(Dot Matrix Liquid Crystal Display Controller/Driver)

HITACHI

ADE-207-304(Z) '99.9 Rev. 0.0

Description

The HD66701/2 dot-matrix liquid crystal display controller and driver LSI displays alphanumerics, Japanese kana characters, and symbols. It can be configured to drive a dot-matrix liquid crystal display under the control of a 4- or 8-bit microprocessor. Since all the functions required for driving a dot-matrix liquid crystal display are internally provided on one chip, a minimal system can be interfaced with this controller/driver.

A single HD66702 can display up to two 20-character lines, and a single HD66701 can display up to two 16-character lines.

The low 3-V power supply of the HD66701/2 is suitable for any portable battery-driven product requiring low power dissipation.

Features

- 5×7 and 5×10 dot matrix possible
- 80 × 8-bit display RAM (80 characters max.)
- 7,200-bit character generator ROM
 - 160 character fonts $(5 \times 7 \text{ dot})$
 - 32 character fonts $(5 \times 10 \text{ dot})$
- 64×8 -bit character generator RAM
 - 8 character fonts $(5 \times 7 \text{ dot})$
 - 4 character fonts $(5 \times 10 \text{ dot})$
- 16-common × 100-segment (HD66702) or 80-segment (HD66701) liquid crystal display driver
- Programmable duty cycles
 - 1/8 for one line of 5×7 dots with cursor
 - 1/11 for one line of 5×10 dots with cursor
 - 1/16 for two lines of 5×7 dots with cursor

- Maximum display characters
 - One line

```
1/8 duty cycle, 20-char. × 1-line (HD66702), 16-char. × 1-line (HD66701)
```

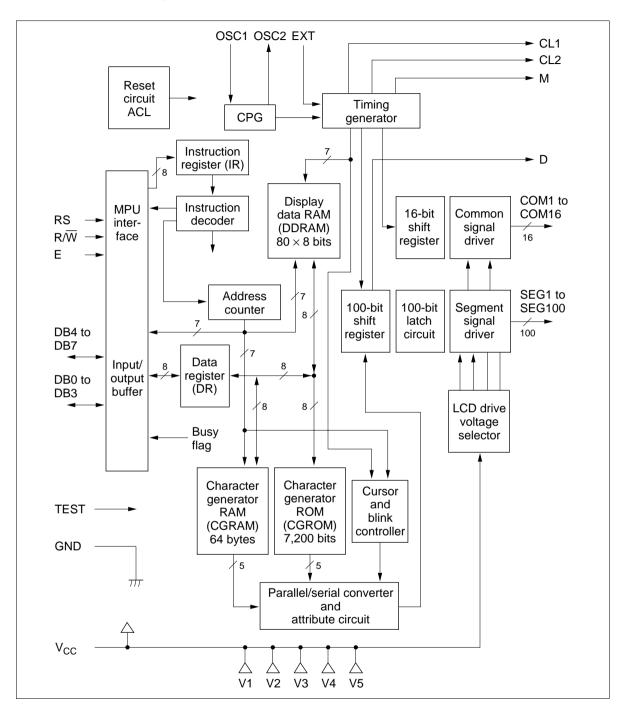
```
1/11 duty cycle, 20-char. × 1-line (HD66702), 16-char. × 1-line (HD66701)
```

— Two lines

```
1/16 duty cycle, 20-char. × 2-line (HD66702), 16-char. × 2-line (HD66701)
```

- Wide range of instruction functions
 - Display clear, cursor home, display on/off, cursor on/off, display character blink, cursor shift, display shift
- Choice of power supply (V_{CC}) : 4.5 to 5.5V (standard), 2.7 to 5.5V (low voltage)
- Automatic reset circuit that initializes the controller/driver after power on (standard version only)
- Independent LCD drive voltage driven off of the logic power supply (V_{CC}): 3.0 to 8.3V
- Low power dissipation
- LQFP2020-144-pin (HD66702), chip, chip wtith bump

Ordering Information


Туре No.	Package	Operating Voltage	ROM Font
HCD66702RA00L	144-pin-chip	2.7 to 5.5V	Standard Japanese
HCD66702RA00BP	144-pin-chip with bump	2.7 to 5.5V	Standard Japanese
HCD66702RA01L	144-pin-chip	2.7 to 5.5V	Communication system
HCD66702RA02L	144-pin-chip	2.7 to 5.5V	European font
HD66702RA00F	FP-144A	4.5 to 5.5V	Standard Japanese
HD66702RA00FL	FP-144A	2.7 to 5.5V	Standard Japanese
HD66702RA01F	FP-144A	4.5 to 5.5V	Communication font
HD66702RA02F	FP-144A	4.5 to 5.5V	European font
HCD66701A00	124-pin-chip	2.7 to 5.5V	Standard Japanese

LCD-II Family Comparison

Item	LCD-II (HD44780U)	HD66702 HD66701	HD66710	HD66712U
Power supply voltage	2.7V to 5.5V	$5 V \pm 10 \%$ (standard) 2.7 V to 5.5V (low voltage)	2.7V to 5.5V	2.7V to 5.5V
Liquid crystal drive voltage	3.0V to 11 V	3.0V to 8.3V	3.0V to 13.0V	2.7V to 11.0V
Maximum display digits per chip	8 characters × 2 lines	20 characters \times 2 lines (HD66702) 16 characters \times 2 lines (HD66701)	8 characters \times	24 characters × 2 lines/ 12 characters × 4 lines
Segment display	None	None	40 segments	60 segments
Display duty cycle	1/8, 1/11, and 1/16	1/8, 1/11, and 1/16	1/17 and 1/33	1/17 and 1/33
CGROM	9,920 bits (208 5×8 dot characters and 32 5×10 dot characters)	7,200 bits (160 5 \times 7 dot characters and 32 5 \times 10 dot characters)	9,600 bits (240 5×8 dot characters)	9,600 bits (240 5 \times 8 dot characters)
CGRAM	64 bytes	64 bytes	64 bytes	64 bytes
DDRAM	80 bytes	80 bytes	80 bytes	80 bytes
SEGRAM	None	None	8 bytes	16 bytes
Segment signals	40	100 (HD66702) 80 (HD66701)	40	60
Common signals	16	16	33	34
Liquid crystal drive waveform	A	В	В	В
Bleeder resistor for LCD power supply	External (adjustable)	External (adjustable)	External (adjustable)	External (adjustable)
Clock source	External resistor or external clock	External resistor or external clock	External resistor or external clock	External resistor or external clock
R _r oscillation frequency (frame frequency)	270 kHz ±30% (59 to 110 Hz for 1/8 and 1/16 duty cycle; 43 to 80 Hz for 1/11 duty cycle)	320 kHz ±30% (70 to 130 Hz for 1/8 and 1/16 duty cycle; 51 to 95 Hz for 1/11 duty cycle)	270 kHz ±30% (56 to 103 Hz for 1/17 duty cycle; 57 to 106 Hz for 1/33 duty cycle)	270 kHz ±30% (56 to 103 Hz for 1/17 duty cycle; 57 to 106 Hz for 1/33 duty cycle)
R _f resistance	91 kΩ: 5-V operation; 75 kΩ: 3-V operation	68 kΩ: 5-V operation; 56 kΩ: (3-V operation)	91 k Ω : 5-V operation; 75 k Ω : 3-V operation	130 kΩ: 5-V operation 110 kΩ: 3-V operation

Item	LCD-II (HD44780)	HD66702 HD66701	HD66710	HD66712U
Liquid crystal voltage booster circuit	None	None	2-3 times step-up circuit	2-3 times step-up circuit
Extension driver control signal	Independent control signal	Independent control signal (HD66702)	Used in common with a driver output pin	Independent control signal
Reset function	Power on automatic reset	Power on automatic reset	Power on automatic reset	Power on automatic reset or Reset input
Instructions	LCD-II (HD44780)	Fully compatible with the LCD-II	Uppercompatible with the LCD-II	Upper compatible with the LCD-II
Number of displayed lines	1 or 2	1 or 2	1, 2, or 4	1, 2, or 4
Low power mode	None	None	Available	Available
Horizontal scroll	Character unit	Character unit	Dot unit	Dot unit
Bus interface	4 bits/8 bits	4 bits/8 bits	4 bits/8 bits	Serial; 4 bits/8 bits
CPU bus timing	2 MHz: 5-V operation; 1 MHz: 3-V operation	1 MHz	2 MHz: 5-V operation; 1 MHz: 3-V operation	2 MHz: 5-V operation; 1 MHz: 3-V operation
Package	QFP-1420-80 80-pin bare chip	LQFP-2020-144 (HD66702) 144-pin bare chip	QFP-1420-100 TQFP-1414-100 100-pin bare chip	TCP-128 128-pin bare chip

HD66702 Block Diagram

HD66702 Pad Arrangement

See 0.2 See 0.3 See 0.3 See 0.3 See 0.4 See 0.4 See 0.4 See 0.4 See 0.5 See 0.4 See 0.5 See 0.4 See 0.5 See 0.5	
See G See G <td< td=""><td></td></td<>	
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
SEG34 II 1 SEG33 II 2	108 SEG71 107 SEG72
SEG32 3	106 SEG73
SEG31 🗖 4	105 🔲 SEG74
SEG30 🔲 5	104 🔲 SEG75
SEG29 6	103 SEG76
SEG28 7 SEG27 8	102 🔲 SEG77 101 🔲 SEG78
SEG26 9	100 🔲 SEG79
SEG25 🔲 10	99 🔲 SEG80
SEG24 11	98 🔲 SEG81
SEG23 12 SEG22 13	97 🔲 SEG82 96 🔲 SEG83
SEG21 14	95 🔲 SEG84
SEG20 🔲 15	94 🔲 SEG85
SEG19 16	93 🔲 SEG86
SEG18 17 SEG17 18 (Transient)	92 🔲 SEG87 91 🔲 SEG88
SEG16 19 (Top view)	90 🔲 SEG89
SEG15 🔲 20	89 🔲 SEG90
SEG14 21 SEG13 22	88 🔲 SEG91 87 🔲 SEG92
SEG13 III 22 SEG12 III 23	86 🔲 SEG92
SEG11 24	85 🔲 SEG94
SEG10 25	84 🔲 SEG95
SEG9 26 SEG8 27	83 🔲 SEG96 82 🔲 SEG97
SEG7 28	81 🔲 SEG98
SEG6 🔲 29	80 🔲 SEG99
SEG5 30	79 🔲 SEG100
SEG4 Image: 31 SEG3 Image: 32 Type code	78 🔲 COM16 77 🔲 COM15
SEG2 III 33	76 🔲 COM14
SEG1 🛄 34 HD66702	75 🔲 COM13
GND ■ 35 OSC2 □ 36	74 COM12 73 COM11
0 0	
OSC1 VCC VCC VCC VCC VCC VCC VCC VCC VCC V	
OSC1 VC VC VC VC VC VC VC VC VC VC VC VC VC	
E Power supply pins Minimum pad pitch = 130 µm E Power supply pins (ground) Pad size = 90 × 90 µm □	
\square : Input pins	
: Output pins	
🛛 : Input/Output pins	

HCD66702 Pad Location Coordinates

Pad No.	Pad Name	Χ (μm)	Υ (μm)	Pad No.	Pad Name	Χ (μm)	Υ (μm)
1	SEG34	-2475	2350	31	SEG4	-2475	-1600
2	SEG33	-2475	2205	32	SEG3	-2475	-1735
3	SEG32	-2475	2065	33	SEG2	-2475	-1870
4	SEG31	-2475	1925	34	SEG1	-2475	-2010
5	SEG30	-2475	1790	35	GND	-2475	-2180
6	SEG29	-2475	1655	36	OSC2	-2475	-2325
7	SEG28	-2475	1525	37	OSC1	-2445	-2475
8	SEG27	-2475	1395	38	V _{cc}	-2305	-2475
9	SEG26	-2475	1265	39	V _{cc}	-2165	-2475
10	SEG25	-2475	1135	40	V1	-2025	-2475
11	SEG24	-2475	1005	41	V2	-1875	-2475
12	SEG23	-2475	875	42	V3	-1745	-2475
13	SEG22	-2475	745	43	V4	-1595	-2475
14	SEG21	-2475	615	44	V5	-1465	-2475
15	SEG20	-2475	485	45	CL1	-1335	-2475
16	SEG19	-2475	355	46	CL2	-1185	-2475
17	SEG18	-2475	225	47	М	-1055	-2475
18	SEG17	-2475	95	48	D	-905	-2475
19	SEG16	-2475	-35	49	EXT	-775	-2475
20	SEG15	-2475	-165	50	TEST	-625	-2475
21	SEG14	-2475	-295	51	GND	-495	-2475
22	SEG13	-2475	-425	52	RS	-345	-2475
23	SEG12	-2475	-555	53	R/W	-195	-2475
24	SEG11	-2475	-685	54	E	-45	-2475
25	SEG10	-2475	-815	55	DB0	85	-2475
26	SEG9	-2475	-945	56	DB1	235	-2475
27	SEG8	-2475	-1075	57	DB2	365	-2475
28	SEG7	-2475	-1205	58	DB3	515	-2475
29	SEG6	-2475	-1335	59	DB4	645	-2475
30	SEG5	-2475	-1465	60	DB5	795	-2475

ad	Pad			Pad	Pad		
No.	Name	Χ (μm)	Υ (μm)	No.	Name	Χ (μm)	Υ (μm)
61	DB6	925	-2475	91	SEG88	2475	95
62	DB7	1075	-2475	92	SEG87	2475	225
63	COM1	1205	-2475	93	SEG86	2475	355
64	COM2	1335	-2475	94	SEG85	2475	485
65	COM3	1465	-2475	95	SEG84	2475	615
66	COM4	1595	-2475	96	SEG83	2475	745
67	COM5	1725	-2475	97	SEG82	2475	875
68	COM6	1855	-2475	98	SEG81	2475	1005
69	COM7	1990	-2475	99	SEG80	2475	1135
70	COM8	2125	-2475	100	SEG79	2475	1265
71	COM9	2265	-2475	101	SEG78	2475	1395
72	COM10	2410	-2475	102	SEG77	2475	1525
73	COM11	2475	-2290	103	SEG76	2475	1655
74	COM12	2475	-2145	104	SEG75	2475	1790
75	COM13	2475	-2005	105	SEG74	2475	1925
76	COM14	2475	-1865	106	SEG73	2475	2065
77	COM15	2475	-1730	107	SEG72	2475	2205
78	COM16	2475	-1595	108	SEG71	2475	2350
79	SEG100	2475	-1465	109	SEG70	2320	2475
80	SEG99	2475	-1335	110	SEG69	2175	2475
81	SEG98	2475	-1205	111	SEG68	2035	2475
82	SEG97	2475	-1075	112	SEG67	1895	2475
83	SEG96	2475	-945	113	SEG66	1760	2475
84	SEG95	2475	-815	114	SEG65	1625	2475
85	SEG94	2475	-685	115	SEG64	1495	2475
86	SEG93	2475	-555	116	SEG63	1365	2475
87	SEG92	2475	-425	117	SEG62	1235	2475
88	SEG91	2475	-295	118	SEG61	1105	2475
89	SEG90	2475	-165	119	SEG60	975	2475
90	SEG89	2475	-35	120	SEG59	845	2475

Pad No.	Pad Name	Χ (μm)	Υ (μm)	Pad No.	Pad Name	Χ (μm)	Υ (μm)
121	SEG58	715	2475	133	SEG46	-845	2475
122	SEG57	585	2475	134	SEG45	-975	2475
123	SEG56	455	2475	135	SEG44	-1105	2475
124	SEG55	325	2475	136	SEG43	-1235	2475
125	SEG54	195	2475	137	SEG42	-1365	2475
126	SEG53	65	2475	138	SEG41	-1495	2475
127	SEG52	-65	2475	139	SEG40	-1625	2475
128	SEG51	-195	2475	140	SEG39	-1760	2475
129	SEG50	-325	2475	141	SEG38	-1895	2475
130	SEG49	-455	2475	142	SEG37	-2035	2475
131	SEG48	-585	2475	143	SEG36	-2175	2475
132	SEG47	-715	2475	144	SEG35	-2320	2475

Notes: 1. Coordinates originate from the chip center.

2. The above are preliminary specifications, and may be subject to change.

HD66701 Pad Arrangement

		-
	SEG35 SEG36 SEG36 SEG36 SEG36 SEG36 SEG36 SEG44 SEG55 SEG656 SEG565 SEG656 SEG656 SEG655 SEG656 SEG656 SEG656 SEG656 SEG656 SEG656 SEG656 SEG656 SEG656 SEG656 SEG656 SEG656 SEG656 SEG656 SEG656 SEG656 SEG656 SEG656 SEG656 SEG6666 SEG6666 SEG666 SEG666 SEG6666 SEG6666 SEG666 SEG	
	000000000000000000000000000000000000000	
	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
SEG34 🔲 1		84 🔲 SEG71
SEG33 🔲 2		86 🔲 SEG72
SEG32 🔲 3		82 🔲 SEG73
SEG31 🔲 4		81 🔲 SEG74
SEG30 🔲 5		80 🔲 SEG75
SEG29 🔲 6		79 🔲 SEG76
SEG28 7		78 🔲 SEG77
SEG27 🔲 8 SEG26 🔲 9		77 🔲 SEG78 76 🔲 SEG79
SEG25 10		76 🔲 SEG79 75 🔲 SEG80
SEG24 11		
SEG23 12		Dummy
SEG22 🔲 13		Dummy
SEG21 🔲 14		Dummy
SEG20 🔲 15		🔲 Dummy
SEG19 🔲 16		Dummy
SEG18 17		Dummy
SEG17 🔲 18 SEG16 🔲 19	(Top view)	
SEG15 20		Dummy
SEG14 21		Dummy
SEG13 22		
SEG12 🔲 23		Dummy
SEG11 🔲 24		🔲 Dummy
SEG10 🔲 25		Dummy
SEG9 26		Dummy
SEG8 27 SEG7 28		Dummy
SEG7 28 SEG6 29		Dummy
SEG5 30		
SEG4 🔲 31		74 🔲 COM16
SEG3 🔲 32		73 🔲 COM15
SEG2 🔲 33	Type code	72 🔲 COM14
SEG1 🔲 34	HD88908R	71 🔲 COM13
GND 35		70 COM12
OSC2 🗖 36		69 🔲 COM11
	33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 34 34 34 35 35 35 35 35 35 35 35 36 36 37 37 38 38 39 38 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39	
	OSC1 Vcc Vcc Vcc Vcc Vcc Vcc Vcc Vcc Vc Vc V	
	OSC1 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	
	0 > 2 > 2 > 2 > 2 > 2 > 2 > 2 > 2 > 2 >	
Note * :	Test pins to be grounded	
	Power supply pins	
	Power supply pins (ground)	
	Input pins	
	Output pins	
⊠∶	Input/Output pins	
l		

HCD66701 Pad Location Coordinates

Pad	Pad			Pad	Pad		
No.	Name	Χ (μ m)	Υ (μm)	No.	Name	Χ (μm)	Υ (μm
1	SEG34	-2475	2350	31	SEG4	-2475	-1600
2	SEG33	-2475	2205	32	SEG3	-2475	-1735
3	SEG32	-2475	2065	33	SEG2	-2475	-1870
4	SEG31	-2475	1925	34	SEG1	-2475	-2010
5	SEG30	-2475	1790	35	GND	-2475	-2180
6	SEG29	-2475	1655	36	OSC2	-2475	-2325
7	SEG28	-2475	1525	37	OSC1	-2475	-2475
8	SEG27	-2475	1395	38	V _{cc}	-2305	-2475
9	SEG26	-2475	1265	39	V _{cc}	-2165	-2475
10	SEG25	-2475	1135	40	V1	-2025	-2475
11	SEG24	-2475	1005	41	V2	-1875	-2475
12	SEG23	-2475	875	42	V3	-1745	-2475
13	SEG22	-2475	745	43	V4	-1595	-2475
14	SEG21	-2475	615	44	V5	-1465	-2475
15	SEG20	-2475	485	_	Dummy	-1335	-2475
16	SEG19	-2475	355	_	Dummy	-1185	-2475
17	SEG18	-2475	225	_	Dummy	-1055	-2475
18	SEG17	-2475	95	_	Dummy	-905	-2475
19	SEG16	-2475	-35	45	EXT	-775	-2475
20	SEG15	-2475	-165	46	TEST	-625	-2475
21	SEG14	-2475	-295	47	GND	-495	-2475
22	SEG13	-2475	-425	48	RS	-345	-2475
23	SEG12	-2475	-555	49	R/W	-195	-2475
24	SEG11	-2475	-685	50	E	-45	-2475
25	SEG10	-2475	-815	51	DB0	85	-2475
26	SEG9	-2475	-945	52	DB1	235	-2475
27	SEG8	-2475	-1075	53	DB2	365	-2475
28	SEG7	-2475	-1205	54	DB3	515	-2475
29	SEG6	-2475	-1335	55	DB4	645	-2475
30	SEG5	-2475	-1465	56	DB5	795	-247

Pad No.	Pad Name	Χ (μm)	Υ (μm)	Pad No.	Pad Name	Χ (μm)	Υ (μm)
57	DB6	925	-2475		Dummy	2475	95
58	DB7	1075	-2475	_	Dummy	2475	225
59	COM1	1205	-2475	_	Dummy	2475	355
60	COM2	1335	-2475	_	Dummy	2475	485
61	COM3	1465	-2475	75	SEG80	2475	615
62	COM4	1595	-2475	76	SEG79	2475	745
63	COM5	1725	-2475	77	SEG78	2475	875
64	COM6	1855	-2475	78	SEG77	2475	1005
65	COM7	1990	-2475	79	SEG76	2475	1135
66	COM8	2125	-2475	80	SEG75	2475	1265
67	COM9	2265	-2475	81	SEG74	2475	1395
68	COM10	2410	-2475	82	SEG73	2475	1525
69	COM11	2475	-2290	83	SEG72	2475	1655
70	COM12	2475	-2145	84	SEG71	2475	1790
71	COM13	2475	-2005	85	SEG70	2475	1925
72	COM14	2475	-1865	86	SEG69	2475	2065
73	COM15	2475	-1730	87	SEG68	2475	2205
74	COM16	2475	-1595	88	SEG67	2475	2350
_	Dummy	2475	-1465	89	SEG66	2320	2475
_	Dummy	2475	-1335	90	SEG65	2175	2475
_	Dummy	2475	-1205	91	SEG64	2035	2475
_	Dummy	2475	-1075	92	SEG63	1895	2475
_	Dummy	2475	-945	93	SEG62	1760	2475
_	Dummy	2475	-815	94	SEG61	1625	2475
_	Dummy	2475	-685	95	SEG60	1495	2475
_	Dummy	2475	-555	96	SEG59	1365	2475
_	Dummy	2475	-425	97	SEG58	1235	2475
_	Dummy	2475	-295	98	SEG57	1105	2475
_	Dummy	2475	-165	99	SEG56	975	2475
_	Dummy	2475	-35	100	SEG55	845	2475

Pad No.	Pad Name	Χ (μm)	Υ (μm)	Pad No.	Pad Name	Χ (μm)	Υ (μm)
101	SEG54	195	2475	111	SEG44	-1105	2475
102	SEG53	65	2475	112	SEG43	-1235	2475
103	SEG52	-65	2475	113	SEG42	-1365	2475
104	SEG51	-195	2475	114	SEG41	-1495	2475
105	SEG50	-325	2475	115	SEG40	-1625	2475
106	SEG49	-455	2475	116	SEG39	-1760	2475
107	SEG48	-585	2475	117	SEG38	-1895	2475
108	SEG47	-715	2475	118	SEG37	-2035	2475
109	SEG46	-845	2475	119	SEG36	-2175	2475
110	SEG45	-975	2475	120	SEG35	-2320	2475

Notes: 1. Coordinates originate from the chip center.

2. The above are preliminary specifications, and may be subject to change.

HD66702 Pin Arrangement

38 8 2 8 8 7 8 8 3 2 7 8 2 8 2 7 8 2 7 9 2 9 4 4 4 4 4 4 4 7 4 9 8 8 3 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8	5
See Geg	5
	Ď
4 8 9 4 0 9 8 7 9 9 4 8 7 7 0 8 7 9 9 4 8 7 9 9 8 7 9 9 4 8 7 9 9 7 9 7	
11111111111111111111111111111111111111	
SEG34 🔲 1 🔿	108 🔲 SEG71
SEG33 🔲 2 💛	107 🔲 SEG72
SEG32 🔲 3	106 🔲 SEG73
SEG31 🔲 4	105 🔲 SEG74
SEG30 🔲 5	104 🔲 SEG75
SEG29 🔲 6	103 🔲 SEG76
SEG28 🔲 7	102 🔲 SEG77
SEG27 🔲 8	101 🔲 SEG78
SEG26 🔲 9	100 🔲 SEG79
SEG25 🔲 10	99 🔲 SEG80
SEG24 🔲 11	98 🔲 SEG81
SEG23 🔲 12	97 🔲 SEG82
SEG22 🔲 13	96 🗖 SEG83
SEG21 🔲 14	95 🔲 SEG84
SEG20 🔲 15	94 🔲 SEG85
SEG19 🔲 16	93 🔲 SEG86
SEG18 🔲 17	92 🔲 SEG87
SEG17 🔲 18 FP-144A	91 🔲 SEG88
SEG16 🔲 19 (Top view)	90 🔲 SEG89
SEG15 🔲 20	89 🔲 SEG90
SEG14 🔲 21	88 🔲 SEG91
SEG13 🔲 22	87 🔲 SEG92
SEG12 🔲 23	86 🔲 SEG93
SEG11 🔲 24	85 🔲 SEG94
SEG10 🔲 25	84 🔲 SEG95
SEG9 26	83 🔲 SEG96
SEG8 27	82 📃 SEG97
SEG7 28	81 🔲 SEG98
SEG6 29	80 🔲 SEG99
SEG5 30	79 🔲 SEG100
SEG4 31	78 COM16
SEG3 32	77 COM15
SEG2 33	76 COM14
	75 COM13
	74 🔲 COM12 73 🔲 COM11
OSC2 🔲 36	73 🗖 COM11
1 1	2
	`
OSC1 VCC VCC VCC VCC VCC VCC VCC VCC VCC V	
	<u>,</u>
Note: *: Test pins to be grounded	
: Power supply pins	
Power supply pins (ground)	
🛛 : Input pins	
: Output pins	
☐ : Input/Output pins	

Pin Functions

Table 1Pin Functional Description

Signal	I/O	Device Interfaced with	Function
RS	I	MPU	Selects registers 0: Instruction register (for write) Busy flag: address counter (for read) 1: Data register (for write and read)
R/W	I	MPU	Selects read or write 0: Write 1: Read
E	Ι	MPU	Starts data read/write
DB4 to DB7	I/O	MPU	Four high order bidirectional tristate data bus pins. Used for data transfer between the MPU and the HD66701/2. DB7 can be used as a busy flag.
DB0 to DB3	I/O	MPU	Four low order bidirectional tristate data bus pins. Used for data transfer between the MPU and the HD66701/2. These pins are not used during 4-bit operation.
CL1 (HD66702)	0	Extension driver	Clock to latch serial data D sent to the extension driver
CL2 (HD66702)	0	Extension driver	Clock to shift serial data D
M (HD66702)	0	Extension driver	Switch signal for converting the liquid crystal drive waveform to AC
D (HD66702)	0	Extension driver	Character pattern data corresponding to each segment signal
COM1 to COM16	0	LCD	Common signals that are not used are changed to non- selection waveforms. COM9 to COM16 are non- selection waveforms at 1/8 duty factor and COM12 to COM16 are non-selection waveforms at 1/11 duty factor.
SEG1 to SEG100 (HD66702)	0	LCD	Segment signals
SEG1 to SEG80 (HD66701)			
V1 to V5	_	Power supply	Power supply for LCD drive
V _{cc} , GND	_	Power supply	V _{cc} : +5V or +3V, GND: 0V
TEST	Ι	_	Test pin, which must be grounded
EXT	I	_	 Enables extension driver control signals CL1, CL2, M, and D to be output from its corresponding pins. Drives CL1, CL2, M, and D as tristate, lowering power dissipation.
OSC1, OSC2		_	Pins for connecting the registers of the internal clock oscillation. When the pin input is an external clock, it must be input to OSC1.

Function Description

Registers

The HD66701/2 has two 8-bit registers, an instruction register (IR) and a data register (DR).

The IR stores instruction codes, such as display clear and cursor shift, and address information for display data RAM (DDRAM) and character generator RAM (CGRAM). The IR can only be written from the MPU.

The DR temporarily stores data to be written into DDRAM or CGRAM. Data written into the DR from the MPU is automatically written into DDRAM or CGRAM by an internal operation. The DR is also used for data storage when reading data from DDRAM or CGRAM. When address information is written into the IR, data is read and then stored into the DR from DDRAM or CGRAM by an internal operation. Data transfer between the MPU is then completed when the MPU reads the DR. After the read, data in DDRAM or CGRAM at the next address is sent to the DR for the next read from the MPU. By the register selector (RS) signal, these two registers can be selected (Table 2).

Busy Flag (BF)

When the busy flag is 1, the HD66701/2 is in the internal operation mode, and the next instruction will not be accepted. When RS = 0 and R/W = 1 (Table 2), the busy flag is output to DB7. The next instruction must be written after ensuring that the busy flag is 0.

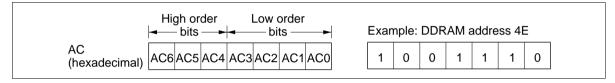
Address Counter (AC)

The address counter (AC) assigns addresses to both DDRAM and CGRAM. When an address of an instruction is written into the IR, the address information is sent from the IR to the AC. Selection of either DDRAM or CGRAM is also determined concurrently by the instruction.

After writing into (reading from) DDRAM or CGRAM, the AC is automatically incremented by 1 (decremented by 1). The AC contents are then output to DB0 to DB6 when RS = 0 and $R/\overline{W} = 1$ (Table 2).

RS	R/W	Operation
0	0	IR write as an internal operation (display clear, etc.)
0	1	Read busy flag (DB7) and address counter (DB0 to DB6)
1	0	DR write as an internal operation (DR to DDRAM or CGRAM)
1	1	DR read as an internal operation (DDRAM or CGRAM to DR)

Table 2Register Selection


Display Data RAM (DDRAM)

Display data RAM (DDRAM) stores display data represented in 8-bit character codes. Its extended capacity is 80×8 bits, or 80 characters. The area in display data RAM (DDRAM) that is not used for display can be used as general data RAM. See Figure 1 for the relationships between DDRAM addresses and positions on the liquid crystal display.

The DDRAM address (A_{DD}) is set in the address counter (AC) as hexadecimal.

- 1-line display (N = 0) (Figure 2)
 - When there are fewer than 80 display characters, the display begins at the head position. For example, if using only the HD66702, 20 characters are displayed. See Figure 3.

When the display shift operation is performed, the DDRAM address shifts. See Figure 3.

Figure 1 DDRAM Address

DDRAM address 00 01 02 03 04 ······ 4E 4F	Display positio (digit)		2	3	4	5	79	80
		00	01	02	03	04	 4E	4F

Figure 2 1-Line Display

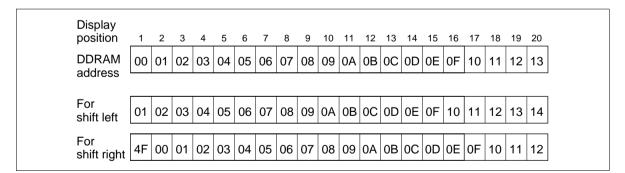


Figure 3 1-Line by 20-Character Display Example

- 2-line display (N = 1) (Figure 4)
 - Case 1: When the number of display characters is less than 40 × 2 lines, the two lines are displayed from the head. Note that the first line end address and the second line start address are not consecutive. For example, when just the HD66702 is used, 20 characters × 2 lines are displayed. See Figure 5.

When display shift operation is performed, the DDRAM address shifts. See Figure 5.

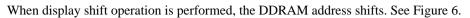

Display position	1	2	3	4	5	39	40
DDRAM	00	01	02	03	04	 26	27
address (hexadecimal)	40	41	42	43	44	 66	67

Figure 4 2-Line Display

Display position	_1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
DDRAM	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10	11	12	13
address	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F	50	51	52	53
For	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10	11	12	13	14
shift left		40	40		4	40	47	40	40	4.0		40	4.5	45	4	FO	51	52	53	51
0	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F	50	51	52	55	54
	41	42	43	44	45	46	47	40	49	4A	4B	4C	4D	4E	4	50	51	52	55	54
For shift right	27		-			46 04			49 07		4B 09									12

Figure 5 2-Line by 20-Character Display Example

 Case 2: For a 28-character × 2-line display, the HD66702 can be extended using one 40-output extension driver. See Figure 6.

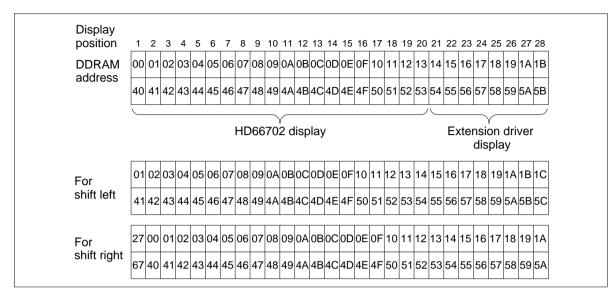


Figure 6 2-Line by 28-Character Display Example

Character Generator ROM (CGROM)

The character generator ROM generates 5×7 dot or 5×10 dot character patterns from 8-bit character codes (Table 5). It can generate 1605×7 dot character patterns and 325×10 dot character patterns. User-defined character patterns are also available by mask-programmed ROM.

Character Generator RAM (CGRAM)

In the character generator RAM, the user can rewrite character patterns by program. For 5×7 dots, eight character patterns can be written, and for 5×10 dots, four character patterns can be written.

Write the character codes at the addresses shown as the left column of Table 5 to show the character patterns stored in CGRAM.

See Table 6 for the relationship between CGRAM addresses and data and display patterns.

Areas that are not used for display can be used as general data RAM.

Modifying Character Patterns

- Character pattern development procedure The following operations correspond to the numbers listed in Figure 7:
- 1. Determine the correspondence between character codes and character patterns.
- 2. Create a listing indicating the correspondence between EPROM addresses and data.
- 3. Program the character patterns into the EPROM.
- 4. Send the EPROM to Hitachi.
- 5. Computer processing on the EPROM is performed at Hitachi to create a character pattern listing, which is sent to the user.
- 6. If there are no problems within the character pattern listing, a trial LSI is created at Hitachi and samples are sent to the user for evaluation. When it is confirmed by the user that the character patterns are correctly written, mass production of the LSI proceeds at Hitachi.

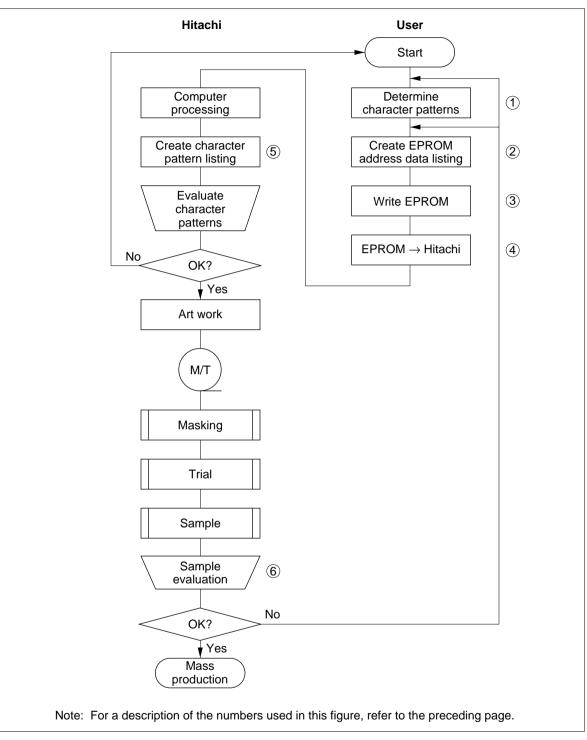


Figure 7 Character Pattern Development Procedure

• Programming character patterns

This section explains the correspondence between addresses and data used to program character patterns in EPROM. The HD66702 character generator ROM can generate 1605×7 dot character patterns and 325×10 dot character patterns for a total of 192 different character patterns.

— 5×7 dot character pattern

EPROM address data and character pattern data correspond with each other to form a 5×7 dot character pattern (Table 3).

Table 3Example of Correspondence between EPROM Address Data and Character Pattern
(5 × 7 dots)

				EP	RO	MA	ddr	ess						Dat	a	
A	10,	A9	A8	Α7	A6	Α5	A4	A3	A2	A1	A0	04	03	02	ا 01	LSB O0
()	1	0	1	0	0	1	0	0	0	0	1	1	1	1	0
									0	0	1	1	0	0	0	1
									0	1	0	1	0	0	0	1
									0	1	1	1	1	1	1	0
									1	0	0	1	0	1	0	0
									1	0	1	1	0	0	1	0
									1	1	0	1	0	0	0	1
									1	1	1	0	0	0	0	0
		(Cha	ract	er c	ode			L	ine						

position

- Notes: 1. EPROM addresses A10 to A3 correspond to a character code.
 - 2. EPROM addresses A2 to A0 specify a line position of the character pattern.
 - 3. EPROM data O4 to O0 correspond to character pattern data.
 - 4. A lit display position (black) corresponds to a 1.
 - 5. Line 8 (cursor position) of the character pattern must be blanked with 0s.
 - 6. EPROM data O5 to O7 are not used.

— 5×10 dot character pattern

EPROM address data and character pattern data correspond with each other to form a 5×10 dot character pattern (Table 4).

- Handling unused character patterns
- 1. **EPROM data outside the character pattern area:** Ignored by the character generator ROM for display operation so 0 or 1 is arbitrary.
- 2. **EPROM data in CGRAM area:** Ignored by the character generator ROM for display operation so 0 or 1 is arbitrary.
- 3. **EPROM data used when the user does not use any HD66702 character pattern:** According to the user application, handled in one of the two ways listed as follows.
 - a. When unused character patterns are not programmed: If an unused character code is written into DDRAM, all its dots are lit. By not programing a character pattern, all of its bits become lit. (This is due to the EPROM being filled with 1s after it is erased.)
 - b. When unused character patterns are programmed as 0s: Nothing is displayed even if unused character codes are written into DDRAM. (This is equivalent to a space.)

Table 4Example of Correspondence between EPROM Address Data and Character Pattern
(5 × 10 dots)

					EP	RO	M A	ddr	ess						Dat	а		
A 1	0	A	9 A	8	A7	7 A 6	A5	i A4	1 A 3	A2	A1	A0	04	I O 3	02	01	LSB O0	
										0	0	0	0	0	0	0	0	
										0	0	1	0	0	0	0	0	
										0	1	0	0	1	1	0	1	
1	,	1	1		1	0	0	0	1	0	1	1	1	0	0	1	1	
										1	0	0	1	0	0	0	1	
										1	0	1	1	0	0	0	1	
										1	1	0	0	1	1	1	1	
			*							1	1	1	0	0	0	0	1	
1	^	0	Ć)	1	0	0	0	1	0	0	0	0	0	0	0	1	
1		0	C)	1	0	0	0	1	0	0	1	0	0	0	0	1	
1		0	C)	1	0	0	0	1	0	1	0	0	0	0	0	0	Fill line 11 (cursor po
1 0 1 0 1 0 1 0 Character code Line position												ion						with 0s

- Notes: 1. EPROM addresses A10 to A3 correspond to a character code. Set A8 and A9 of character pattern lines 9, 10, and 11 to 0s.
 - 2. EPROM addresses A2 to A0 specify a line position of the character pattern.
 - 3. EPROM data O4 to O0 correspond to character pattern data.
 - 4. A lit display position (black) corresponds to a 1.
 - 5. Blank out line 11 (cursor position) of the character pattern with 0s.
 - 6. EPROM data O5 to O7 are not used.

Table 5 Correspondence between Character Codes and Character Patterns (ROM code: A00)

(HD66701/HD66702)

Upper 4 Lower Bits	0000	0010	0011	0100	0101	0110	0111	1010	1011	1100	1101	1110	1111
<u>4 Bits</u> xxxx0000	CG RAM (1)					••						Ċ	
xxxx0001	(2)						•					•	
xxxx0010	(3)						}- "•		•	ij			
xxxx0011	(4)						•						?
xxxx0100	(5)							••					
xxxx0101	(6)								•••	••• ••			
xxxx0110	(7)						Ų						
xxxx0111	(8)	•					<u>i</u> ji	••••• •••					T
xxxx1000	(1)						<u>}</u>	•		••••••••••••••••••••••••••••••••••••••			
xxxx1001	(2)						•	8-8-9 				1	
xxxx1010	(3)	:									ŀ		
xxxx1011	(4)		## _#									**	
xxxx1100	(5)										7	.	
xxxx1101	(6)									•*••	•• 		•••••
xxxx1110	(7)				•**•	P ** 1	•••••••••••••••••••••••••••••••••••••••				•••		
xxxx1111	(8)		?				•	•	۱. 	•••			

Note: The user can specify any pattern for character-generator RAM.

 Table 5
 Correspondence between Character Codes and Character Patterns (ROM code: A01)

(HD66702)

Upper 4 Lower Bits 4 Bits	0000	0010	0011	0100	0101	0110	0111	1010	1011	1100	1101	1110	1111
xxxx0000	CG RAM (1)					••	.						
xxxx0001	(2)					•••••	•••••				:;		
xxxx0010	(3)						}•**•		•	ij	×		
xxxx0011	(4)												
xxxx0100	(5)							••					
xxxx0101	(6)								••••				
xxxx0110	(7)		É,				۱ <u>.</u> ,	••••• •••••					
xxxx0111	(8)	•	••••• •					••••• •••					
xxxx1000	(1)					.	Х	•1	•	••••••• •••••	Ņ		•
xxxx1001	(2)				i,i		•			,	I L		
xxxx1010	(3)	:4:									ŀ		
xxxx1011	(4)			K				;;;					
xxxx1100	(5)							•			;		
xxxx1101	(6)					[]]	}			•••			•••
xxxx1110	(7)				•**•	! "]					•••		
xxxx1111	(8)						•	•••	۰. 				

 Table 5
 Correspondence between Character Codes and Character Patterns (ROM code: A02)

(HD66702)

Upper 4 Lower Bits 4 Bits	0000	0010	0011	0100	0101	0110	0111	1010	1011	1100	1101	1110	1111
xxxx0000	CG RAM (1)					••	.						
xxxx0001	(2)						•••••						-
xxxx0010	(3)						.	¢.			Ċ		
xxxx0011	(4)				1	.	•				Ċ		
xxxx0100	(5)						÷.,	;;;;	ĊĊ		ů		ċ
xxxx0101	(6)												
xxxx0110	(7)						I. ,I						
xxxx0111	(8)	•									X		
xxxx1000	(1)				24		X						•
xxxx1001	(2)												
xxxx1010	(3)	:4:											
xxxx1011	(4)	•••						*			Û		
xxxx1100	(5)							*					
xxxx1101	(6)							•					
xxxx1110	(7)				•**•	P "1	•**••*						
xxxx1111	(8)							8	<u>.</u>				•

Table 6 Relationship between CGRAM Addresses, Character Codes (DDRAM) and Character Patterns (CGRAM Data)

For 5 \times 7 dot character patterns

					er (M c					С	GR/	٩M	Ad	dre	SS				cter RA				3	
7		6	5	4	3	2	2	1	0	5	4	3	2	1	0	7	6	5	4	3	2	1	0	
F	Ηię	gh						Lo	w	Н	igh			Lo	w	Н	ligh					Lo	w	
													0	0	0	*	*	*	1	1	1	1]]
													0	0	1		•		1	0	0	0	1	
													0	1	0				1	0	0	0	1	Character
0		0	0	0	*	0)	0	0	0	0	0	0	1	1				1	1	1	_1	0	pattern
ľ		0	U	U		Ŭ	, 	0	U		U	U	1	0	0				1	0	1	0	0	
													1	0	1				1	0	0	1	0	
													1	1	0		¥		1	0	0	0	1	
													1	1	1	*	*	*	0	0	0	0	0	$\}$ Cursor position
													0	0	0	*	*	*	1	0	0	0	1	
													0	0	1		•		0	1	0	1	0	_
													0	1	0				1	1	1	_1	1	
0		0	0	0	*	0)	0	1	0	0	1	0	1	1				0	0	1	0	0	
ľ		0	U	U		Ŭ	, 	0	'		U	•	1	0	0				1	1	1	_1	1	
													1	0	1				0	0	1	0	0	
													1	1	0		¥		0	0	1	0	0	
													1	1	1	*	*	*	0	0	0	0	0	
													0	0	0	*	*	*						
			_										0	0	1		•							
-	_	-		_							_			_								_	_]
0		0	0	0	*	1		1	1	1	1	1							-				_	
		-	Ũ	Ũ				•	•	.	•	•	1	0	0				1					
													1	0	1				Ì					
													1	1	0		¥							
													1	1	1	*	*	*	1					

Notes: 1. Character code bits 0 to 2 correspond to CGRAM address bits 3 to 5 (3 bits: 8 types).

 CGRAM address bits 0 to 2 designate the character pattern line position. The 8th line is the cursor position and its display is formed by a logical OR with the cursor. Maintain the 8th line data, corresponding to the cursor display position, at 0 as the cursor display.

If the 8th line data is 1, 1 bits will light up the 8th line regardless of the cursor presence.

- 3. Character pattern row positions correspond to CGRAM data bits 0 to 4 (bit 4 being at the left). Since CGRAM data bits 5 to 7 are not used for display, they can be used for general data RAM.
- 4. As shown Tables 5 and 6, CGRAM character patterns are selected when character code bits 4 to 7 are all 0. However, since character code bit 3 has no effect, the R display example above can be selected by either character code 00H or 08H.
- 5. 1 for CGRAM data corresponds to display selection and 0 to non-selection.
- * Indicates no effect.

Table 6Relationship between CGRAM Addresses, Character Codes (DDRAM) and Character
Patterns (CGRAM Data) (cont)

For 5 \times 10 dot character patterns

	(ara DD					;		С	GR	AM	A	dc	lre	ss			ara (CG					;						
7	(6	5	4	3	2	1	0		5	4	3	2	2	1	0	7	6	5	4	3	2	1	0						
ŀ	lig	gh					L	wc		Н	igł	I			Lo	w	н	ligh	1				Lo	w						
0		0	0	0	*	0	0	*		0	0	0 0 0 0 0 0 0		2 2 2 2 1 1 1 1	0 1 1 0 0 1	0 1 0 1 0 1 0	*	*	*	0 0 1 1 1 1 1	0 0 1 0 0 1	0	0 0 1 0 0 0 1 0	0 0 1 1 1 0 0		· ·	Char	acte	r	
												1	(, 5 5 5	0 0 1	0 1 0	*	▼	*	1 1 1	000000000000000000000000000000000000000	0 0 0	0 0 0	0 0 0	<	 } (Curs	or po	ositic	on
						 			 			1		2 1 1 1	1 0 0 1	1 0 1 0	 *	*	*		*	*	*	*				•		
												0	(1 0 0	1 0 0	1 0 1	*	*	*					*						
0	(0	0	0	*	 1	1	*		1	1	1 1 1 1 1	((, ,	2 2 2 1 1	0 1 1 0 0	1 0 1 0 1 0	*	*	*	*	*	*	*	*	-					
												1		1	1	1	*	*	*	*	*	*	*	*						

Notes: 1. Character code bits 1 and 2 correspond to CGRAM address bits 4 and 5 (2 bits: 4 types).

- CGRAM address bits 0 to 3 designate the character pattern line position. The 11th line is the cursor position and its display is formed by a logical OR with the cursor. Maintain the 11th line data corresponding to the cursor display positon at 0 as the cursor display. If the 11th line data is 1, 1 bits will light up the 11th line regardless of the cursor presence. Since lines 12 to 16 are not used for display, they can be used for general data RAM.
- 3. Character pattern row positions are the same as 5×7 dot character pattern positions.
- CGRAM character patterns are selected when character code bits 4 to 7 are all 0. However, since character code bits 0 and 3 have no effect, the P display example above can be selected by character codes 00H, 01H, 08H, and 09H.
- 5. 1 for CGRAM data corresponds to display selection and 0 to non-selection.
- * Indicates no effect.

Timing Generation Circuit

The timing generation circuit generates timing signals for the operation of internal circuits such as DDRAM, CGROM and CGRAM. RAM read timing for display and internal operation timing by MPU access are generated separately to avoid interfering with each other. Therefore, when writing data to DDRAM, for example, there will be no undesirable interferences, such as flickering, in areas other than the display area.

Liquid Crystal Display Driver Circuit

The liquid crystal display driver circuit consists of 16 common signal drivers and 100 segment (HD66702) or 80 segment (HD66701) signal drivers. When the character font and number of lines are selected by a program, the required common signal drivers automatically output drive waveforms, while the other common signal drivers continue to output non-selection waveforms.

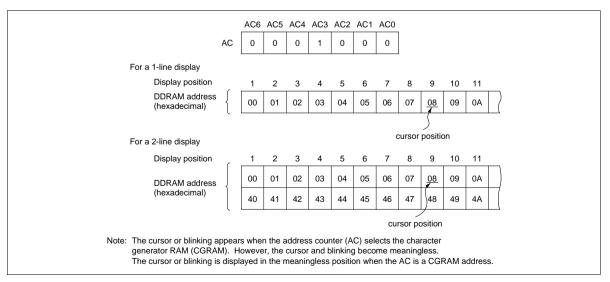
Sending serial data always starts at the display data character pattern corresponding to the last address of the display data RAM (DDRAM).

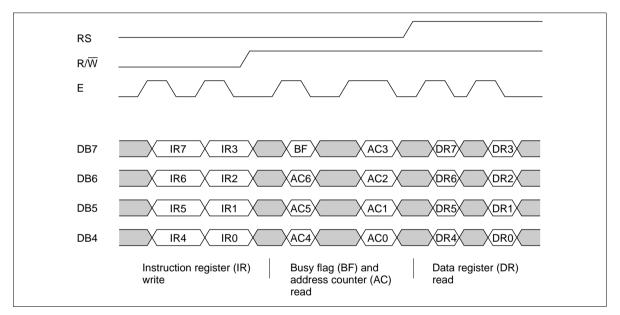
Since serial data is latched when the display data character pattern corresponding to the starting address enters the internal shift register, the HD66701/2 drives from the head display.

Cursor/Blink Control Circuit

The cursor/blink control circuit generates the cursor or character blinking. The cursor or the blinking will appear with the digit located at the display data RAM (DDRAM) address set in the address counter (AC).

For example (Figure 8), when the address counter is 08H, the cursor position is displayed at DDRAM address 08H.




Figure 8 Cursor/Blink Display Example

Interfacing to the MPU

The HD66701/2 can send data in either two 4-bit operations or one 8-bit operation, thus allowing interfacing with 4- or 8-bit MPUs.

• For 4-bit interface data, only four bus lines (DB4 to DB7) are used for transfer. Bus lines DB0 to DB3 are disabled. The data transfer between the HD66701/2 and the MPU is completed after the 4-bit data has been transferred twice. As for the order of data transfer, the four high order bits (for 8-bit operation, DB4 to DB7) are transferred before the four low order bits (for 8-bit operation, DB0 to DB3).

The busy flag must be checked (one instruction) after the 4-bit data has been transferred twice. Two more 4-bit operations then transfer the busy flag and address counter data.

• For 8-bit interface data, all eight bus lines (DB0 to DB7) are used.

Figure 9 4-Bit Transfer Example

Reset Function

Initializing by Internal Reset Circuit

An internal reset circuit automatically initializes the HD66701/2 when the power is turned on. The following instructions are executed during the initialization. The busy flag (BF) is kept in the busy state until the initialization ends (BF = 1). The busy state lasts for 15 ms after V_{CC} rises to 4.5V, or 40 ms after V_{CC} rises to 2.7V.

- 1. Display clear
- 2. Function set:
 - DL = 1; 8-bit interface data
 - N = 0; 1-line display
 - F = 0; 5 × 7 dot character font
- 3. Display on/off control:
 - D = 0; Display off
 - C = 0; Cursor off
 - B = 0; Blinking off
- 4. Entry mode set:
 - I/D = 1; Increment by 1
 - S = 0; No shift
- Note: If the electrical characteristics conditions listed under the Table Power Supply Conditions Using Internal Reset Circuit are not met, the internal reset circuit will not operate normally and will fail to initialize the HD66701/2. For such a case, initial-ization must be performed by the MPU as explained in the section, Initializing by Instruction.

Instructions

Outline

Only the instruction register (IR) and the data register (DR) of the HD66701/2 can be controlled by the MPU. Before starting the internal operation of the HD66701/2, control information is temporarily stored into these registers to allow interfacing with various MPUs, which operate at different speeds, or various peripheral control devices. The internal operation of the HD66702 is determined by signals sent from the MPU. These signals, which include register selection (RS), read/write (R/\overline{W}), and the data bus (DB0 to DB7), make up the HD66701/2 instructions (Table 7). There are four categories of instructions that:

- Designate HD66701/2 functions, such as display format, data length, etc.
- Set internal RAM addresses
- Perform data transfer with internal RAM
- Perform miscellaneous functions

Normally, instructions that perform data transfer with internal RAM are used the most. However, autoincrementation by 1 (or auto-decrementation by 1) of internal HD66701/2 RAM addresses after each data write can lighten the program load of the MPU. Since the display shift instruction (Table 12) can perform concurrently with display data write, the user can minimize system development time with maximum programming efficiency.

When an instruction is being executed for internal operation, no instruction other than the busy flag/address read instruction can be executed.

Because the busy flag is set to 1 while an instruction is being executed, check it to make sure it is 0 before sending another instruction from the MPU.

Note: Be sure the HD66701/2 is not in the busy state (BF = 0) before sending an instruction from the MPU to the HD66701/2. If an instruction is sent without checking the busy flag, the time between the first instruction and next instruction will take much longer than the instruction time itself. Refer to Table 7 for the list of each instruction execution time.

Table 7Instructions

					Co	ode			Execution Time (max) (when f _{cp} or			
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	f _{osc} is 320 kHz)
Clear display	0	0	0	0	0	0	0	0	0	1	Clears entire display and sets DDRAM address 0 in address counter.	1.28 ms
Return home	0	0	0	0	0	0	0	0	1		Sets DDRAM address 0 in address counter. Also returns display from being shifted to original position. DDRAM contents remain unchanged.	1.28 ms
Entry mode set	0	0	0	0	0	0	0	1	I/D	S	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.	31 µs
Display on/off control	0	0	0	0	0	0	1	D	С	В	Sets entire display (D) on/off, cursor on/off (C), and blinking of cursor position character (B).	31 µs
Cursor or display shift	0	0	0	0	0	1	S/C	R/L	—	_	Moves cursor and shifts display without changing DDRAM contents.	31 µs
Function set	0	0	0	0	1	DL	N	F	_	_	Sets interface data length (DL), number of display lines (L), and character font (F).	31 μs
Set CGRAM address	0	0	0	1	ACG	ACG	ACG	ACG	ACG	ACG	Sets CGRAM address. CGRAM data is sent and received after this setting.	31 µs
Set DDRAM address	0	0	1	ADD	ADD	ADD	ADD	ADD	ADD	ADD	Sets DDRAM address. DDRAM data is sent and received after this setting.	31 µs
Read busy flag & address	0	1	BF	AC	AC	AC	AC	AC	AC	AC	Reads busy flag (BF) indicating internal operation is being performed and reads address counter contents.	0 μs

Table 7Instructions (cont)

					Co	ode			Execution Time (max) (when f _{cp} or			
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	f _{osc} is 320 kHz)
Write data to CG or DDRAM	1	0	Write	data							Writes data into DDRAM or CGRAM.	31 μs t _{ADD} = 4.7 μs*
Read data from CG or DDRAM	1	1	Read	l data							Reads data from DDRAM or CGRAM.	31 μs t _{ADD} = 4.7 μs*
	I/D S S/C S/C R/L R/L	= 1: = 1: = 0: = 1: = 0: = 1: = 1: = 1: = 1:	Displa Curso Shift t Shift t 8 bits, 2 lines 5×10	ment npanie ay shif or mov o the o the DL = s, $N =$) dots, ally op	t right left 0:4 l 0:1 l F = 0 peratir	ine : 5×7 ng					DDRAM: Display data RAM CGRAM: Character generator RAM ACG: CGRAM address ADD: DDRAM address (corresponds to cursor address) AC: Address counter used for both DD and CGRAM addresses	Execution time changes when frequency changes Example: When f_{cp} or f_{OSC} is 270 kHz, $31 \ \mu s \times \frac{320}{270} = 37 \ \mu s$

Note: — indicates no effect.

After execution of the CGRAM/DDRAM data write or read instruction, the RAM address counter is incremented or decremented by 1. The RAM address counter is updated after the busy flag turns off. In Figure 10, t_{ADD} is the time elapsed after the busy flag turns off until the address counter is updated.

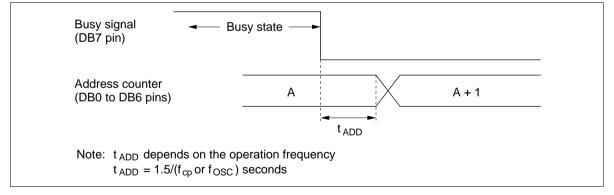


Figure 10 Address Counter Update

Instruction Description

Clear Display

Clear display writes space code 20H (character pattern for character code 20H must be a blank pattern) into all DDRAM addresses. It then sets DDRAM address 0 into the address counter, and returns the display to its original status if it was shifted. In other words, the display disappears and the cursor or blinking goes to the left edge of the display (in the first line if 2 lines are displayed). It also sets I/D to 1 (increment mode) in entry mode. S of entry mode does not change.

Return Home

Return home sets DDRAM address 0 into the address counter, and returns the display to its original status if it was shifted. The DDRAM contents do not change.

The cursor or blinking go to the left edge of the display (in the first line if 2 lines are displayed).

Entry Mode Set

I/D: Increments (I/D = 1) or decrements (I/D = 0) the DDRAM address by 1 when a character code is written into or read from DDRAM.

The cursor or blinking moves to the right when incremented by 1 and to the left when decremented by 1. The same applies to writing and reading of CGRAM.

S: Shifts the entire display either to the right (I/D = 0) or to the left (I/D = 1) when S is 1. The display does not shift if S is 0.

If S is 1, it will seem as if the cursor does not move but the display does. The display does not shift when reading from DDRAM. Also, writing into or reading out from CGRAM does not shift the display.

Display On/Off Control

D: The display is on when D is 1 and off when D is 0. When off, the display data remains in DDRAM, but can be displayed instantly by setting D to 1.

C: The cursor is displayed when C is 1 and not displayed when C is 0. Even if the cursor disappears, the function of I/D or other specifications will not change during display data write. The cursor is displayed using 5 dots in the 8th line for 5×7 dot character font selection and in the 11th line for the 5×10 dot character font selection (Figure 13).

B: The character indicated by the cursor blinks when B is 1 (Figure 13). The blinking is displayed as switching between all blank dots and displayed characters at a speed of 320-ms intervals when f_{cp} or f_{OSC} is 320 kHz. The cursor and blinking can be set to display simultaneously. (The blinking frequency changes according to f_{OSC} or the reciprocal of f_{cp} . For example, when fcp is 270 kHz, 320 × 320/270 = 379.2 ms.)

Cursor or Display Shift

Cursor or display shift shifts the cursor position or display to the right or left without writing or reading display data (Table 8). This function is used to correct or search the display. In a 2-line display, the cursor moves to the second line when it passes the 40th digit of the first line. Note that the first and second line displays will shift at the same time.

When the displayed data is shifted repeatedly each line moves only horizontally. The second line display does not shift into the first line position.

The address counter (AC) contents will not change if the only action performed is a display shift.

Function Set

DL: Sets the interface data length. Data is sent or received in 8-bit lengths (DB7 to DB0) when DL is 1, and in 4-bit lengths (DB7 to DB4) when DL is 0.

When 4-bit length is selected, data must be sent or received twice.

N: Sets the number of display lines (Table 9).

F: Sets the character font (Table 9).

Note: Perform the function at the head of the program before executing any instructions (except for the read busy flag and address instruction). From this point, the function set instruction cannot be executed unless the interface data length is changed.

Set CGRAM Address

Set CGRAM address sets the CGRAM address binary AAAAAA into the address counter.

Data is then written to or read from the MPU for CGRAM.

		RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Clear display	Code	0	0	0	0	0	0	0	0	0	1	
		RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Return home	Code	0	0	0	0	0	0	0	0	1	*	Note: * Don't care.
		RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Entry mode set	Code	0	0	0	0	0	0	0	1	I/D	S	
		RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Display on/off control	Code	0	0	0	0	0	0	1	D	С	В	
		RS	R∕₩	DB7	DB6	DB5	DB4	DB3	DB2		DB0	
Cursor or display shift	Code	0	0	0	0	0	1	S/C	R/L	*	*	Note: * Don't care.
		RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Function set	Code	0	0	0	0	1	DL	N	F	*	*	Note: * Don't care.
		RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Set CGRAM address	Code	0	0	0	1	A	A	A	A	A	A	
autress						4					•	
						lighes rder b			Lowest order bit			

Figure 11 Instruction (1)

Set DDRAM Address

Set DDRAM address sets the DDRAM address binary AAAAAAA into the address counter.

Data is then written to or read from the MPU for DDRAM.

However, when N is 0 (1-line display), AAAAAAA can be 00H to 4FH. When N is 1 (2-line display), AAAAAAA can be 00H to 27H for the first line, and 40H to 67H for the second line.

Read Busy Flag and Address

Read busy flag and address reads the busy flag (BF) indicating that the system is now internally operating on a previously received instruction. If BF is 1, the internal operation is in progress. The next instruction will not be accepted until BF is reset to 0. Check the BF status before the next write operation. At the same time, the value of the address counter in binary AAAAAAA is read out. This address counter is used by both CG and DDRAM addresses, and its value is determined by the previous instruction. The address contents are the same as for instructions set CGRAM address and set DDRAM address.

Table 8 Shift Function

S/C	R/L	
0	0	Shifts the cursor position to the left. (AC is decremented by one.)
0	1	Shifts the cursor position to the right. (AC is incremented by one.)
1	0	Shifts the entire display to the left. The cursor follows the display shift.
1	1	Shifts the entire display to the right. The cursor follows the display shift.

Table 9Function Set

N	F	No. of Display Lines	Character Font	Duty Factor	Remarks
0	0	1	$5 \times 7 \text{ dots}$	1/8	
0	1	1	$5 \times 10 \text{ dots}$	1/11	
1	*	2	$5 \times 7 \text{ dots}$	1/16	Cannot display two lines for 5×10 dot character font.

Note: * Indicates don't care.

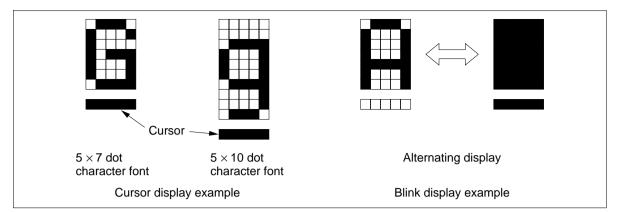


Figure 12 Cursor and Blinking

Figure 13 Instruction (2)

Write Data to CG or DDRAM

Write data to CG or DDRAM writes 8-bit binary data DDDDDDDD to CG or DDRAM.

To write into CG or DDRAM is determined by the previous specification of the CGRAM or DDRAM address setting. After a write, the address is automatically incremented or decremented by 1 according to the entry mode. The entry mode also determines the display shift.

Read Data from CG or DDRAM

Read data from CG or DDRAM reads 8-bit binary data DDDDDDDD from CG or DDRAM.

The previous designation determines whether CG or DDRAM is to be read. Before entering this read instruction, either CGRAM or DDRAM address set instruction must be executed. If not executed, the first read data will be invalid. When serially executing read instructions, the next address data is normally read from the second read. The address set instructions need not be executed just before this read instruction when shifting the cursor by the cursor shift instruction (when reading out DDRAM). The operation of the cursor shift instruction is the same as the set DDRAM address instruction.

After a read, the entry mode automatically increases or decreases the address by 1. However, display shift is not executed regardless of the entry mode.

Note: The address counter (AC) is automatically incremented or decremented by 1 after the write instructions to CGRAM or DDRAM are executed. The RAM data selected by the AC cannot be read out at this time even if read instructions are executed. Therefore, to correctly read data, execute either the address set instruction or cursor shift instruction (only with DDRAM), then just before reading the desired data, execute the read instruction from the second time the read instruction is sent.

		RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Write data t CG or DDR	CODE	1	0	D	D	D	D	D	D	D	D	
			4		gher der bits	6		Lower order bits				
		RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Read data f CG or DDR		1	1	D	D	D	D	D	D	D	D	
			4		gher der bits	6				Lower er bits	_	

Figure 14 Instruction (3)

Interfacing the HD66702

Interface to MPUs

• Interfacing to an 8-bit MPU

See Figure 16 for an example of using a I/O port (for a single-chip microcomputer) as an interface device.

In this example, A0 to A7 are connected to the data bus DB0 to DB7, and C0 to C2 are connected to E, R/\overline{W} , and RS, respectively.

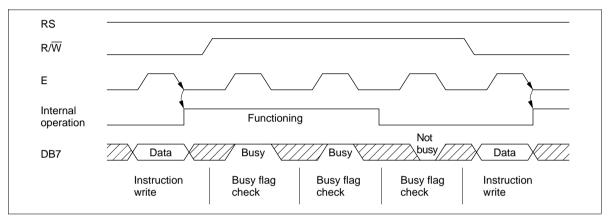


Figure 15 Example of Busy Flag Check Timing Sequence

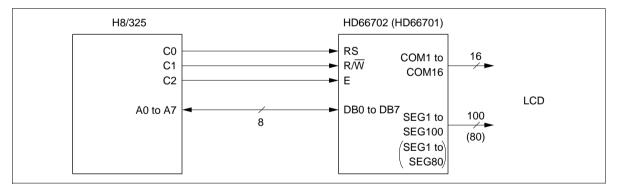


Figure 16 8-bit MPU Interface

• Interfacing to a 4-bit MPU

The HD66701/2 can be connected to the I/O port of a 4-bit MPU. If the I/O port has enough bits, 8-bit data can be transferred. Otherwise, one data transfer must be made in two operations for 4-bit data. In this case, the timing sequence becomes somewhat complex. (See Figure 17.)

See Figure 18 for an interface example to the HMCS43C.

Note that two cycles are needed for the busy flag check as well as for the data transfer. The 4-bit operation is selected by the program.

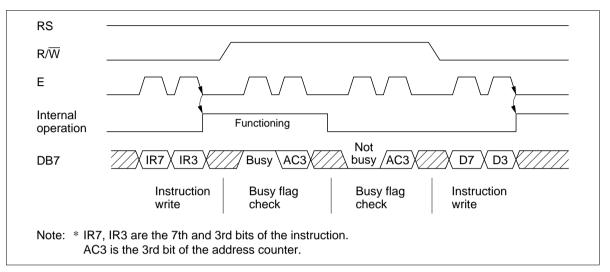


Figure 17 Example of 4-Bit Data Transfer Timing Sequence

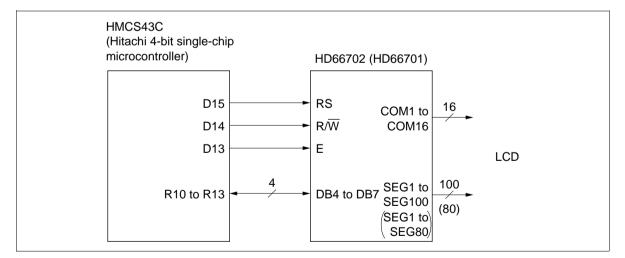


Figure 18 Example of Interface to HMCS43C

Interface to Liquid Crystal Display

Character Font and Number of Lines: The HD66702 can perform two types of displays, 5×7 dot and 5×10 dot character fonts, each with a cursor.

Up to two lines are displayed for 5×7 dots and one line for 5×10 dots. Therefore, a total of three types of common signals are available (Table 10).

The number of lines and font types can be selected by the program. (See Table 7, Instructions.)

Connection to HD66702 and Liquid Crystal Display: See Figure 19 for the connection examples.

Number of Lines	Character Font	Number of Common Signals	Duty Factor
1	5×7 dots + cursor	8	1/8
1	5×10 dots + cursor	11	1/11
2	5×7 dots + cursor	16	1/16

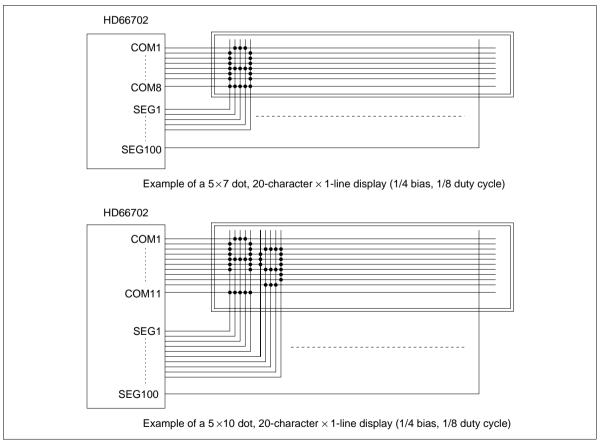


Figure 19 Liquid Crystal Display and HD66702 Connections

Table 10Common Signals

Since five segment signal lines can display one digit, one HD66702 can display up to 20 digits for a 1-line display and 40 digits for a 2-line display.

The examples in Figure 19 have unused common signal pins, which always output non-selection waveforms. When the liquid crystal display panel has unused extra scanning lines, connect the extra scanning lines to these common signal pins to avoid any undesirable effects due to crosstalk during the floating state (Figure 20).

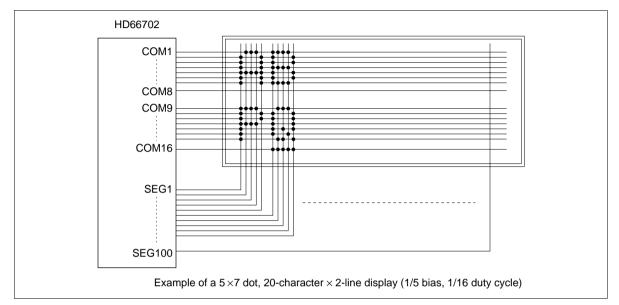


Figure 19 Liquid Crystal Display and HD66702 Connections (cont)

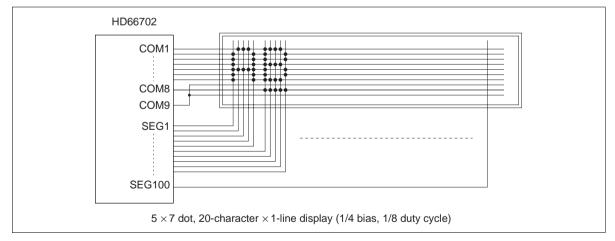


Figure 20 Using COM9 to Avoid Crosstalk on Unneeded Scanning Line

Connection of Changed Matrix Layout: In the preceding examples, the number of lines correspond to the scanning lines. However, the following display examples (Figure 21) are made possible by altering the matrix layout of the liquid crystal display panel. In either case, the only change is the layout. The display characteristics and the number of liquid crystal display characters depend on the number of common signals or on duty factor. Note that the display data RAM (DDRAM) addresses for 10 characters \times 2 lines and for 40 characters \times 1 line are the same as in Figure 19.

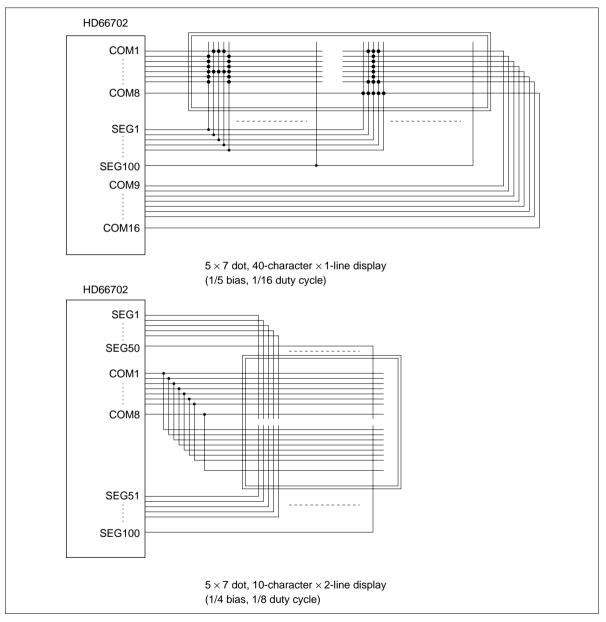


Figure 21 Changed Matrix Layout Displays

Power Supply for Liquid Crystal Display Drive

Various voltage levels must be applied to pins V1 to V5 of the HD66701/2 to obtain the liquid crystal display drive waveforms. The voltages must be changed according to the duty factor (Table 11).

VLCD is the peak value for the liquid crystal display drive waveforms, and resistance dividing provides voltages V1 to V5 (Figure 22).

		Duty Factor	
	1/8, 1/11	1/16	
		Bias	
Power Supply	1/4	1/5	
V1	V _{cc} -1/4 VLCD	V _{cc} -1/5 VLCD	
V2	V _{cc} -1/2 VLCD	V _{cc} –2/5 VLCD	
V3	V _{cc} -1/2 VLCD	V _{cc} –3/5 VLCD	
V4	V _{cc} -3/4 VLCD	V _{cc} –4/5 VLCD	
V5	V _{cc} -VLCD	V _{cc} –VLCD	

Table 11Duty Factor and Power Supply for Liquid Crystal Display Drive

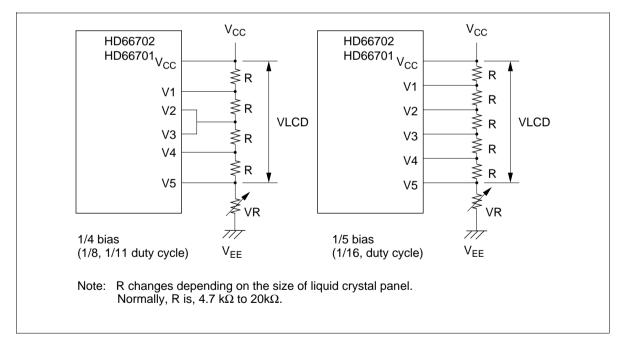


Figure 22 Drive Voltage Supply Example

Relationship between Oscillation Frequency and Liquid Crystal Display Frame Frequency

The liquid crystal display frame frequencies of Figure 23 apply only when the oscillation frequency is 320 kHz (one clock pulse of $3.125 \ \mu$ s).

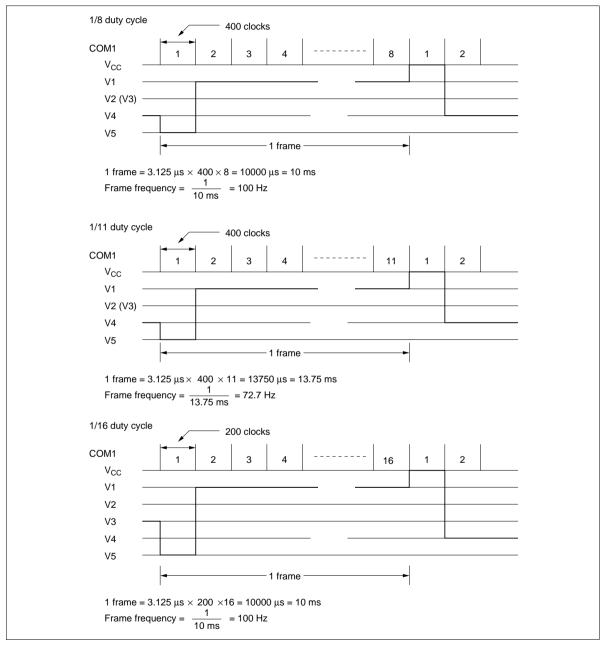


Figure 23 Frame Frequency

Instruction and Display Correspondence

• 8-bit operation, 20-digit × 1-line display with internal reset

Refer to Table 12 for an example of an 8-bit \times 1-line display in 8-bit operation. The HD66702 functions must be set by the function set instruction prior to the display. Since the display data RAM can store data for 80 characters, as explained before, the RAM can be used for displays such as for advertising when combined with the display shift operation.

Since the display shift operation changes only the display position with DDRAM contents unchanged, the first display data entered into DDRAM can be output when the return home operation is performed.

- 4-bit operation, 20-digit × 1-line display with internal reset
 The program must set all functions prior to the 4-bit operation (Table 13). When the power is turned on,
 8-bit operation is automatically selected and the first write is performed as an 8-bit operation. Since
 DB0 to DB3 are not connected, a rewrite is then required. However, since one operation is completed in
 two accesses for 4-bit operation, a rewrite is needed to set the functions (see Table 13). Thus, DB4 to
 DB7 of the function set instruction is written twice.
- 8-bit operation, 20-digit × 2-line display

For a 2-line display, the cursor automatically moves from the first to the second line after the 40th digit of the first line has been written. Thus, if there are only 20 characters in the first line, the DDRAM address must be again set after the 20th character is completed. (See Table 14.) Note that the display shift operation is performed for the first and second lines. In the example of Table 14, the display shift is performed when the cursor is on the second line. However, if the shift operation is performed when the cursor is on the first and second lines move together. If the shift is repeated, the display of the second line will not move to the first line. The same display will only shift within its own line for the number of times the shift is repeated.

Note: When using the internal reset, the electrical characteristics in the Power Supply Conditions Using Internal Reset Circuit table must be satisfied. If not, the HD66702 must be initialized by instructions. (Because the internal reset does not function correctly when V_{CC} is 3V, it must always be initialized by software.) See the section, Initializing by Instruction.

Step					Instr	uction					_	
No.	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Display	Operation
1		er supp		the HD	066702	is init	alized	by the	intern	al		Initialized. No display.
2	Func 0	tion se	t O	0	1	1	0	0	*	*		Sets to 8-bit operation and selects 1-line display and character font. (Number of display lines and character fonts cannot be changed after step #2.)
3	Displ 0	ay on/o 0	off con 0	trol 0	0	0	1	1	1	0	_	Turns on display and cursor. Entire display is in space mode becauce of initialization.
4	Entry 0	/ mode 0	set 0	0	0	0	0	1	1	0		Sets mode to increment the address by one and to shift the cursor to the right at the time of write to the DD/CGRAM. Display is not shifted.
5	Write 1	e data t 0	o CGF 0	RAM/DI 1	DRAM 0	0	1	0	0	0	H	Writes H. DDRAM already been selected by initialization when the power was turned on. The cursor is incremented by one and shifted to the right.
6	Write 1	e data t 0	o CGF 0	RAM/DI 1	DRAM 0	0	1	0	0	1	HI_	Writes I.
7												
8	Write 1	e data t 0	o CGF 0	RAM/DI 1	DRAM 0	0	1	0	0	1	HITACHI_	Writes I.
9	Entry 0	v mode 0	set 0	0	0	0	0	1	1	1	HITACHI_	Sets mode to shift display at the time of write.
10	Write 1	e data t 0	o CGF 0	RAM/DI 0	DRAM 1	0	0	0	0	0	ITACHI _	Writes a space.

Table 12 8-Bit Operation, 20-Digit × 1-Line Display Example with Internal Reset

Step					Instru	uction						
No.	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Display	Operation
11	Write 1	data t 0	o CGF 0	RAM/DI 1	DRAM 0	0	1	1	0	1	TACHI M_	Writes M.
12												
13	Write 1	data t 0	o CGF 0	RAM/DI 1	DRAM 0	0	1	1	1	1	MICROKO_	Writes O.
14	Curs 0	or or di 0	splay : 0	shift 0	0	1	0	0	*	*	MICROKQ	Shifts only the cursor position to the left.
15	Curs 0	or or di 0	splay : 0	shift 0	0	1	0	0	*	*	MICROKO	Shifts only the cursor position to the left.
16	Write 1	data t 0	o CGF 0	RAM/DI 1	DRAM 0	0	0	0	1	1	ICROCQ	Writes C over K. The display moves to the left.
17	Curs 0	or or di 0	splay : 0	shift 0	0	1	1	1	*	*	MICROCQ	Shifts the display and cursor position to the right.
18	Curs 0	or or di 0	splay : 0	shift 0	0	1	0	1	*	*	MICROCO_	Shifts the display and cursor position to the right.
19	Write 1	data t 0	o CGF 0	RAM/DI 1	DRAM 0	0	1	1	0	1	ICROCOM_	Writes M.
20												
21	Retu 0	rn hom 0	e 0	0	0	0	0	0	1	0	НІТАСНІ	Returns both display and cursor to the original position(address 0).

Table 12 8-Bit Operation, 20-Digit × 1-Line Display Example with Internal Reset (cont)

Step					Instr	uction		
No.	RS	R/W	DB7	DB6	DB5	DB4	Display	Operation
1		er supp t circui		(the HD	066702	is initialized by the internal		Initialized. No display.
2	Fund 0	ction se 0	et O	0	1	0		Sets to 4-bit operation. In this case, operation is handled as 8 bits by initializa- tion, and only this instruction completes with one write.
3	Fund 0 0	ction se 0 0	et O O	0	1 *	0 *		Sets 4-bit operation and selects1-line display and 5 × 7 dot character font. 4-bit operation starts from this step and resetting is necessary. (Number of display lines and character fonts cannot be changed after step #3.)
4	Disp 0 0	olay on/ 0 0	off con 0 1	itrol 0 1	0 1	0 0	_	Turns on display and cursor. Entire display is in space mode because of initialization.
5	Entr 0 0	y mode 0 0	e set 0 0	0 1	0 1	0 0	_	Sets mode to increment the address by one and to shift the cursor to the right at the time of write to the DD/CGRAM. Display is not shifted.
6	Writ 1 1	e data 0 0	to CGF 0 1	RAM/D 1 0	DRAM 0 0	0 0	H_	Writes H. The cursor is incremented by one and shifts to the right.

Table 13 4-Bit Operation, 20-Digit × 1-Line Display Example with Internal Reset

Note: The control is the same as for 8-bit operation beyond step #6.

Step					Instru	uction						
No.	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Display	Operation
1		er supp t circuit		the HD	066702	2 is initi	alized	by the	intern	al		Initialized. No display.
2	Func 0	tion se 0	t O	0	1	1	1	0	*	*		Sets to 8-bit operation and selects 2-line display and 5×7 dot character font.
3	Disp 0	lay on/o 0	off con 0	trol 0	0	0	1	1	1	0		Turns on display and cursor. All display is in space mode because of initialization.
4	Entry 0	/ mode 0	set 0	0	0	0	0	1	1	0	_	Sets mode to increment the address by one and to shift the cursor to the right at the time of write to the DD/CGRAM. Display is not shifted.
5	Write 1	e data t 0	o CGR 0	AM/DI 1	DRAM 0	0	1	0	0	0	H	Writes H. DDRAM has already been selected by initialization when the power was turned on. The cursor is incremented by one and shifted to the right.
6												
7	Write 1	e data t 0	o CGR 0	AM/DI 1	DRAM 0	0	1	0	0	1	HITACHI_	Writes I.
8	Set [0	DDRAN 0	1 addre 1	ess 1	0	0	0	0	0	0	HITACHI _	Sets RAM address so that the cursor is positioned at the head of the second line.

Table 14 8-Bit Operation, 20-Digit × 2-Line Display Example with Internal Reset

Step					Instr	uction							
No.	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Display	Operation	
9	Write	e data t	o CGR	RAM/DI	DRAM						HITACHI	Writes M.	
	1	0	0	1	0	0	1	1	0	1	M_		
10						•							
						•					•		
						•					•		
						•					•		
						•					•		
11		e data t									HITACHI	Writes O.	
	1	0	0	1	0	0	1	1	1	1	MICROCO_		
12	Entry	/ mode	set								HITACHI	Sets mode to shift display at	
	0	0	0	0	0	0	0	1	1	1	MICROCO_	the time of write.	
13	Write	e data	to CGF	RAM/D	DRAN	1						Writes M. Display is shifted to	
	1	0	0	1	0	0	1	1	0	1	ITACHI ICROCOM_	the right. The first and second lines both shift at the same	
												time.	
14													
						•					•		
						•							
						•					•		
15	Retu 0	rn hom 0	e 0	0	0	0	0	0	1	0	HITACHI	Returns both display and cursor to the original position	
	-	-	-	-	-	-		-		-	MICROCOM	(address 0).	

Table 14 8-Bit Operation, 20-Digit × 2-Line Display Example with Internal Reset (cont)

Initializing by Instruction

If the power supply conditions for correctly operating the internal reset circuit are not met, initialization by instructions becomes necessary.

Refer to Figures 24 and 25 for the procedures on 8-bit and 4-bit initializations, respectively.

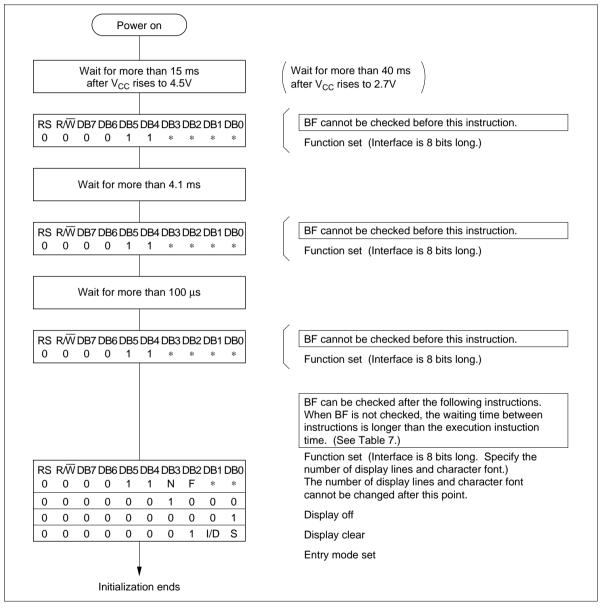


Figure 24 8-Bit Interface

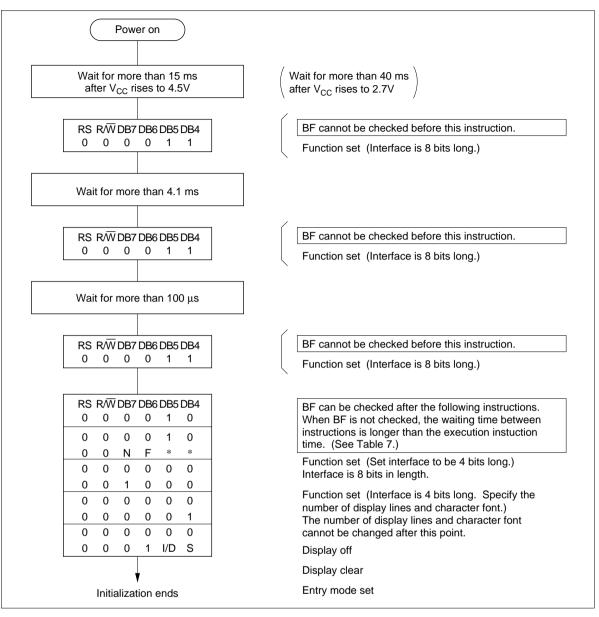


Figure 25 4-Bit Interface

[Low voltage version]

Absolute Maximum Ratings*

Item	Symbol	Unit	Value	Notes
Power supply voltage (1)	V _{cc}	V	–0.3 to +7.0	1
Power supply voltage (2)	V _{cc} -V5	V	-0.3 to +8.5	2
Input voltage	Vt	V	–0.3 to V $_{\rm cc}$ +0.3	1
Operating temperature	T _{opr}	°C	-30 to +75	
Storage temperature	T _{stg}	°C	–55 to +125	4

Note: 1. The operating temperature is 75° C.

If the LSI is used above these absolute maximum ratings, it may become permanently damaged. Using the LSI within the following electrical characteristic limits is strongly recommended for normal operation. If these electrical characteristic conditions are also exceeded, the LSI will malfunction and cause poor reliability. Refer to the Electrical Characteristics Notes section following these tables.

DC Characteristics (V $_{\rm CC}$ = 2.7 to 5.5V, $T_{\rm a}$ = –30 to +75°C*³)

Item	Symbol	Min	Тур	Мах	Unit	Test Condition	Notes*
Input high voltage (1) (except OSC1)	VIH1	$0.7 V_{cc}$	—	V _{cc}	V		6, 17
Input low voltage (1) (except OSC1)	VIL1	-0.3	_	0.55	V		6, 17
Input high voltage (2) (OSC1)	VIH2	$0.7 V_{cc}$	—	V _{cc}	V		15
Input low voltage (2) (OSC1)	VIL2		—	$0.2V_{\rm cc}$	V		15
Output high voltage (1) (D0–D7)	VOH1	0.75V _{cc}	; —		V	-I _{OH} = 0.1 mA	7
Output low voltage (1) (DB0–DB7)	VOL1	—	_	$0.2V_{\rm cc}$	V	I _{oL} = 0.1 mA	7
Output high voltage (2) (except DB0–DB7)	VOH2	$0.8V_{cc}$	_		V	-I _{OH} = 0.04 mA	8
Output low voltage (2) (except D0–D7)	VOL2		—	$0.2V_{\rm cc}$	V	I _{oL} = 0.04 mA	8
Driver on resistance (COM)	R _{COM}	—	2	20	kΩ	±ld = 0.05 mA (COM)	13
Driver on resistance (SEG)	R_{seg}	—	2	30	kΩ	\pm Id = 0.05 mA (SEG)	13
Input leakage current	l _u	-1	—	1	μA	$VIN = 0$ to V_{cc}	9
Pull-up MOS current (RS, R/W, D0–D7)	-I _p	10	50	120	μA	$V_{cc} = 3V$	
Power supply current	I _{cc}	_	150	300	μΑ	R_f oscillation, external clock $V_{cc} = 3V, f_{osc} = 320 \text{ kHz}$	10, 14
LCD voltage	VLCD1	3.0	—	8.3	V	V_{cc} –V5, 1/5 bias	16
	VLCD2	3.0	_	8.3	V	V_{cc} –V5, 1/4 bias	16

Note: * Refer to the Electrical Characteristics Notes section following these tables.

AC Characteristics (V_{CC} = 2.7 to 5.5V, $T_a = -30$ to $+75^{\circ}C^{*3}$)

Clock Characteristics

Item		Symbol	Min	Тур	Max	Unit	Test Condition	Notes*
External	External clock frequency	f _{cp}	125	270	410	kHz		11
clock	External clock duty	Duty	45	50	55	%	_	
operation	External clock rise time	t _{rcp}	_	—	0.2	μs	_	
	External clock fall time	t _{fcp}	—	—	0.2	μs	_	
R _f oscillation	Clock oscillation frequency	f _{osc}	240	320	390	kHz	$R_{f} = 56 \text{ k}\Omega$ $V_{cc} = 3V$	12

Note: * Refer to the Electrical Characteristics Notes section following these tables.

Bus Timing Characteristics

Write Operation

Item	Symbol	Min	Тур	Max	Unit	Test Condition
Enable cycle time	t _{cycE}	1000	_	_	ns	Figure 27
Enable pulse width (high level)	PW_{EH}	450	—	—		
Enable rise/fall time	t _{Er} , t _{Ef}	—	—	25		
Address set-up time (RS, R/\overline{W} to E)	t _{AS}	40	—	—		
Address hold time	t _{AH}	20	—	—		
Data set-up time	t _{DSW}	195	—	—		
Data hold time	t _H	10	—	—		

Read Operation

Item	Symbol	Min	Тур	Max	Unit	Test Condition
Enable cycle time	t _{cycE}	1000	_	_	ns	Figure 28
Enable pulse width (high level)	PW_{EH}	450	—	_		
Enable rise/fall time	$t_{\rm Er}^{}, t_{\rm Ef}^{}$	_	_	25		
Address set-up time (RS, R/\overline{W} to E)	t _{AS}	40	—	—		
Address hold time	t _{AH}	20	—	_		
Data delay time	t _{DDR}		—	350		
Data hold time	t _{DHR}	10		—		

Item		Symbol	Min	Тур	Max	Unit	Test Condition
Clock pulse width	High level	t _{cwH}	800		—	ns	Figure 28
	Low level	t _{CWL}	800		_		
Clock set-up time		t _{csu}	500	_	_		
Data set-up time		t _{s∪}	300		_		
Data hold time		t _{DH}	300		_		
M delay time		t _{DM}	-1000		1000		
Clock rise/fall time		t _{ct}	—		200		

Interface Timing Characteristics with External Driver (HD66702)

Power Supply Conditions Using Internal Reset Circuit

Item	Symbol	Min	Тур	Max	Unit	Test Condition
Power supply rise time	t _{rCC}	0.1	_	10	ms	Figure 29
Power supply off time	t _{OFF}	1	—	—		

[Standard Voltage Version]

Absolute Maximum Ratings*

Item	Symbol	Unit	Value	Notes
Power supply voltage (1)	V _{cc}	V	-0.3 to +7.0	1
Power supply voltage (2)	V _{cc} –V5	V	-0.3 to +8.5	2
Input voltage	Vt	V	–0.3 to V _{cc} +0.3	1
Operating temperature	T _{opr}	°C	-30 to +75	
Storage temperature	T _{stg}	°C	-55 to +125	4

Note: * If the LSI is used above these absolute maximum ratings, it may become permanently damaged. Using the LSI within the following electrical characteristic limits is strongly recommended for normal operation. If these electrical characteristic conditions are also exceeded, the LSI will malfunction and cause poor reliability. Refer to the Electrical Characteristics Notes section following these tables.

DC Characteristics (V $_{\rm CC}$ = 5V ±10%, $T_{\rm a}$ = –30 to +75°C*³)

Item	Symbol	Min	Тур	Max	Unit	Test Condition	Notes*
Input high voltage (1) (except OSC1)	VIH1	2.2	—	V _{cc}	V		6, 17
Input low voltage (1) (except OSC1)	VIL1	-0.3	—	0.6	V		6, 17
Input high voltage (2) (OSC1)	VIH2	V _{cc} -1.0	_	V _{cc}	V		15
Input low voltage (2) (OSC1)	VIL2	_	_	1.0	V		15
Output high voltage (1) (DB0–DB7)	VOH1	2.4	_	_	V	−I _{OH} = 0.205 mA	7
Output low voltage (1) (DB0–DB7)	VOL1	_	_	0.4	V	I _{oL} = 1.6 mA	7
Output high voltage (2) (except D0–D7)	VOH2	$0.9 \ V_{cc}$	_	_	V	−I _{OH} = 0.04 mA	8
Output low voltage (2) (except D0–D7)	VOL2	_	_	$0.1 \ V_{cc}$	V	I _{oL} = 0.04 mA	8
Driver on resistance (COM)	R _{COM}	—	2	20	kΩ	±ld = 0.05 mA (COM)	13
Driver on resistance (SEG)	R_{seg}	_	2	30	kΩ	±ld = 0.05 mA (SEG)	13
Input leakage current	l _u	-1	_	1	μA	$VIN = 0$ to V_{cc}	9
Pull-up MOS current (RS, R/W, D0–D7)	-I _p	50	125	250	μA	$V_{cc} = 5V$	
Power supply current	I _{cc}	_	350	600	μΑ	R_{f} oscillation, external clock $V_{cc} = 5V$, $f_{osc} = 320$ kHz	10, 14
LCD voltage	VLCD1	3.0		8.3	V	V_{cc} –V5, 1/5 bias	16
	VLCD2	3.0		8.3	V	V _{cc} –V5, 1/4 bias	16

Note: * Refer to the Electrical Characteristics Notes section following these tables.

AC Characteristics (V $_{\rm CC}$ = 5V ±10%, $T_{\rm a}$ = –30 to +75°C*³)

Clock Characteristics

ltem		Symbol	Min	Тур	Мах	Unit	Test Conditio	n Notes*
External	External clock frequency	f _{cp}	125	270	410	kHz		11
clock	External clock duty	Duty	45	50	55	%		11
operation	External clock rise time	t _{rcp}	_	_	0.2	μs		11
	External clock fall time	t _{fcp}	_	_	0.2	μs		11
R _f oscillation	Clock oscillation frequency	f _{osc}	220	320	420	kHz	$R_f = 68 \text{ k}\Omega$ $V_{cc} = 5V$	12

Note: * Refer to the Electrical Characteristics Notes section following these tables.

Bus Timing Characteristics

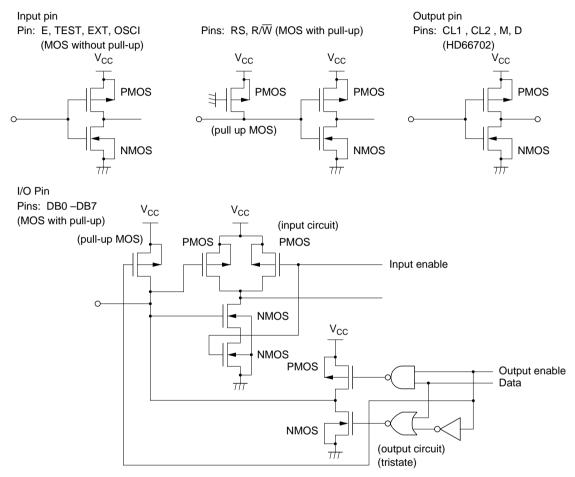
Write Operation

Item	Symbol	Min	Тур	Max	Unit	Test Condition
Enable cycle time	t _{cycE}	1000	_	_	ns	Figure 26
Enable pulse width (high level)	PW_{EH}	450	—	_		
Enable rise/fall time	t _{er} , t _{ef}		—	25		
Address set-up time (RS, R/\overline{W} to E)	t _{AS}	40	—	—		
Address hold time	t _{AH}	10	—	—		
Data set-up time	t _{DSW}	195	—	—		
Data hold time	t _H	10	—	—		

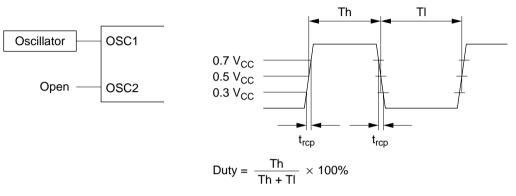
Read Operation

Item	Symbol	Min	Тур	Max	Unit	Test Condition
Enable cycle time	t_{cycE}	1000	_	_	ns	Figure 27
Enable pulse width (high level)	PW_{EH}	450	—	—		
Enable rise/fall time	t _{Er} , t _{Ef}	—	—	25		
Address set-up time (RS, R/\overline{W} to E)	t _{AS}	40	—	—		
Address hold time	t _{AH}	10	—	—		
Data delay time	t _{DDR}	—	—	320		
Data hold time	t _{DHR}	20	—	_		

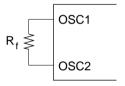
Interface Timing Characteristics with External Driver (HD66702)


Item		Symbol	Min	Тур	Max	Unit	Test Condition
Clock pulse width	High level	t _{cwH}	800	_	_	ns	Figure 28
	Low level	t _{CWL}	800	—	_		
Clock set-up time		t _{csu}	500		_		
Data set-up time		t _{su}	300		_		
Data hold time		t _{DH}	300		_		
M delay time		t _{DM}	-1000		1000		
Clock rise/fall time		t _{ct}	_	_	100		

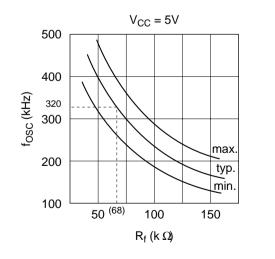
Power Supply Conditions Using Internal Reset Circuit

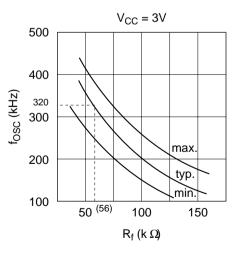

Item	Symbol	Min	Тур	Max	Unit	Test Condition
Power supply rise time	t _{rCC}	0.1	_	10	ms	Figure 29
Power supply off time	t _{OFF}	1		—		

Electrical Characteristics Notes


- 1. All voltage values are referred to GND = 0V.
- 2. $V_{CC} \ge V5$ must be maintained.
- 3. For die products, specified at 75°C.
- 4. For die products, specified by the die shipment specification.
- 5. The following four circuits are I/O pin configurations except for liquid crystal display output.

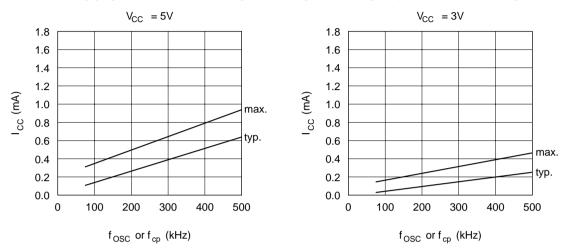
- 6. Applies to input pins and I/O pins, excluding the OSC1 pin.
- 7. Applies to I/O pins.
- 8. Applies to output pins.
- 9. Current flowing through pull-up MOSs, excluding output drive MOSs.
- 10. Input/output current is excluded. When input is at an intermediate level with CMOS, the excessive current flows through the input circuit to the power supply. To avoid this from happening, the input level must be fixed high or low.
- 11. Applies only to external clock operation.




12. Applies only to the internal oscillator operation using oscillation resistor R_f.

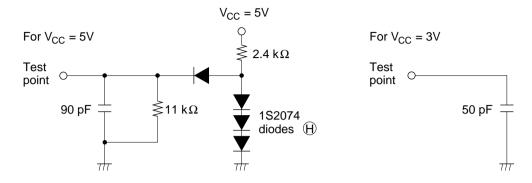
 $\begin{array}{l} \mathsf{R}_{\mathsf{f}} \colon 56 \; \mathsf{k}\Omega \pm 2\% \; (\text{when } \mathsf{V}_{\mathsf{CC}} = 3\mathsf{V}) \\ \mathsf{R}_{\mathsf{f}} \colon 68 \; \mathsf{k}\Omega \pm 2\% \; (\text{when } \mathsf{V}_{\mathsf{CC}} = 5\mathsf{V}) \end{array}$

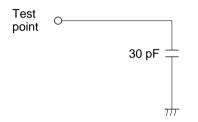
Since the oscillation frequency varies depending on the OSC1 and OSC2 pin capacitance, the wiring length to these pins should be minimized.



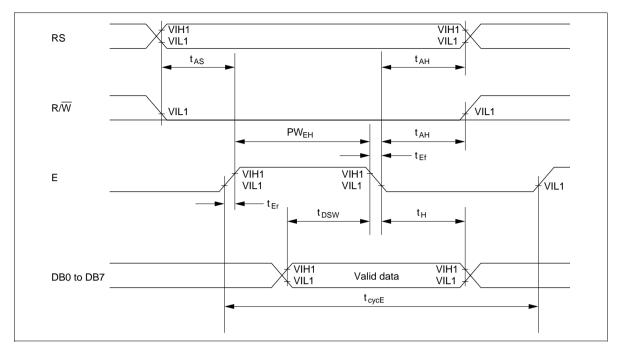
13. R_{COM} is the resistance between the power supply pins (V_{CC}, V1, V4, V5) and each common signal pin (COM1 to COM16).

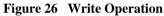
 R_{sEG} is the resistance between the power supply pins (V_{CC}, V2, V3, V5) and each segment signal pin (SEG1 to SEG100).


14. The following graphs show the relationship between operation frequency and current consumption.


- 15. Applies to the OSC1 pin.
- 16. Each COM and SEG output voltage is within ± 0.15 V of the LCD voltage (V_{CC}, V1, V2, V3, V4, V5) when there is no load.
- 17. The TEST pin should be fixed to GND and the EXT pin should be fixed to V_{cc} or GND.

Load Circuits


Data Bus DB0 to DB7



External Driver Control Signal: CL1, CL2, D, M (HD66702)

Timing Characteristics

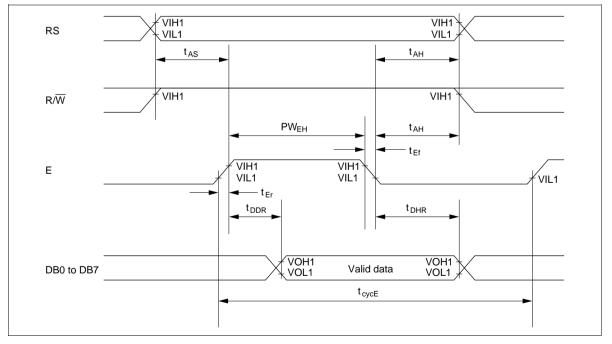


Figure 27 Read Operation

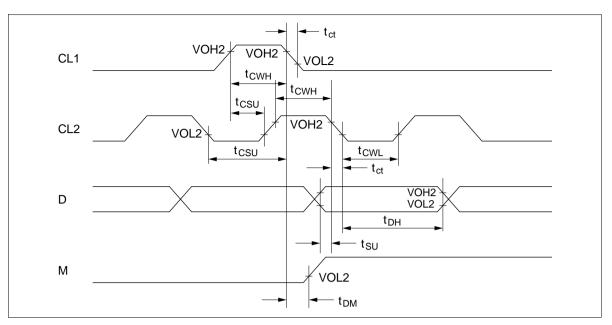


Figure 28 Interface Timing with External Driver (HD66702)

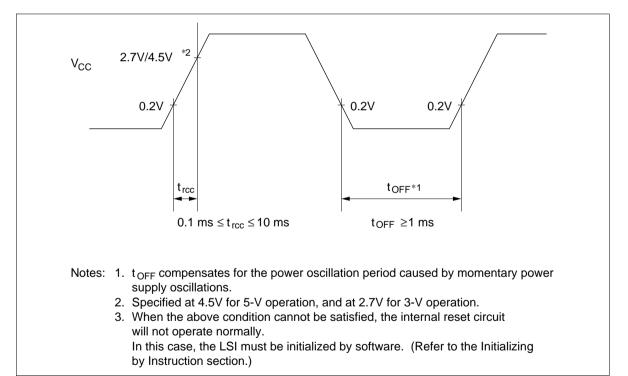


Figure 29 Internal Power Supply Reset

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

HITACHI Hitachi, Ltd.

Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109							
JRL NorthAmerica : http:semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia (Singapore) : http://www.has.hitachi.com.sg/grp3/sicd/index.htm Asia (Taiwan) : http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm Japan : http://www.hitachi.com.jp/Sicd/indx.htm							
For further informati Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223	on write to: Hitachi Europe GmbH Electronic components Group Dornacher Straße 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 778322	Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533 Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180	Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 735 0281 Telex: 40815 HITEC HX				
	· · · · · · · · · · · · · · · · · · ·						

Copyright © Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.