LOW VOLTAGE CMOSOCTALBUS TRANSCEIVER/REGISTER (3-STATE) WITH 5V TOLERANT INPUTS AND OUTPUTS

- 5V TOLERANT INPUTS AND OUTPUTS
- HIGH SPEED: tpd $=7.0 \mathrm{~ns}$ (MAX.) at $\mathrm{V}_{\mathrm{Cc}}=3 \mathrm{~V}$
- POWER-DOWN PROTECTIONON INPUTS AND OUTPUTS
- SYMMETRICAL OUTPUT IMPEDANCE: $|\mathrm{lOH}|=\mathrm{loL}=24 \mathrm{~mA}(\mathrm{MIN})$
- PCI BUS LEVELSGUARANTEED AT 24 mA
- BALANCED PROPAGATIONDELAYS: tPLH \cong tPHL
- OPERATING VOLTAGE RANGE: $\mathrm{Vcc}(\mathrm{OPR})=2.0 \mathrm{~V}$ to 3.6 V (1.5V Data Retention)
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 646
- LATCH-UP PERFORMANCE EXCEEDS 500 mA
- ESD PERFORMANCE:

HBM > 2000V; MM > 200V

DESCRIPTION

The LCX646 is a low voltage CMOS OCTAL BUS TRANSCEIVER AND REGISTER (3-STATE) fabricated with sub-micron silicon gate and double-layer metal wiring $\mathrm{C}^{2} \mathrm{MOS}$ technology. It is ideal for low power and high speed 3.3V applications; it can be interfaced to 5 V signal environment for both inputs and outputs.

PIN CONNECTION AND IEC LOGIC SYMBOLS

This device consists of bus transceiver circuits with 3-state outputs, D type flip-flops, and control circuitry arranged for multiplexed trasmission of data directly from the input bus or from the internal registers. Data on the A or B bus will be clocked into registers on the low-to high transition of the appropriate clock pin (clock AB or clock $B A$). Enable ($\overline{\mathrm{G}}$) and direction (DIR) pins are provided to control the transceiver functions. In the transceiver mode, data present at the high impedance port may be stored in either register or in both.
The selected controls (Select AB Select BA) can multiplex stored and real time (transparent mode) data. The direction control determines which bus

will receive data when enable \bar{G} is active (low). In the isolation mode (enable \bar{G} high), "A" data may be stored in one register and/or "B" data may be stored in the other register. When an output bus is disabled, the input bus is still enabled and may be used to store and transmit data. Only one of the two buses, A or B, may be driven at a time.

It has same speed performance at 3.3 V than 5 V , AC/ACT family, combined with a lower power consumption.
All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	CAB	A to B Clock Input (LOW to HIGH, Edge-Trigged)
2	SAB	Select A to B Source Input
3	DIR	Direction Control Input
$4,5,6,7,8,9,10,11$	A1 to A8	A Data Inputs/Outputs
$20,19,18,17,16,15,14,13$	B1 to B8	B Data Inputs/Outputs
21	$\overline{\mathrm{G}}$	Output Enable Input (Active LOW)
22	SBA	Select B to A Source Input
23	CBA	B to A Clock Input (LOW to HIGH, Edge-Triggered)
12	GND	Ground (OV)
24	$\mathrm{~V}_{\mathrm{CC}}$	Positive Supply Voltage

LOGIC DIAGRAM

TIMING CHART

TRUTH TABLE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage (OFF state)	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage (High or Low State) (note1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{K}	DC Input Diode Current	-50	mA
I_{OK}	DC Output Diode Current (note2)	± 50	mA
I_{O}	DC Output Source/Sink Current	± 50	mA
I_{CC}	DC Supply Current per Supply Pin	± 100	mA
$\mathrm{I}_{\mathrm{GND}}$	DC Ground Current per Supply Pin	± 100	mA
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (10 sec)	300	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

1) Io absolute maximum rating must be observed
2) $V_{o}<G N D, V_{o}>V_{c c}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage (note 1)	2.0 to 3.6	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0 to 5.5	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage (OFF state)	0 to 5.5	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage (High or Low State $)$	0 to V_{CC}	V
$\mathrm{I}_{\mathrm{OH}}, \mathrm{l}_{\mathrm{OL}}$	High or Low Level Output Current $\left(\mathrm{V}_{\mathrm{CC}}=3.0\right.$ to 3.6 V$)$	± 24	mA
$\mathrm{I}_{\mathrm{OH}}, \mathrm{loL}$	High or Low Level Output Current $\left(\mathrm{V}_{\mathrm{CC}}=2.7\right.$ to 3.0 V$)$	± 12	mA
$\mathrm{~T}_{\mathrm{Op}}$	Operating Temperature:	-40 to +85	o
$\mathrm{dt} / \mathrm{dv}$	Input Transition Rise or Fall Rate $\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right)($ note 2$)$	0 to 10	$\mathrm{~ns} / \mathrm{V}$

1) Truth Table guaranteed: 1.5 V to 3.6 V
2) V in from 0.8 V to 2.0 V

74LCX646

DC SPECIFICATIONS

Symbol	Parameter	Test Conditions			Value		Unit
		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$			-40 to $85{ }^{\circ} \mathrm{C}$		
					Min.	Max.	
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2.7 to 3.6			2.0		V
VIL	Low Level Input Voltage					0.8	V
V_{OH}	High Level Output Voltage	2.7 to 3.6	$\begin{aligned} & V_{1}= \\ & V_{I H} \text { or } \\ & V_{\text {IL }} \end{aligned}$	$\mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		2.7		$\mathrm{I}_{0}=-12 \mathrm{~mA}$	2.2		
		3.0		$\mathrm{I}_{0}=-18 \mathrm{~mA}$	2.4		
				$\mathrm{l}=-24 \mathrm{~mA}$	2.2		
VoL	Low Level Output Voltage	2.7 to 3.6	$V_{1}=$ V_{IH} or VIL	$\mathrm{I}_{0}=100 \mu \mathrm{~A}$		0.2	V
		2.7		$\mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA}$		0.4	
		3.0		$\mathrm{I}_{\mathrm{O}}=16 \mathrm{~mA}$		0.4	
		3.0		$\mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA}$		0.55	
1	Input Leakage Current	2.7 to 3.6	$\mathrm{V}_{1}=$	to 5.5 V		± 5	$\mu \mathrm{A}$
loz	3 State Output Leakage Current	2.7 to 3.6		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{H}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & 0 \text { to } 5.5 \mathrm{~V} \\ & \hline \end{aligned}$		± 5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {off }}$	Power Off Leakage Current	0	V_{1} or	O $=5.5 \mathrm{~V}$		100	$\mu \mathrm{A}$
I_{cc}	Quiescent Supply Current	2.7 to 3.6	$\mathrm{V}_{1}=\mathrm{V}^{\prime}$	cc or GND		10	$\mu \mathrm{A}$
				$\begin{aligned} & \text { or } \mathrm{V}_{\mathrm{O}}= \\ & \text { to } 5.5 \mathrm{~V} \end{aligned}$		± 10	
$\Delta \mathrm{lcc}$	ICC incr. per input	2.7 to 3.6	$\mathrm{V}_{1 \mathrm{H}}=$	$\mathrm{Vcc}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Parameter	Test Conditions		Value			Unit
		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			
				Min.	Typ.	Max.	
Volp	Dynamic Low Voltage Quiet Output (note 1)	3.3	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V} \end{gathered}$		0.8		V
Volv					-0.8		

1) Number of outputs defined as"n". Measured with" n-1" outputs switching from HIGH to LOW or LOW toHIGH. The remaining output is measured in the LOW state

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.5 \mathrm{~ns}$)

Symbol	Parameter	Test Condition		Value		Unit
		V_{cc} (V)	Waveform	-40 to $85{ }^{\circ} \mathrm{C}$		
				Min.	Max.	
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation Delay Time CAB or CBA to An or Bn	2.7	3	1.5	9.5	ns
		3.0 to 3.6		1.5	8.5	
$\begin{aligned} & \hline \mathrm{t} P L H \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Propagation Delay Time An to Bn or Bn to An	2.7	1	1.5	8.0	ns
		3.0 to 3.6		1.5	7.0	
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay Time SAB or SBA to An or Bn	2.7	1	1.5	9.5	ns
		3.0 to 3.6		1.5	8.5	
$\begin{aligned} & \text { tpzL } \\ & \text { tpzH }^{2} \end{aligned}$	Output Enable Time $\overline{\mathrm{G}}, \mathrm{DIR}$ to An, Bn	2.7	2	1.5	9.5	ns
		3.0 to 3.6		1.5	8.5	
$\begin{aligned} & \text { tpLz } \\ & \text { tphz } \end{aligned}$	Output Disable Time G, DIR to An, Bn	2.7	2	1.5	9.5	ns
		3.0 to 3.6		1.5	8.5	
$\mathrm{t}_{\text {s }}$	Setup Time, HIGH or LOW Level Data to CAB, CBA	2.7	3	2.5		ns
		3.0 to 3.6		2.5		
t_{h}	Hold Time, HIGH or LOW Level Data to CAB, CBA	2.7	3	1.5		ns
		3.0 to 3.6		1.5		
t_{w}	CAB, CBA Pulse Width, HIGH or LOW	2.7	4	4.0		ns
		3.0 to 3.6		3.3		
$\mathrm{f}_{\text {MAX }}$	Clock Pulse Frequency	3.0 to 3.6	3	150		M Hz
tosth toshl	Output to Output Skew Time (note 1, 2)	3.0 to 3.6			1.0	ns

1) Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the
same direction, either HIGH or LOW (tosLH $=\mid$ tpLhm - tpLHn \mid tosh $=\mid$ tpHLm - tpHLn \mid)
2) Parameter guaranteed by design

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions		Value			Unit
		V_{cc} (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			
				Min.	Typ.	Max.	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	3.3	$\mathrm{V}_{\mathrm{IN}}=0$ to V_{CC}		6		pF
$\mathrm{C}_{\mathrm{i} / 0}$	I/O Capacitance	3.3	$\mathrm{V}_{\text {IN }}=0$ to V_{CC}		10		pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (note 1)	3.3	$\begin{aligned} \mathrm{f}_{\mathrm{IN}} & =10 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{IN}} & =0 \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$		37		pF

1) CPD is defined as the value of the IC'sinternal equivalent capacitance which is calculated from the operating current consumption without load. Average operting current can be obtained by the following equation. $I_{C C}(o p r)=C_{P D} \bullet V_{C C} \bullet f_{I_{N}}+I_{C d} 8$ (per circuit)

TEST CIRCUIT

TEST	SWITCH
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Open
$\mathrm{t}_{\text {PLL }}, \mathrm{t}_{\text {PLZ }}$	6 V
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PHZ }}$	GND

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ orequivalent
$\mathrm{R}_{\mathrm{T}}=$ Z $_{\text {out }}$ of pulse generator (typically 50Ω)

WAVEFORM 1: PROPAGATION DELAYS, SAB, SBA, An, Bn TIMES ($f=1 \mathrm{MHz} ; 50 \%$ duty cycle)

WAVEFORM 2: OUTPUT ENABLE AND DISABLE TIMES (f=1MHz; 50\% duty cycle)

WAVEFORM 3: PROPAGATION DELAY TIMES ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

WAVEFORM 4: PULSE WIDTH
CAB, CBA

SO-24 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			2.65			0.104
a1	0.10		0.20	0.004		0.007
a2			2.45			0.096
b	0.35		0.49	0.013		0.019
b1	0.23		0.32	0.009		0.012
C		0.50			0.020	
c1	45 (typ.)					
D	15.20		15.60	0.598		0.614
E	10.00		10.65	0.393		0.420
e		1.27			0.05	
e3		13.97			0.55	
F	7.40		7.60	0.291		0.299
L	0.50		1.27	0.19		0.050
S	8 (max.)					

TSSOP24 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			1.1			0.433
A1	0.05	0.10	0.15	0.002	0.004	0.006
A2	0.85	0.9	0.95	0.335	0.354	0.374
b	0.19		0.30	0.0075		0.0118
c	0.09		0.2	0.0035		0.0079
D	7.7	7.8	7.9	0.303	0.307	0.311
E	6.25	6.4	6.5	0.246	0.252	0.256
E1	4.3	4.4	4.48	0.169	0.173	0.176
e		0.65 BSC			0.0256 BSC	
K	0°	4°	8°	0°	4°	8°
L	0.50	0.60	0.70	0.020	0.024	0.028

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics
© 1999 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
http://www.st.com

