a

Current-Output Serial-Input, 16-/14-Bit DAC AD5543/AD5553

R_{FB}

Ian

Preliminary Technical Data

FEATURES

16-bit Resolution AD5543 14-btt Resolution AD5553 ±1 LSB DNL ±1, ±2 or ±4 LSB INL 2mA Full Scale Current ± 20%, with V_{REF}=10V

0.5µs Settling Time 4Q Multiplying Reference-input 3-Wire Interface Ultra Compact uSOIC-8 Package

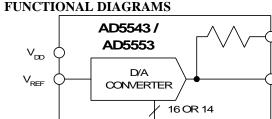
APPLICATIONS Automatic Test Equipment Instrumentation Digitally Controlled Calibration Industrial Control PLCs

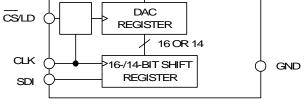
GENERAL DESCRIPTION

The AD5543, 16-bit, current-output, digital-to-analog converter is designed to operate from a single +5 volt supply.

The applied external reference input voltage VREF determines the full-scale output-current. An internal feedback resistor (R_{FB}) provides temperature tracking for the full-scale output when combined with an external I to V precision amplifier.

A serial-data interface offers high-speed, three-wire micro controller compatible inputs using serial-data-in (SDI), clock (CLK), and (\overline{CS}/LD) .


The AD5543/AD5553 are packaged in the space saving SO-8, and the ultra compact (3x4.7mm) uSOIC-8.


OKDERING GUIDE								
	INL	RES	TEMP	Package	Package			
MODEL	(LSB)	(LSB)	RANGE	Description	Option			
AD5543CR	±1	16	-40 / +85°C	SO-8	R-8			
AD5543BR	±2	16	-40 / +85°C	SO-8	R-8			
AD5543BRM	±2	16	-40 / +85°C	uSOIC-8	RM-8			
AD5553CRM	±1	14	-40 / +85°C	uSOIC-8	RM-8			

ORDERING GUIDE

The AD5543 contains xxxx transistors.

The die size measures 53 mil X 73 mil, 3,879 sqmil.

ad5543, MSOP, 2/15/02

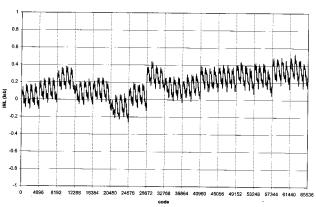


Figure 1. Integral Nonlinearity Error Plot

REV. PrJ 19 FEB '2002

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A.

 Tel: 781/329-4700
 www.analog.com

 Fax: 781/326-8703
 ©Analog Devices, Inc., 2002

AD5543/AD5553

 $\label{eq:expected_state} \textbf{ELECTRICAL CHARACTERISTICS} \ at \ V_{DD} = 5V \pm 10\%, \ V_{SS} = 0V, \ I_{OUT} = Virtual \ GND, \ GND = 0V, \ V_{REF} = 10V, \ T_A = Full \ Operating \ temperature$ Range unless otherwise noted

PARAMETERSYMBOLCONDITIONSV±10%UNITSSTATIC PERFORMANCE'ResolutionN1 LSB = $V_{REP}/2^{16} = 153 \mu$ V when $V_{REF} = 10V$ AD554316BitsResolutionN1 LSB = $V_{REP}/2^{16} = 610 \mu$ V when $V_{REF} = 10V$ AD554314BitsRelative AccuracyINLGrade: AD5543C, AD5553C±1LSB maxRelative AccuracyINLGrade: AD5543B±2LSB maxDifferential NonlinearityDNLMonotonic±2LSB maxOutput Leakage CurrentIoutData = 0000 g, T_A = 25°C10nA maxOutput Leakage CurrentIoutData = 0000 g, T_A = T_A MAX20nA maxFull-Scale Gain ErrorGFSEData = 0000 g, T_A = T_A MAX20nA maxFull-Scale Fempco ² TCVFSIppm/°C typREFERENCE INPUTV1ppm/°C typV_REF RangeV_REF5k ohm typ ⁴ Input Capacitance ² Cave5pF typOutput Capacitance ² CoverCode Dependent200pF typLogic Input High VoltageV _{IL} 0.8V maxLogic Input High Voltage10Input Capacitance ² Cu_LCode Dependent10pF maxINTERFACE TIMING ^{2,3} Code Dependent10pF maxLogic Input High VoltageV _{IL} 0nA maxInput Capacitance ² Cu_L10ns minCode Kingth Hight_L10ns minInput Capacitance ² Cu_L<	Range, unless otherwise noted.				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			CONDITION	5V±10%	UNITS
$\begin{array}{l c c c c c c } \hline Pesculuion & N & 1 \ LSB = V_{REF}/2^{14} = 610 \mu V \ when \ V_{REF} = 10V & AD5553 & 14 & Bits \\ Petative Accuracy & INL & Grade: AD5543C, AD5553C & \pm 1 & LSB \ max \\ Petative Accuracy & INL & Monotonic & \pm 1 & LSB \ max \\ Differential Nonlinearity & DNL & Monotonic & \pm 1 & LSB \ max \\ Output Leakage Current & I_{0UT} & Data = 0000_{H}, T_A = 25^{\circ}C & 10 & nA \ max \\ Output Leakage Current & I_{0UT} & Data = 0000_{H}, T_A = 25^{\circ}C & 10 & nA \ max \\ Full-Scale Gain Error & G_{FSE} & Data = FFFF_H & \pm 1/\pm 4 & m^{V} \ typ{max} \\ Full-Scale Gain Error & G_{FSE} & Data = FFFF_H & \pm 1/\pm 4 & m^{V} \ typ{max} \\ Full-Scale Tempco^2 & TCV_{FS} & 1 & ppm/^{\circ}C \ typ \\ \hline PREFERENCE INPUT & & 11 & ppm/^{\circ}C \ typ \\ \hline Reference & R_{REF} & 5 & k \ ohm \ typ^4 \\ Input Capacitance^2 & C_{REF} & 5 & pf \ typ \\ \hline ANALOG OUTPUT & Data = FFFF_H & 2 & mA \ typ \\ Output Capacitance^2 & C_{OUT} & Code \ Dependent & 200 & pf \ typ \\ \hline LOgic Input High \ Voltage & V_{IL} & & 000 & ph \ Top \ T$	STATIC PERFORMANCE ¹				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
Full-Scale Tempeo ² TCV FSInpm/°C typREFERENCE INPUT VREF1pm/°C typREFERENCE INPUT VREF1pm/°C typReferenceRRF5k ohm typ4Input ResistanceRRF5k ohm typ4Input Capacitance ² CREF5pF typOutput CurrentIourData = FFFFH2mA typOutput Capacitance ² CourtCode Dependent200pF typLOGIC INPUTS & OUTPUT Logic Input High VoltageVII.0.8V maxLogic Input Leakage CurrentIIL10 μ A maxInput Capacitance ² CL10pF maxLOck Width Hight _{CH} 10pF maxINTERFACE TIMING ^{2.3} Clock Input Frequencyf cLk0Clock Width Lowt _{CL} 10ns minClock Stel Upt _{CSH} 0ns minData Setupt _{DS} 5ns minData Setupt _{DS} 5ns minData Setupt _{DB} Logic Inputs = 0V10Power DissipationP _{DISS} Logic Inputs = 0V0.055mW max		I _{OUT}		20	nA max
REFERENCE INPUT V_{REF} RangeN V_{REF} Range V_{REF} Input Resistance R_{REF} Input Capacitance ² C_{REF} ANALOG OUTPUTOutput CurrentOutput CurrentIoUTData = FFFF _H 2mAtLOG OUTPUTCode DependentColic INPUTS & OUTPUT200Logic Input Low Voltage V_{IL} Logic Input Low Voltage V_{IL} Logic Input High Voltage V_{IH} Input Capacitance ² C_{IL} Logic Input High Voltage V_{IL} Lock Input Frequency f_{CLK} Clock Night Frequency f_{CLK} Clock Night Low t_{CL} Clock Set Up t_{CSS} Clock Set Up t_{CSS} Clock to CS Hold t_{CSH} Data Bell10ns minData Lobit Low t_{DH} Data Setup t_{DS} Logic Inputs 0 t_{DH} Data Bell t_{DH} Data Setup t_{DH} Data Bell t_{DH} Data Bell t_{DH} Data Setup t_{DH} Data Setup t_{DH} Data Bell t_{DH} Data Bold t_{DH} Data Setup t_{DH} Data Setup t_{DH} Data Bold t_{DH} Data Bold t_{DH} Data Supply Current<	Full-Scale Gain Error	G _{FSE}	$Data = FFFF_{H}$	±1/±4	mV typ/max
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Full-Scale Tempco ²	TCV _{FS}		1	ppm/°C typ
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{REF} Range	V_{REF}		-15/+15	
ANALOG OUTPUT Output CurrentIIOutput CurrentIIIIOutput Capacitance ² CCoutCode Dependent200pF typLOGIC INPUTS & OUTPUTIIIIILogic Input Low VoltageV _{IL} 0.8V maxVLogic Input Low VoltageV _{IL} 0.8V maxInput Capacitance ² C _{IL} 10 μ A maxInput Capacitance ² C _{IL} 10pF maxINTERFACE TIMING ^{2,3} IIIClock Input Frequencyf _{CLK} 40MHzClock Width Hight _{CH} 10ns minClock Width Lowt _{CL} 10ns minClock Set Upt _{CSS} 0ns minClock to CS Holdt _{CSH} 10ns minData Holdt _{DH} 10ns minSUPPLY CHARACTERISTICS10ns minPower Supply RangeV _{DD RANGE} 4.5/5.5V min/maxPower DissipationP _{DISS} Logic Inputs = 0V0.055mW max		R _{REF}		5	k ohm typ ⁴
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Input Capacitance ²	C _{REF}		5	pF typ
Output Capacitance2 C_{OUT} Code Dependent200pF typLOGIC INPUTS & OUTPUT 0.8 V maxLogic Input Low Voltage V_{IL} 0.8 V maxLogic Input High Voltage V_{IH} 2.4 V minInput Leakage Current I_{IL} 10 μA maxInput Capacitance2 C_{IL} 10 pF maxINTERFACE TIMING ^{2,3} 10 pF maxClock Input Frequency f_{CLK} 40 MHzClock Width Low t_{CH} 10 $ns min$ Clock Set Up t_{CSS} 0 $ns min$ Clock Voltage t_{DS} 5 $ns min$ Data Setup t_{DS} 5 $ns min$ Data Hold t_{DH} 10 $ns min$ SUPPLY CHARACTERISTICS 10 $ns min$ Power Supply Range $V_{DD RANGE}$ $4.5/5.5$ V min/maxPower Dissipation P_{DISS} Logic Inputs = 0V 0.055 mW max	ANALOG OUTPUT				
LOGIC INPUTS & OUTPUTLogic Input Low Voltage V_{IL} 0.8V maxLogic Input High Voltage V_{IH} 2.4V minInput Leakage Current I_{IL} 10 μA maxInput Capacitance ² C_{IL} 10pF maxINTERFACE TIMING ^{2,3} 10pF maxClock Input Frequency f_{CLK} 40MHz10ns minClock Width Low t_{CH} 10Clock Set Up t_{CSS} 0Clock to CS Hold t_{CSH} 10Data Setup t_{DS} 5Power Supply Range $V_{DD RANGE}$ 4.5/5.5Power Dissipation P_{DISS} Logic Inputs = 0VPower Dissipation P_{DISS} Logic Inputs = 0VNew Power Dissipation P_{DISS} Logic Inputs = 0V	Output Current	I _{OUT}	$Data = FFFF_{H}$	2	mA typ
$\begin{array}{cccc} \mbox{Logic Input Low Voltage} & V_{IL} & 0.8 & V \mbox{max} \\ \mbox{Logic Input High Voltage} & V_{IH} & 2.4 & V \mbox{min} \\ \mbox{Input Leakage Current} & I_{IL} & 10 & \mu \mbox{max} \\ \mbox{Input Capacitance}^2 & C_{IL} & 10 & pF \mbox{max} \\ \hline \mbox{INTERFACE TIMING}^{2.3} & & & & & & & & & & & & & & & & & & &$			Code Dependent	200	pF typ
$\begin{array}{cccc} \mbox{Logic Input High Voltage} & V_{IH} & & & & & & & & & & & & & & & & & & &$	LOGIC INPUTS & OUTPU				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Logic Input Low Voltage	V _{IL}		0.8	V max
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Logic Input High Voltage	V _{IH}		2.4	V min
INTERFACE TIMING 2.3Clock Input Frequency f_{CLK} 40MHzClock Width High t_{CH} 10ns minClock Width Low t_{CL} 10ns minClock Width Low t_{CL} 0ns minClock Width Low t_{CL} 10ns minClock Set Up t_{CSS} 0ns minClock to CS Hold t_{CSH} 10ns minData Setup t_{DS} 5ns minData Hold t_{DH} 10ns minSUPPLY CHARACTERISTICSPower Supply Range $V_{DD RANGE}$ 4.5/5.5Positive Supply Current I_{DD} Logic Inputs = 0V10Power Dissipation P_{DISS} Logic Inputs = 0V0.055mW max	Input Leakage Current	I _{IL}		10	μA max
$\begin{array}{c c c c c c } Clock Input Frequency & f_{CLK} & & & & & & & & & & & & & & & & & & &$	Input Capacitance ²	C _{IL}		10	pF max
$\begin{array}{c c c c c c } Clock Width High & t_{CH} & 10 & ns \min \\ \hline Clock Width Low & t_{CL} & 10 & ns \min \\ Clock Width Low & t_{CL} & 0 & ns \min \\ CS to Clock Set Up & t_{CSS} & 0 & ns \min \\ Clock to CS Hold & t_{CSH} & 10 & ns \min \\ \hline Data Setup & t_{DS} & 5 & ns \min \\ \hline Data Hold & t_{DH} & 10 & ns \min \\ \hline \hline \textbf{SUPPLY CHARACTERISTICS} & 10 & ns \min \\ \hline \textbf{SUPPLY CHARACTERISTICS} & 4.5/5.5 & V \min/max \\ \hline Power Supply Range & V_{DD RANGE} & 4.5/5.5 & V min/max \\ \hline Power Dissipation & P_{DISS} & Logic Inputs = 0V & 0.055 & mW max \\ \hline \end{array}$	INTERFACE TIMING ^{2,3}				
$\begin{array}{c c c c c c } Clock Width Low & t_{CL} & 10 & ns \min \\ CS to Clock Set Up & t_{CSS} & 0 & ns \min \\ Clock to CS Hold & t_{CSH} & 10 & ns \min \\ Data Setup & t_{DS} & 5 & ns \min \\ \hline Data Hold & t_{DH} & 10 & ns \min \\ \hline \hline \textbf{SUPPLY CHARACTERISTICS} & 10 & ns \min \\ \hline \textbf{SUPPLY CHARACTERISTICS} & 4.5/5.5 & V \min/max \\ Power Supply Range & V_{DD RANGE} & 4.5/5.5 & V min/max \\ Positive Supply Current & I_{DD} & Logic Inputs = 0V & 10 & \muA max \\ Power Dissipation & P_{DISS} & Logic Inputs = 0V & 0.055 & mW max \\ \hline \end{array}$	Clock Input Frequency	f_{CLK}		40	MHz
$\begin{array}{c c c c c c c } CS \ to \ Clock \ Set \ Up & t_{CSS} & 0 & ns \ min \\ Clock \ to \ CS \ Hold & t_{CSH} & 10 & ns \ min \\ Data \ Setup & t_{DS} & 5 & ns \ min \\ \hline Data \ Hold & t_{DH} & 10 & ns \ min \\ \hline \hline \textbf{SUPPLY CHARACTERISTICS} & 4.5/5.5 & V \ min/max \\ \hline Power \ Supply \ Current & I_{DD} & Logic \ Inputs = 0V & 10 & \muA \ max \\ \hline Power \ Dissipation & P_{DISS} & Logic \ Inputs = 0V & 0.055 & mW \ max \\ \hline \end{array}$	Clock Width High	t _{CH}		10	ns min
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Clock Width Low	t _{CL}		10	ns min
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		t _{CSS}		0	ns min
$\begin{tabular}{ c c c c c c c } \hline Data Hold & t_{DH} & 10 & ns min \\ \hline \hline Data Hold & t_{DH} & 10 & ns min \\ \hline \hline SUPPLY CHARACTERISTICS & & & & \\ \hline Power Supply Range & V_{DD RANGE} & 4.5/5.5 & V min/max \\ \hline Power Supply Current & I_{DD} & Logic Inputs = 0V & 10 & μA max \\ \hline Power Dissipation & P_{DISS} & Logic Inputs = 0V & 0.055 & mW max \\ \hline \end{array}$	Clock to CS Hold	t _{CSH}			ns min
BITSUPPLY CHARACTERISTICSPower Supply Range $V_{DD RANGE}$ Power Supply Current I_{DD} Logic Inputs = 0VPower Dissipation P_{DISS} Logic Inputs = 0V0.055mW max	Data Setup	t _{DS}		5	ns min
Power Supply Range $V_{DD RANGE}$ 4.5/5.5V min/maxPositive Supply Current I_{DD} Logic Inputs = 0V10 $\mu A \max$ Power Dissipation P_{DISS} Logic Inputs = 0V0.055mW max	Data Hold	t _{DH}		10	ns min
Positive Supply Current I_{DD} Logic Inputs = 0V10 $\mu A \max$ Power Dissipation P_{DISS} Logic Inputs = 0V0.055mW max	SUPPLY CHARACTERIST	ICS			
Positive Supply Current I_{DD} Logic Inputs = 0V10 $\mu A \max$ Power Dissipation P_{DISS} Logic Inputs = 0V0.055mW max		V _{DD RANGE}		4.5/5.5	V min/max
	Positive Supply Current			10	μA max
Power Supply SensitivityPSS $\Delta V_{DD} = \pm 5\%$ 0.006%/% max	Power Dissipation	P _{DISS}	Logic Inputs $= 0V$	0.055	mW max
	Power Supply Sensitivity	PSS	$\Delta V_{DD} = \pm 5\%$	0.006	%/% max

NOTES:

All static performance tests (except I_{OUT}) are performed in a closed loop system using an external precision OP177 I-to-V converter amplifier. The AD5543 R_{FB} terminal is tied to the amplifier output. Typical values represent average readings measured at 25°C These parameters are guaranteed by design and not subject to production testing. All input control signals are specified with $t_R = t_F = 2.5$ ns (10% to 90% of +3V) and timed from a voltage level of 1.5V. 1.

2.

3.

All AC Characteristic tests are performed in a closed loop system using an OP42 I-to-V converter amplifier. 4.

AD5543/AD5553

ELECTRICAL CHARACTERISTICS at V_{DD} = 5V±10%, Iout = Virtual GND, GND=0V, V_{REF} = 10V,

 T_A = Full Operating Temperature Range, unless otherwise noted.

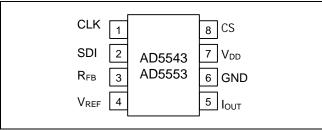
PARAMETER	SYMBOL	CONDITION	5V±10%	UNITS
AC CHARACTERISTICS				
Output Voltage Settling Time	t _S	To $\pm 0.1\%$ of Full Scale, Data = 0000_{H} to FFFF_{H} to 0000_{H}	0.5	µs typ
Reference Multiplying BW	BW	$V_{REF} = 5V_{P-P}$, Data = FFFF _H	4	MHz typ
DAC Glitch Impulse	Q	$V_{REF} = 0V$, Data 0000_{H} to 8000_{H} to 0000_{H}	7	nV-s typ
Feed Through Error	V_{OUT}/V_{REF}	$Data = 0000_{H}, V_{REF} = 100 mVrms$, same channel	-65	dB
Digital Feed Through	Q	$\overline{CS} = 1$, and $f_{CLK} = 1 MHz$	7	nV-s typ
Total Harmonic Distortion	THD	$V_{REF} = 5V_{P-P}$, Data = FFFF _H , f=1KHz	-73	dB typ
Output Spot Noise Voltage	e _N	f = 1 kHz, BW = 1Hz	4	nV/ rt Hz

NOTES:

 All static performance tests (except I_{OUT}) are performed in a closed loop system using an external precision OP177 I-to-V converter amplifier. The AD5543 R_{FB} terminal is tied to the amplifier output. Typical values represent average readings measured at 25°C

2. These parameters are guaranteed by design and not subject to production testing.

3. All input control signals are specified with $t_{\rm R} = t_{\rm F} = 2.5$ ns (10% to 90% of +3V) and timed from a voltage level of 1.5V.


4. All AC Characteristic tests are performed in a closed loop system using an OP42 I-to-V converter amplifier.

ABSOLUTE MAXIMUM RATINGS

V_{DD} to GND
V _{REF} to GND18V, 18V
Logic Inputs to GND
$V(I_{OUT})$ to GND0.3V, $V_{DD} + 0.3V$
Input Current to Any Pin except Supplies ±50mA
Package Power Dissipation $(T_J MAX - T_A)/THETA_{JA}$
Thermal Resistance THETA _{JA}
8-lead Surface Mount (SO-8) 100°C/W
Maximum Junction Temperature (T _J MAX)150°C
Operating Temperature Range
Models A, B, C40°C to $+85^{\circ}$ C
Storage Temperature Range65°C to +150°C
Lead Temperature:
R-8, RM-8 (Vapor Phase, 60 secs)+215°C
R-8, RM-8 (Infrared, 15 secs)+220°C

Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN CONFIGURATION

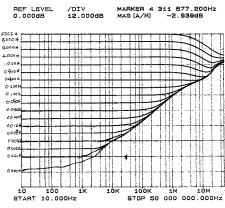


Figure 2. Reference Multiplying Bandwidth

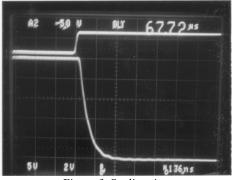


Figure 3. Settling time

AD5543/AD5553

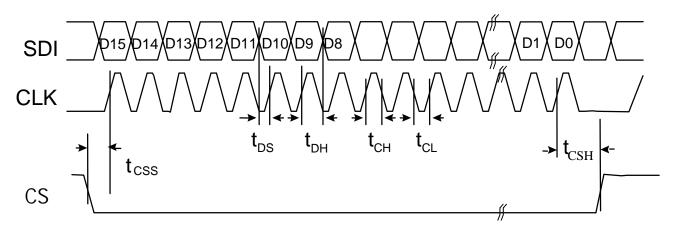


Figure 2. Timing Diagram

CLK CS	Serial Shift Register Function	DAC Register
Х Н	No Effect	Latched
↑+ L	Shift-Register-Data advanced one bit	Latched
Х Н	No Effect	Latched
$X \uparrow_+$	Shift-Register-Data transferred to DAC Register	New Data loaded from Serial Register

1. \uparrow + positive logic transition; X Don't Care

Table 2. AD5543 Serial Input Register Data Format; Data is loaded in the MSB-First Format.

	MSB														LSB
Bit Position	B15	B14	B13	B12	B11	B10 B9	B8	B7	B6	B5	B4	B3	B2	B1	B0
Data Word	D15	D14	D13	D12	D11	D10 D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

Table 3. AD5553 Serial Input Register Data Format; Data is loaded in the MSB-First Format.

	MSB LSB
Bit Position	B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
Data Word	D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

A full 16-bit data word can be loaded into the DAC serial input register, but only the last 14-bits entered will be transferred to the DAC register when \overline{CS} returns to logic high.

PIN DESCRIPTION

<u>PIN#</u>	<u>Name</u>	<u>Function</u>
1	CLK	Clock input, positive-edge triggered clocks data into shift register.
2	SDI	Serial Register Input, data loads directly into the shift register MSB first. Extra leading bits are ignored.
3	\mathbf{R}_{FB}	Internal matching Feedback Resistor. Connect to external opamp output.

CIRCUIT OPERATION

The AD5543/AD5553 contains a 16-/14-bit, current-output, digital-to-analog converter, a serial input register, and a DAC register. Both parts use a 3-wire serial data interface.

D/A Converter Section

The DAC architecture uses a current-steering R-2R ladder design. Figure 3 shows the typical equivalent DAC. The DAC contains a matching feedback resistor for use with an external I to V converter amplifier. The R_{FB} pin is connected to the output of the external amplifier. The I_{OUT} terminal is connected to the inverting input of the external amplifier. These DACs are designed to operate with both negative or positive reference voltages. The V_{DD} power pin is only used by the logic to drive the DAC switches ON and OFF. Note that a matching switch is used in series with the internal 5K-ohm feedback resistor. If users are attempting to measure the value of R_{FB} , power must be applied to V_{DD} in order to achieve continuity. The V_{REF} input voltage and the digital data (D) loaded into the corresponding DAC register according to equation [1 &2] determines the DAC output voltage:

$V_{OUT} = -V_{REF} * D / 65,536$	Equation 1

 $V_{OUT} = -V_{REF} * D / 16,384$

Note that the output full-scale polarity is opposite to the V_{REF} polarity for DC reference voltages.

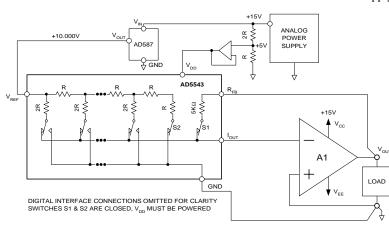
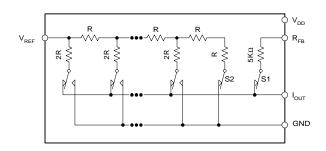



Figure 4. Recommended System Connections

AD5543/AD5553

4	\mathbf{V}_{REF}	DAC reference input pin. Establishes DAC full-scale voltage. Constant input resistance
		versus code.
5	I _{OUT}	DAC current-output. Connects to inverting
		terminal of external precision I to V opamp
6	GND	Analog & Digital Ground.
7	V_{DD}	Positive power supply input. Specified range
		of operation $+5V \pm 10\%$.
8	CS	Chip Select, active low digital input. Transfers
		shift-register data to DAC register on rising

edge. See truth table for operation.

DIGITAL INTERFACE CONNECTIONS OMITTED FOR CLARITY SWITCHES S1 & S2 ARE CLOSED, $\rm V_{DD}$ MUST BE POWERED

Figure 3. Equivalent R-2R DAC Circuit

These DACs are also designed to accommodate AC reference input signals. The AD5543 will accommodate input reference voltages in the range of -12 to +12 volts. The reference voltage inputs exhibit a constant nominal input-resistance value of 5K ohms, $\pm 30\%$. The DAC output (I_{OUT}) is code-dependent producing various output resistances and capacitances. External amplifier choice should take into account the variation in impedance generated by the AD5543 on the amplifiers inverting input node. The feedback resistance in parallel with the DAC ladder resistance dominates output voltage noise. In order to maintain good analog performance, power supply bypassing of 0.01uF in parallel with 1uF is recommended. Under these conditions clean power supply voltages (low ripple, avoid switching supplies) appropriate for the application should be used. It is best to derive the AD5543's +5V supply from the systems analog supply voltages. (Don't use the digital 5V supply). See figure 4.

Equation 2

AD5543/AD5553

SERIAL DATA INTERFACE

The AD5543 uses a 3-wire (\overline{CS} /LD, SDI, CLK) serial data interface. New serial data is clocked into the serial input register in a 16-bit data-word format. The MSB bit is loaded first. Table 2 defines the 16 data-word bits. Data is placed on the SDI pin, and clocked into the register on the positive clock edge of CLK subject to the data setup and data hold time requirements specified in the INTERFACE TIMING SPECIFICATIONS. Only the last 16-bits clocked into the serial register will be interrogated when the \overline{CS} pin is strobed to transfer the serial register data to the DAC register. Since most micro controllers' output serial data in 8-bit bytes, two right justified data bytes can be written to the AD5543. After loading the serial register the rising edge of \overline{CS} transfers the serial register data to the DAC register, during this strobe the CLK should not be toggled.

ESD Protection Circuits

All logic-input pins contain back-biased ESD protection Zeners connected to ground (GND) and V_{DD} as shown in figure 7.

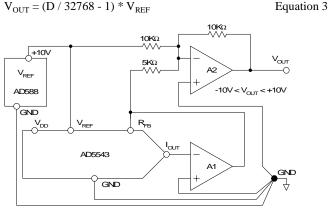



Figure 7. Equivalent ESD Protection Circuits

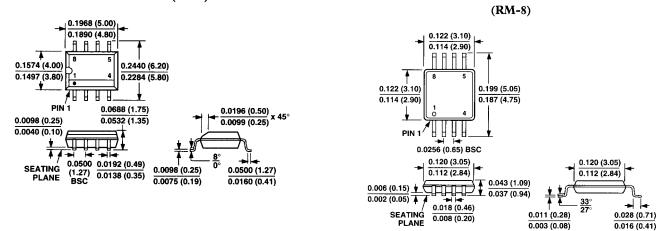
APPLICATIONS

The AD5543 is inherently a 2-Quadrant multiplying D/A converter. That is, it can be easily set up for Unipolar output operation. The full-scale output polarity is the inverse of the reference-input voltage.

In some applications it may be necessary to generate the full 4-Quadrant multiplying capability or a bipolar output swing. This is easily accomplished using an additional external amplifier (A2) configured as a summing amplifier, see figure 8. In this circuit the second amplifier (A2) provides a gain of 2 which increases the output span magnitude to 20 volts. Biasing the external amplifier with a 10V offset from the reference voltage results in a full 4-quadrant multiplying circuit. The transfer equation of this circuit shows that both negative and positive output voltages are created as the input data (D) is incremented from code zero ($V_{OUT} = -10V$) to midscale ($V_{OUT} = 0V$) to full-scale ($V_{OUT} = +10V$).

DIGITAL INTERFACE CONNECTIONS OMITTED FOR CLARITY

Figure 8. Four-Quadrant Multiplying Application Circuit


PCB Layout Recommendations

A star ground approach should be used as shown in figure 8. The PCB metal traces between V_{REF} and R_{FB} should match in order to minimize gain error.

8-Lead microSOIC

Mechanical Outline Dimensions

Dimensions shown in inches and (mm).

8-Lead SOIC (SO-8)