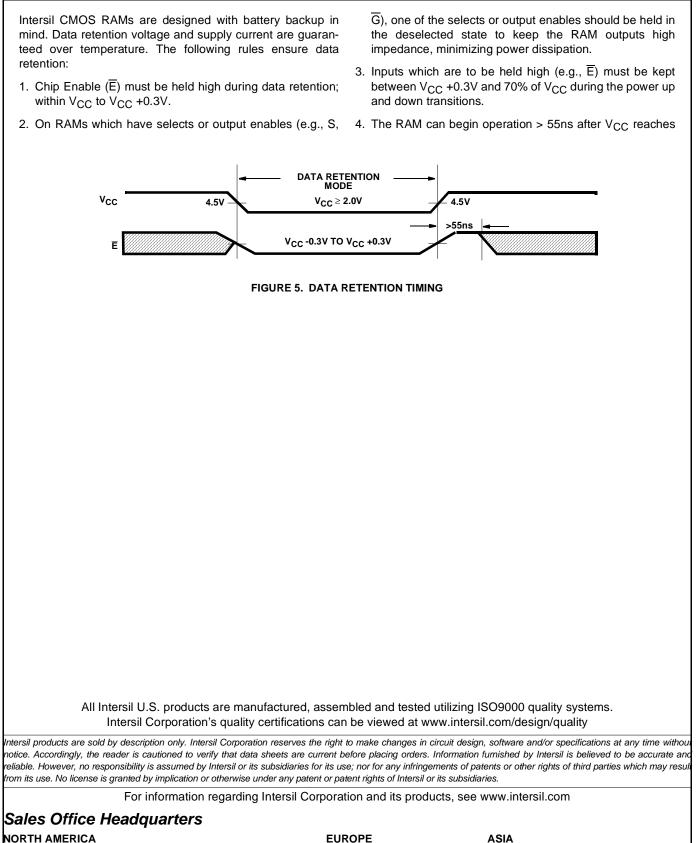
1. \overline{W} is high for the entire cycle and D is ignored. \overline{E} is stable prior to A becoming valid and after A becomes invalid. FIGURE 2. READ CYCLE 2: CONTROLLED BY ADDRESS

Low Voltage Data Retention

Q

NOTE:

1. In this mode, W rises after E. If W falls before E by a time exceeding TWLQZ (Max) TELQX (Min), and rises after E by a time exceeding


FIGURE 4. WRITE CYCLE 2: CONTROLLED BY E (EARLY WRITE)

(7) TEHQZ

(4) TELQX

(15) TWLQZ

TEHQZ (Max) TWHQZ (Min), then Q will remain in the high impedance state throughout the cycle.

Intersil Corporation 7585 Irvine Center Drive Suite 100 Irvine, CA 92618 TEL: (949) 341-7000 FAX: (949) 341-7123

Intersil Corporation 2401 Palm Bay Rd. Palm Bay, FL 32905 TEL: (321) 724-7000 FAX: (321) 724-7946 EUROPE Intersil Europe Sarl Ave. William Graisse, 3 1006 Lausanne Switzerland TEL: +41 21 6140560 FAX: +41 21 6140579 ASIA Intersil Corporation Unit 1804 18/F Guangdong Water Building 83 Austin Road TST, Kowloon Hong Kong TEL: +852 2723 6339 FAX: +852 2730 1433

Typical Performance Curve

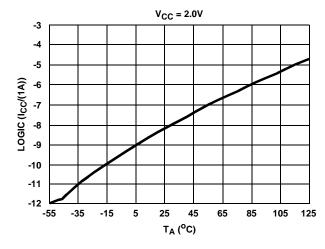


FIGURE 6. TYPICAL ICCDR vs TA