LOW VOLTAGE QUAD 2 CHANNEL MULTIPLEXER WITH 5V TOLERANT INPUTS AND OUTPUTS (3-STATE)

- 5V TOLERANT INPUTS AND OUTPUTS
- HIGH SPEED:
tpd $=6.0 \mathrm{~ns}$ (MAX.) at $\mathrm{Vcc}=3 \mathrm{~V}$
- POWER-DOWN PROTECTION ON INPUTS AND OUTPUTS
- SYMMETRICAL OUTPUT IMPEDANCE: $|\mathrm{lOH}|=\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$ (MIN)
- PCI BUS LEVELS GUARANTEED AT 24mA
- BALANCED PROPAGATIONDELAYS: tPLH \cong tph
- OPERATING VOLTAGE RANGE:
$\mathrm{V}_{\mathrm{CC}}(\mathrm{OPR})=2.0 \mathrm{~V}$ to 3.6 V (1.5V Data Retention)
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 257
- LATCH-UP PERFORMANCE EXCEEDS 500mA
- ESD PERFORMANCE:

HBM $>2000 \mathrm{~V}$; MM > 200V

DESCRIPTION

The 74LCX257 is a low voltage CMOS QUAD 2 CHANNEL MULTIPLEXER (3-STATE) fabricated with sub-micron silicon gate and double-layer metal wiring $\mathrm{C}^{2} \mathrm{MOS}$ technology. It is ideal for low power and high speed 3.3 V applications. It can be interfaced to 5 V signal environment for both inputs and outputs.

It is composed of four independent 2 channel multiplexers with common SELECT and ENABLE INPUT. The 74 VHC 257 is a non inverting multiplexer.
When the ENABLE INPUT is held "High", all outputs become high impedance state. If SELECT INPUT is held "Low", "A" data is selected, when SELECT INPUT is "High", "B" data is chosen. It has same speed performance at 3.3 V than 5 V , $\mathrm{AC} / \mathrm{ACT}$ family, combined with a lower power consumption.
All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	SELECT	Common Data Select Input
$2,5,14,11$	1 A to 4A	Data Input From Source A
$3,6,13,10$	$1 B$ to 4B	Data Inputs from Source B
$4,7,12,9$	$1 Y$ to 4Y	3 State Multiplexer Outputs
15	$\overline{\mathrm{OE}}$	3 State Output Enable Inputs (Active LOW)
8	GND	Ground (OV)
16	V $_{\mathrm{CC}}$	Positive Supply Voltage

TRUTH TABLE

INPUTS				OUTPUTS
$\overline{\mathbf{O E}}$	SELECT	\mathbf{A}	\mathbf{B}	Y
H	X	X	X	Z
L	L	L	X	L
L	L	H	X	H
L	H	X	L	L
L	H	X	H	H

LOGIC DIAGRAM

This logic diagram has notbe used to estimate propagation delays

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage (OFF State)	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage (High or Low State) (note1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{K}	DC Input Diode Current	-50	mA
I_{OK}	DC Output Diode Current (note2)	± 50	mA
I_{O}	DC Output Source/Sink Current	± 50	mA
I_{CC}	DC Supply Current per Supply Pin	± 100	mA
$\mathrm{I}_{\mathrm{GND}}$	DC Ground Current per Supply Pin	± 100	mA
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (10 sec)	300	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

1) Io absolute maximum rating must be observed
2) $V_{o}<G N D, V_{O}>V_{c c}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage (note 1$)$	2.0 to 3.6	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0 to 5.5	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage (Off State)	0 to 5.5	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage (High or Low State)	0 to V_{CC}	V
$\mathrm{I}_{\mathrm{OH}}, \mathrm{l}_{\mathrm{OL}}$	High or Low Level Output Current $\left(\mathrm{V}_{\mathrm{CC}}=3.0\right.$ to 3.6 V$)$	± 24	mA
$\mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OL}}$	High or Low Level Output Current $\left(\mathrm{V}_{\mathrm{CC}}=2.7\right.$ to 3.0 V$)$	± 12	mA
$\mathrm{~T}_{\mathrm{Op}}$	Operating Temperature:	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{dt} / \mathrm{dv}$	Input Transition Rise or Fall Rate $\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right)$ (note 2$)$	0 to 10	$\mathrm{~ns} / \mathrm{V}$

1) Truth Table guaranteed: 1.5 V to 3.6 V
2) V in from 0.8 V to 2.0 V

DC SPECIFICATIONS

Symbol	Parameter	Test Conditions			Value		Unit
		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$			-40 to $85{ }^{\circ} \mathrm{C}$		
					Min.	Max.	
V_{IH}	High Level Input Voltage	2.7 to 3.6			2.0		V
V_{IL}	Low Level Input Voltage					0.8	V
V_{OH}	High Level Output Voltage	2.7 to 3.6	$V_{1}=$ V_{IH} or $V_{\text {IL }}$	$\mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		2.7		$\mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA}$	2.2		
		3.0		$\mathrm{I}_{\mathrm{O}}=-18 \mathrm{~mA}$	2.4		
				$\mathrm{l}=-24 \mathrm{~mA}$	2.2		
VoL	Low Level Output Voltage	2.7 to 3.6	$V_{1}=$ $\mathrm{V}_{\text {IH }}$ or VIL	$\mathrm{I}_{0}=100 \mu \mathrm{~A}$		0.2	V
		2.7		$\mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA}$		0.4	
		3.0		$\mathrm{I}_{\mathrm{O}}=16 \mathrm{~mA}$		0.4	
		3.0		$\mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA}$		0.55	
1	Input Leakage Current	2.7 to 3.6	$\mathrm{V}_{1}=$	to 5.5 V		± 5	$\mu \mathrm{A}$
$\mathrm{l}_{\text {off }}$	Power Off Leakage Current	0	V_{1} or	$\mathrm{V}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
loz	3 State Output Leakage Current	2.7 to 3.6		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{H}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & 0 \text { to } 5.5 \mathrm{~V} \end{aligned}$		± 5	$\mu \mathrm{A}$
ICC	Quiescent Supply Current	2.7 to 3.6	$\mathrm{V}_{1}=\mathrm{V}^{\prime}$	co or GND		10	$\mu \mathrm{A}$
				$\begin{aligned} & \text { or } \mathrm{V}_{\mathrm{O}}= \\ & \text { to } 5.5 \mathrm{~V} \end{aligned}$		± 10	
$\Delta \mathrm{lcc}$	ICC incr. per input	2.7 to 3.6	$\mathrm{V}_{1 \mathrm{H}}=$	$\mathrm{Vcc}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

DYNAMIC SWITCHING CHARACTERISTICS ($C \mathrm{~L}=50 \mathrm{pF}$, RL=500 Ω)

Symbol	Parameter	Test Conditions		Value			Unit
		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			
				Min.	Typ.	Max.	
Volp	Dynamic Low Voltage Quiet Output	3.3	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		
$\mathrm{V}_{\text {OLV }}$	(note 1)		$\mathrm{V}_{1 H}=3.3 \mathrm{~V}$		-0.8		

1) Number of outputs defined as" n ". Measured with" n-1" outputs switching from HIGH to LOW or LOW t oHIGH. The remaining output is measured in the LOW state.

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.5 \mathrm{~ns}\right)$

Symbol	Parameter	Test Condition				Unit
		V_{cc} (V)	Waveform	-40 to $85{ }^{\circ} \mathrm{C}$		
				Min.	Max.	
$\begin{aligned} & \hline \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay Time A, B to Y	2.7	2	1.5	6.5	ns
		3.0 to 3.6		1.5	6.0	
$\begin{aligned} & \hline \mathrm{tpLH}^{\mathrm{t} P \mathrm{~L}} \end{aligned}$	Propagation Delay Time SELECT to Y	2.7	1, 2	1.5	8.5	ns
		3.0 to 3.6		1.5	7.0	
$\begin{aligned} & \text { tpzL } \\ & \mathrm{t}_{\text {PzH }} \end{aligned}$	Output Enable Time	2.7	3	1.5	8.5	ns
		3.0 to 3.6		1.5	7.0	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLZ}} \\ & \mathrm{t}_{\mathrm{Phz}} \end{aligned}$	Output Disable Time	2.7	3	1.5	6.0	ns
		3.0 to 3.6		1.5	5.5	
tosLh toshl	Output to Output Skew Time (note 1, 2)	3.0 to 3.6			1.0	ns

1) Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the
same direction, either HIGHor LOW ($\mathrm{t}_{\mathrm{OLLH}}=\left|\mathrm{t}_{\mathrm{PLHm}}-\mathrm{t}_{\text {PLHn }}\right|, \mathrm{tosh}=\left|\mathrm{t}_{\text {PHLm }}-\mathrm{t}_{\text {pHLn }}\right|$)
2) Parameter guaranteed by design

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions		Value			Unit
		$V_{c c}$ (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			
				Min.	Typ.	Max.	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	3.3	$\mathrm{V}_{\mathrm{IN}}=0$ to V_{CC}		7		pF
Cout	Output Capacitance	3.3	$\mathrm{V}_{\mathrm{IN}}=0$ to V_{CC}		8		pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (note 1)	3.3	$\begin{aligned} \mathrm{f}_{\mathrm{IN}} & =10 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{IN}} & =0 \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$		25		pF

1) CpD isdefined as the value of the IC'sinternal equivalent capacitance which is calculated from the operating current consumption without load. Average operting current can be obtained by the following equation. $\mathrm{I}_{\mathrm{CC}}(\mathrm{opr})=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}} \bullet \mathrm{fiN}_{\mathrm{IN}}+\mathrm{I}_{\mathrm{CO}} 4$ (per channel)

TEST CIRCUIT

TEST	SWITCH
$t_{\text {PLH }}, t_{\text {PHL }}$	Open
$t_{\text {PZL }}, t_{\text {PLZ }}$	6V
$t_{\text {PZH, }}, t_{\text {PHZ }}$	GND

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ orequivalent
$\mathrm{R}_{\mathrm{T}}=$ Zour of pulse generator (typically 50Ω)

WAVEFORM 1: PROPAGATION DELAYS FOR INVERTING CONDITIONS ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

WAVEFORM 2: PROPAGATION DELAYS FOR NON-INVERTING CONDITIONS ($f=1 \mathrm{MHz} ; 50 \%$ duty cycle)

WAVEFORM 3: OUTPUT ENABLE AND DISABLE TIME (f=1MHz; 50\% duty cycle)

SO-16 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			1.75			0.068
a1	0.1		0.2	0.004		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
C		0.5			0.019	
c1	45 (typ.)					
D	9.8		10	0.385		0.393
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
M			0.62			0.024
S	8 (max.)					

TSSOP16 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			1.1			0.433
A1	0.05	0.10	0.15	0.002	0.004	0.006
A2	0.85	0.9	0.95	0.335	0.354	0.374
b	0.19		0.30	0.0075		0.0118
C	0.09		0.20	0.0035		0.0079
D	4.9	5	5.1	0.193	0.197	0.201
E	6.25	6.4	6.5	0.246	0.252	0.256
E1	4.3	4.4	4.48	0.169	0.173	0.176
e		0.65 BSC			0.0256 BSC	
K	0°	4°	8°	0°	4°	8°
L	0.50	0.60	0.70	0.020	0.024	0.028

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequenœs of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems withoutexpress written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
© 1999 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com

