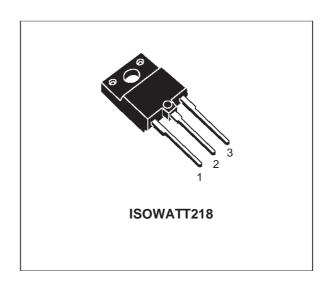
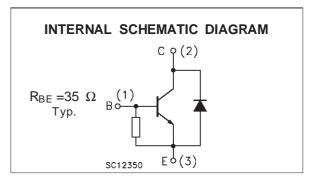


ST2009DHI

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR


- NEW SERIES, ENHANCED PERFORMANCE
- FULLY INSULATED PACKAGE (U.L. COMPLIANT) FOR EASY MOUNTING
- INTEGRATED FREE WHEELING DIODE
- HIGH VOLTAGE CAPABILITY
- HIGH SWITCHING SPEED
- TIGTHER hfe CONTROL
- IMPROVED RUGGEDNESS


APPLICATIONS:

 HORIZONTAL DEFLECTION FOR COLOR TVS

DESCRIPTION

The device is manufactured using Diffused Collector technology for more stable operation Vs base drive circuit variations resulting in very low worst case dissipation.

ABSOLUTE MAXIMUM RATINGS

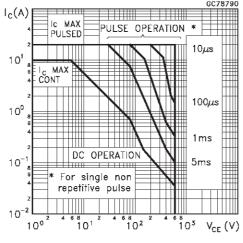
Symbol	Parameter	Value	Unit	
V _{CBO}	Collector-Base Voltage (I _E = 0)	1500	V	
Vceo	Collector-Emitter Voltage (I _B = 0)	600	V	
V _{EBO}	Emitter-Base Voltage (I _C = 0)	7	V	
Ic	Collector Current	10	Α	
Ісм	Collector Peak Current (t _p < 5 ms)	20	Α	
I _B	Base Current	7	Α	
P _{tot}	Total Dissipation at T _c = 25 °C	55	W	
V _{isol}	Insulation Withstand Voltage (RMS) from All Three Leads to External Heatsink	2500	V	
T _{stg}	Storage Temperature	-65 to 150	°C	
Tj	Max. Operating Junction Temperature	150	°C	

December 2002 1/6

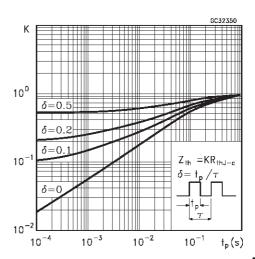
ST2009DHI

THERMAL DATA

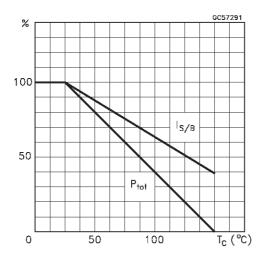
R _{thj-case} Thermal Resistance Junction-case	Max	2.3	°C/W
--	-----	-----	------

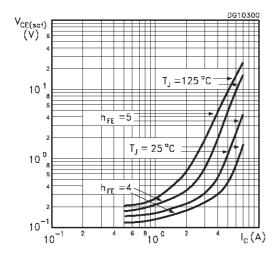

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

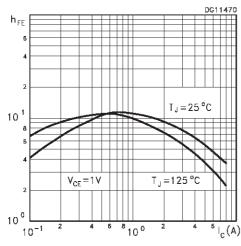
Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
I _{CES}	Collector Cut-off Current (V _{BE} = 0)	V _{CE} = 1500 V V _{CE} = 1500 V T _C =	125 °C			1 2	mA mA
I _{EBO}	Emitter Cut-off Current (I _C = 0)	$V_{EB} = 4 V$		70		210	mA
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	I _C = 5 A I _B =	1.25 A			1.5	V
V _{BE(sat)*}	Base-Emitter Saturation Voltage	$I_C = 5 A$ $I_B =$	1.25 A			1.2	V
h _{FE} *	DC Current Gain	Ic = 1 A VcE Ic = 5 A VcE Ic = 5.5 A VcE	= 1 V	5	20 5	9	
V _F	Diode Forward Voltage	I _F = 5 A			1.5	2	V
t _s	INDUCTIVE LOAD Storage Time Fall Time		$Bon(END) = 1 A$ $J_{BE(off)} = -2.5 V$		2.6 0.28	3.2 0.55	μs μs

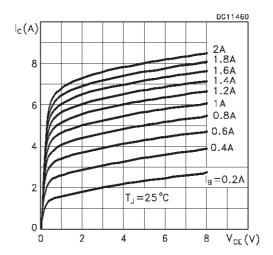

^{*} Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

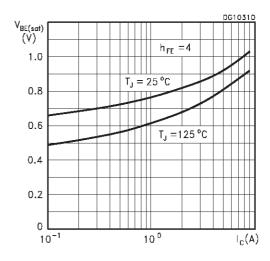
Safe Operating Area

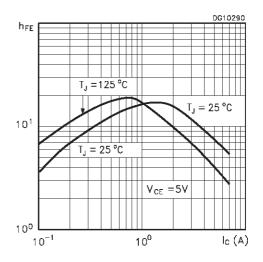

2/6


Thermal Impedance

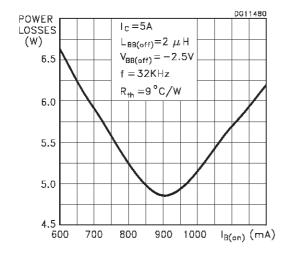

Derating Curve


Collector Emitter Saturation Voltage

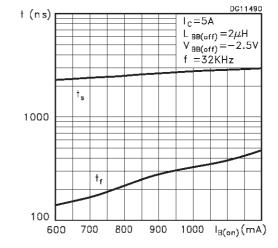

DC Current Gain


Output Characteristics

Base Emitter Saturation Voltage



DC Current Gain

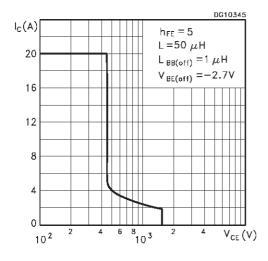
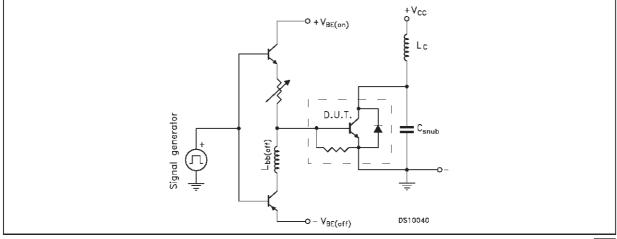


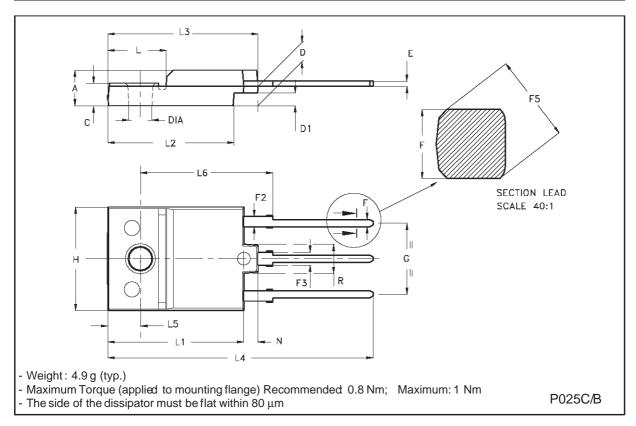
57

Power Losses

Switching Time Inductive Load

RBSOA


Figure 1: Inductive Load Switching Test Circuit.

4/6

ISOWATT218 NARROW LEADS MECHANICAL DATA

DIM.	mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	5.35		5.65	0.211		0.222
С	3.30		3.80	0.130		0.150
D	2.90		3.10	0.114		0.122
D1	1.88		2.08	0.074		0.082
Е	0.75		0.95	0.030		0.037
F	0.75		0.95	0.030		0.037
F2	1.50		1.70	0.059		0.067
F3	1.90		2.10	0.075		0.083
F5			1.10			0.043
G	10.80		11.20	0.425		0.441
Н	15.80		16.20	0.622		0.638
L		9			0.354	
L1	20.80		21.20	0.819		0.835
L2	19.10		19.90	0.752		0.783
L3	22.80		23.60	0.898		0.929
L4	40.50		42.50	1.594		1.673
L5	4.85		5.25	0.191		0.207
L6	20.25		20.75	0.797		0.817
N	2.1		2.3	0.083		0.091
R		4.6			0.181	
DIA	3.5		3.7	0.138		0.146

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2002 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

477