WITH 5V TOLERANT INPUTS AND OUTPUTS

- 5V TOLERANT INPUTS AND OUTPUTS
- HIGH SPEED:
tpd $=7 \mathrm{~ns}$ (MAX.) at $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$
- POWER-DOWN PROTECTIONON INPUTS AND OUTPUTS
- SYMMETRICAL OUTPUT IMPEDANCE: $|\mathrm{lOH}|=\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$ (MIN)
- PCI BUS LEVELSGUARANTEED AT 24 mA
- BALANCED PROPAGATION DELAYS:
tpLH \cong tphL
- OPERATING VOLTAGE RANGE: $\mathrm{Vcc}(\mathrm{OPR})=2.0 \mathrm{~V}$ to 3.6 V (1.5V Data Retention)
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 245
- LATCH-UP PERFORMANCE EXCEEDS 500mA
- ESD PERFORMANCE:

HBM > 2000V; MM > 200V

DESCRIPTION

The LCX245 is a low voltage CMOS OCTAL BUS TRANSCEIVER (3-STATE) fabricated with sub-micron silicon gate and double-layer metal wiring $\mathrm{C}^{2} \mathrm{MOS}$ technology. It is ideal for low power and high speed 3.3 V applications; it can be interfaced to 5 V signal environment for both inputs and outputs. It has same speed performance at 3.3 V than 5 V AC/ACT family,

combined with a lower power consumption.
This IC is intended for two-way asynchronous communication between data buses; the direction of data trasmission is determined by DIR input. The enable input \bar{G} can be used to disable the device so that the buses are effectively isolated.
All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.
IT IS PROHIBITED TO APPLY A SIGNAL TO A TERMINAL WHEN IT IS IN OUTPUT MODE AND WHEN A BUS TERMINAL IS FLOATING (HIGH IMPEDANCE STATE) IT IS REQUESTED TO FIX THE INPUT LEVEL BY MEANS OF EXTERNAL PULL DOWN OR PULL UP RESISTOR.

PIN CONNECTION AND IEC LOGIC SYMBOLS

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	DIR	Directional Control
$2,3,4,5$, $6,7,8,9$	A1 to A8	Data Inputs/Outputs
$18,17,16$, $15,14,13$, 12,11	B1 to B8	Data Inputs/Outputs
19	\bar{G}	
10	GND	Output Enable Input
20	V $_{\text {CC }}$	Positive Supply Voltage

TRUTH TABLE

INPUT		FUNCTION		OUTPUT
$\overline{\mathbf{G}}$	DIR	A BUS	B BUS	
L	L	OUTPUT	INPUT	$\mathrm{A}=\mathrm{B}$
L	H	INPUT	OUTPUT	$\mathrm{B}=\mathrm{A}$
H	X	Z	Z	Z

Z:"H" or "L"
Z:Highimpedance

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage ($\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage (High or Low State) (note1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{K}	DC Input Diode Current	-50	mA
I_{K}	DC Output Diode Current (note2)	± 50	mA
I_{O}	DC Output Source/Sink Current	± 50	mA
I_{CC}	DC Supply Current per Supply Pin	± 100	mA
$\mathrm{I}_{\mathrm{GND}}$	DC Ground Current per Supply Pin	± 100	mA
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (10 sec)	300	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

1) Io absolute maximum rating must be observed
2) $V_{O}<G N D, V_{O}>V_{C C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage (note 1)	2.0 to 3.6	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0 to 5.5	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage $\left(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\right)$	0 to 5.5	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage (High or Low State)	0 to V_{CC}	V
$\mathrm{I}_{\mathrm{OH}}, \mathrm{l}_{\mathrm{OL}}$	High or Low Level Output Current $\left(\mathrm{V}_{\mathrm{CC}}=3.0\right.$ to 3.6 V$)$	± 24	mA
$\mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OL}}$	High or Low Level Output Current $\left(\mathrm{V}_{\mathrm{CC}}=2.7\right.$ to 3.0 V$)$	± 12	mA
$\mathrm{~T}_{\mathrm{Op}}$	Operating Temperature:	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{dt} / \mathrm{dv}$	Input Transition Rise or Fall Rate $\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right)$ (note 2$)$	0 to 10	$\mathrm{~ns} / \mathrm{V}$

1) Truth Table guaranteed: 1.5 V to 3.6 V
2) V in from 0.8 V to 2.0 V

DC SPECIFICATIONS

Symbol	Parameter	Test Conditions			Value		Unit
		Vcc (V)			-40 to $85{ }^{\circ} \mathrm{C}$		
					Min.	Max.	
V_{IH}	High Level Input Voltage	2.7 to 3.6			2.0		V
V_{IL}	Low Level Input Voltage					0.8	V
V_{OH}	High Level Output Voltage	2.7 to 3.6	$V_{1}=$ V_{IH} or $V_{\text {IL }}$	$\mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{cc}}-0.2$		V
		2.7		$\mathrm{I}_{0}=-12 \mathrm{~mA}$	2.2		
		3.0		$\mathrm{I}_{\mathrm{O}}=-18 \mathrm{~mA}$	2.4		
				$\mathrm{I}_{0}=-24 \mathrm{~mA}$	2.2		
VoL	Low Level Output Voltage	2.7 to 3.6	$V_{1}=$ $\mathrm{V}_{\text {IH }}$ or VIL	$\mathrm{I}_{0}=100 \mu \mathrm{~A}$		0.2	V
		2.7		$\mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA}$		0.4	
		3.0		$\mathrm{l}_{\mathrm{O}}=16 \mathrm{~mA}$		0.4	
		3.0		$\mathrm{l}=24 \mathrm{~mA}$		0.55	
1	Input Leakage Current	2.7 to 3.6	$\mathrm{V}_{1}=$	to 5.5 V		± 5	$\mu \mathrm{A}$
loz	3 State Output Leakage Current	2.7 to 3.6		$\begin{aligned} & \mathrm{V}_{\mathrm{H}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & 0 \text { to } 5.5 \mathrm{~V} \end{aligned}$		± 5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {off }}$	Power Off Leakage Current	0	V_{1} or	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		100	$\mu \mathrm{A}$
$I_{\text {cc }}$	Quiescent Supply Current	2.7 to 3.6	$\mathrm{V}_{1}=\mathrm{V}^{\prime}$	cc or GND		10	$\mu \mathrm{A}$
				$\begin{aligned} & \text { or } \mathrm{V}_{\mathrm{O}}= \\ & \text { to } 5.5 \mathrm{~V} \\ & \hline \end{aligned}$		± 10	
$\Delta \mathrm{l}_{\text {CC }}$	ICC incr. per input	2.7 to 3.6	$\mathrm{V}_{1 H}=$	$\mathrm{V}_{\text {cc }}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Parameter	Test Conditions		Value			Unit
		$V_{c c}$ (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			
				Min.	Typ.	Max.	
Volp	Dynamic Low Voltage Quiet Output (note 1)	3.3	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{~V}_{I L}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V} \end{gathered}$		0.8		V
Volv					-0.8		

1) Number of outputs defined as "n". Measured with"n-1" outputs switching from HIGH to LOW or LOW t o HIGH. The remaining output is measured in the LOW state.

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.5 \mathrm{~ns}\right)$

Symbol	Parameter	Test Condition		Value		Unit
		V_{cc} (V)	Waveform	-40 to $85{ }^{\circ} \mathrm{C}$		
				Min.	Max.	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation Delay Time	2.7	1	1.5	8.0	ns
		3.0 to 3.6		1.5	7.0	
tpzL	Output Enable Time	2.7	2	1.5	9.5	ns
tpzi		3.0 to 3.6		1.5	8.5	
tplz	Output Disable Time	2.7	2	1.5	8.5	ns
tpHz		3.0 to 3.6		1.5	7.5	
tosLz toshl	Output to Output Skew Time (note 1, 2)	3.0 to 3.6			1.0	ns

1) Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGH or LOW (tosLH = |tpLHm - tpLHn \mid tosh $=\mid$ tpHLm - tpHLn \mid)
2) Parameter guaranteed by design

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions		Value			Unit
		$V_{c c}$ (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			
				Min.	Typ.	Max.	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	3.3	$\mathrm{V}_{\text {IN }}=0$ to $\mathrm{V}_{\text {CC }}$		6		pF
$\mathrm{C}_{\text {i/ }}$	I/O Capacitance	3.3	$\mathrm{V}_{\text {IN }}=0$ to $\mathrm{V}_{\text {CC }}$		12		pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (note 1)	3.3	$\begin{aligned} \mathrm{f}_{\mathrm{IN}} & =10 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{IN}} & =0 \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$		45		pF

1) CpD is defined as the value of the IC'sinternal equivalent capacitance which is calculated from the operating current consumption without load. Average operting current can be obtained by the following equation. Icc(opr) $=\mathrm{CPD} \bullet \mathrm{VCC}_{\mathrm{C}} \bullet \mathrm{fin}_{\mathrm{I}}+\mathrm{Icd} \mathrm{n}$ (per circuit)

TEST CIRCUIT

TEST	SWITCH
tPLH, tPHL	Open
tPZL, tPLZ	6 V
tPZH, tPHZ	GND

$\mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (includes jigand probe capacitance)
$R_{L}=R_{1}=500 \Omega$ orequivalent
$\mathrm{R}_{\mathrm{T}}=$ Zour of pulse generator (typically 50Ω)

WAVEFORM 1: PROPAGATION DELAYS ($f=1 \mathrm{MHz} ; 50 \%$ duty cycle)

WAVEFORM 2: OUTPUT ENABLE AND DISABLE TIME ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

SO-20 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			2.65			0.104
a1	0.10		0.20	0.004		0.007
a2			2.45			0.096
b	0.35		0.49	0.013		0.019
b1	0.23		0.32	0.009		0.012
C		0.50			0.020	
c1	45 (typ.)					
D	12.60		13.00	0.496		0.512
E	10.00		10.65	0.393		0.419
e		1.27			0.050	
e3		11.43			0.450	
F	7.40		7.60	0.291		0.299
L	0.50		1.27	0.19		0.050
M			0.75			0.029
S	8 (max.)					

TSSOP20 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			1.1			0.433
A1	0.05	0.10	0.15	0.002	0.004	0.006
A2	0.85	0.9	0.95	0.335	0.354	0.374
b	0.19		0.30	0.0075		0.0118
C	0.09		0.2	0.0035		0.0079
D	6.4	6.5	6.6	0.252	0.256	0.260
E	6.25	6.4	6.5	0.246	0.252	0.256
E1	4.3	4.4	4.48	0.169	0.173	0.176
e		0.65 BSC			0.0256 BSC	
K	0°	4°	8°	0°	4°	8°
L	0.50	0.60	0.70	0.020	0.024	0.028

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics
© 1999 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
http://www.st.com

