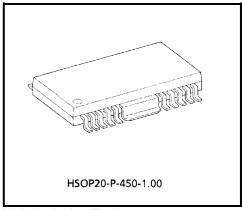
TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT MULTI-CHIP

TA84002F

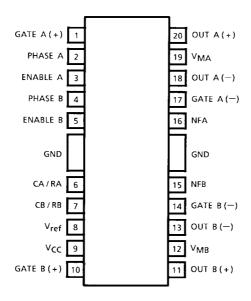
PWM CHOPPER TYPE 2-PHASE BIPOLAR STEPPING MOTOR DRIVER


The TA84002F is designed to drive both windings of a two-phase bipolar setpping motor.

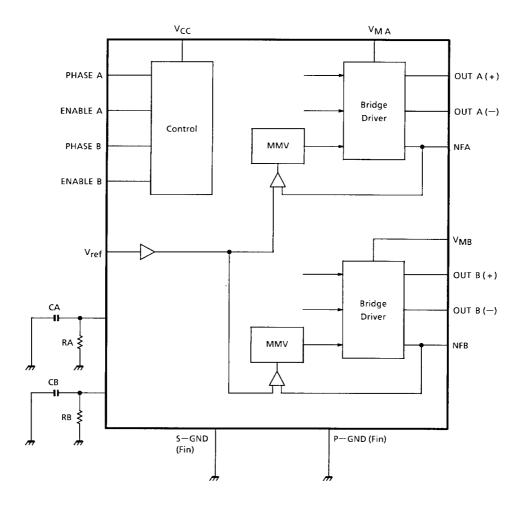
FEATURES

- Internal PWM current control
- Wide range of operating supply voltage

V_M (motor) : 10 V to 30 V V_{CC} (control) : 4.5 V to 5.5 V • Output current : 1.0 A (peak)


- Multichip IC consisting of four P-channel MOSFETs and one main chip.
- Full-step and half-step are available
- Internal thermal-shutdown circuit
- Package : HSOP20-P-450-1.00

Weight: 0.79 g (Typ.)


Note1: This product has a multichip (MCP) structure utilizing Pch MOS technology. Take care when handling because Pch MOS has low electrostatic resistance.

PIN ASSIGNMENT

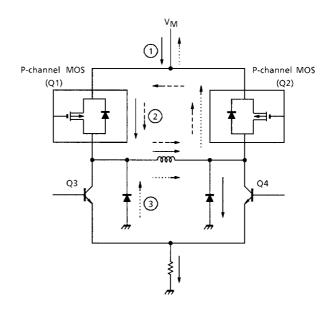
1

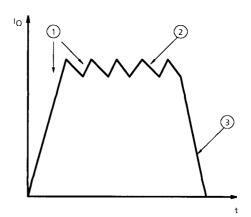
BLOCK DIAGRAM

TRUTH TABLE

PHASE	ENABLE	OUT (+)	OUT (-)
Х	Н	OFF	OFF
Н	L	Н	L
L	L	L	Н

X: Don't care


OUTPUT STAGE


- The TA84002F is Multichip IC consisting of four P-channel MOSFETs and one main chip.
- Four P-channel MOSETs are used as upper-side power transistors.
- Output current is controlled by swiching lower—side transistor.
- Durin CHOP ON, the current flows through P-channel MOS, The motor winding, sink transistor and sense resistor.
- During CHOP OFF, the current circulates the motor winding, P-channel MOS and the diode of P-channel MOS.
- Power dissipation is divided by the five chips.

→ : (1) CHOP ON
(Drive Mode)
Q1: ON, Q2: OFF
Q3: OFF, Q4: ON

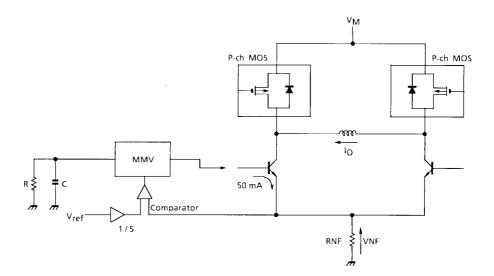
--→: (2) CHOP OFF (Slow Decay) Q1: ON, Q2: OFF Q3: OFF, Q4: OFF

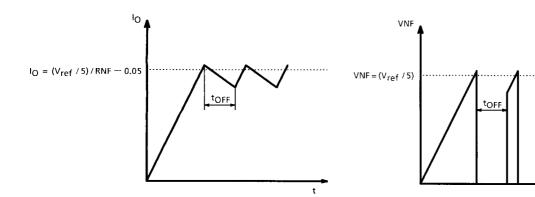
·····► : (3) ALL OFF (Fast Decay)

PWM CURRENT CONTROL

Output current is sensed and cotrolled independently in each bridge by an external sense resistor (RFN), internal comparator, and mono-stable multi-vibrator.

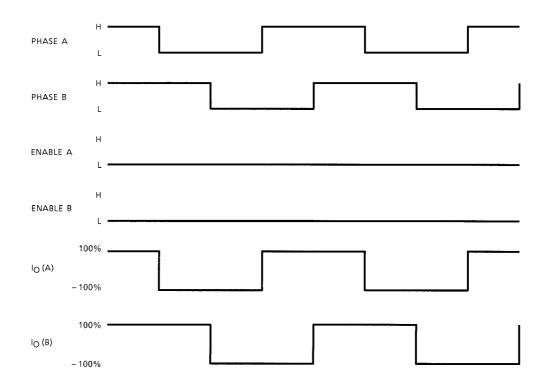
When the bridge is turn ON, current increases in the motor winding and flows through the external sense resistor until the sense voltage (VNF) reaches the level set at the comparator's input: V_{ref} / 5

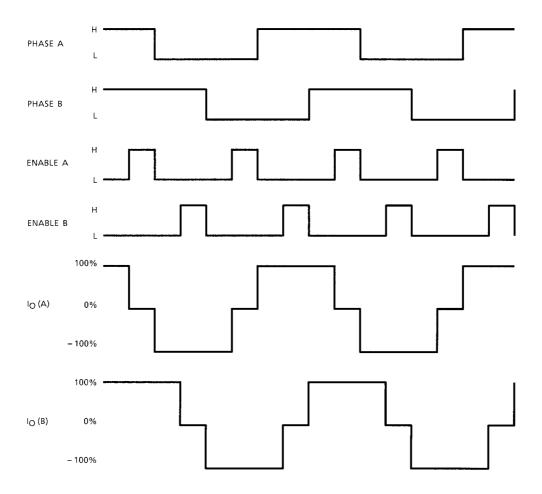

The comparator then triggers the mono-stable, which turn OFF the lower transistor of the bridge.


The OFF time is determined by the mono-stable's external RC timing components.

$$toff \approx 1.1 \ CR$$

The value of the current limiting (IO) is approximated by


 $I_{O} = (V_{ref}/5) / RNF-0.05$


TIMING CHART

(1) Full Step

5

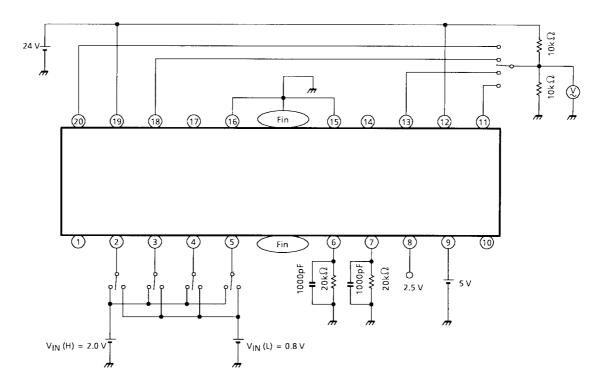
(2) Half Step

MAXIMUM RATINGS (Ta = 25°C)

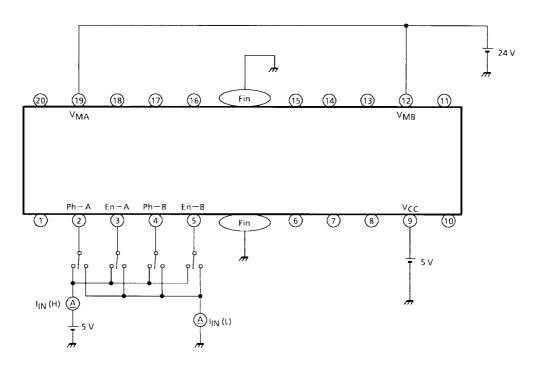
CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage (Motor)	V _M	35	V
Supply Voltage (Control)	V _{CC}	7	V
Output Current	Io	1.0	A / ch
Input Voltage	V _{IN}	GND - 0.4 to V _{CC} + 0.4 V	V
Power Dissipation	P _D	2.5 (Note)	W
Operating Temperature	T _{opr}	-30 to 85	°C
Storage Temperature	T _{stg}	−55 to 150	°C

Note: This rating is obtained by mounting on $50 \times 50 \times 1.6$ mm PCB that occupied above 60% of copper.

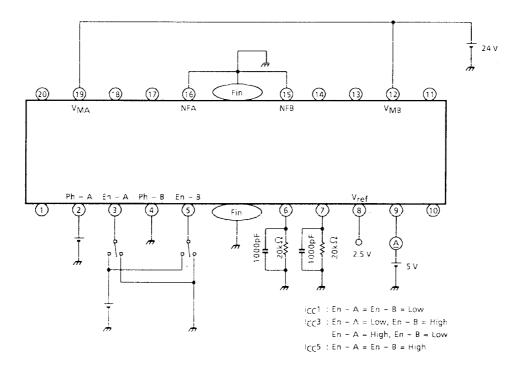
RECOMMENDED OPERATION CONDITION (Ta = -30 \text{ to } 85^{\circ}\text{C})

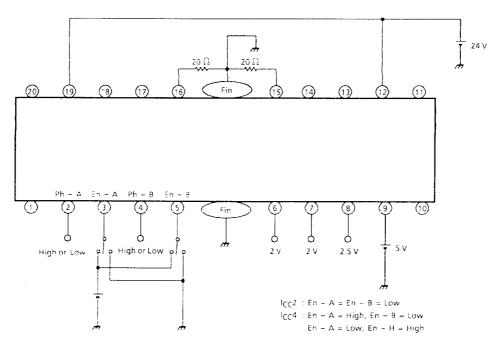

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
Supply Voltage (Control)	V _{CC}	_		4.5	5.0	5.5	٧
Supply Voltage (Motor)	V _M	_		10	24	30	V
Output Current	Io	_		_	_	0.8	A / ch
Input Voltage	V _{IN}	_	PHASE, ENABLE	GND	_	V _{CC}	V
Reference Voltage	V _{ref}	_		1.2	2.5	V _{CC} - 0.5	V
PWM Frequency	f _{PWM}	_		15	30	50	kHz

ELECTRICAL CHARACTERISTICS (Ta = 25°C, V_{CC} = 5 V, V_{M} = 24 V)

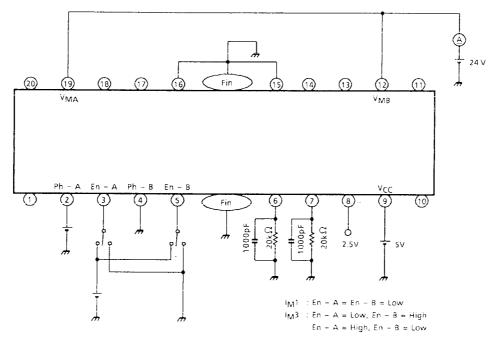

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
Input Voltage	V _{IN} (H)	1	PHASE, ENABLE	2.0	_	V _{CC} + 0.3 V	٧
	V _{IN} (L)			GND - 0.3 V	_	0.8	
Input Current	I _{IN} (H)	2	PHASE, ENABLE, V _{IN} = 5 V	_	2	20	μΑ
	I _{IN} (L)		PHASE, V _{IN} = GND	_	0	1	
	I _{IN} (L)		ENABLE, V _{IN} = GND	_	55	100	
	I _{CC1}	3	ENABLE A / B = Low 2-Phase 100% ON	_	110	180	mA
Supply Current	I _{CC2}	4	ENABLE A / B = Low 2-Phase 100% OFF	_	6	14	
	I _{CC3}	3	ENABLE A = Low, B = High 1-Phase 100% ON	_	55	90	
	I _{CC4}	4	ENABLE A = Low, B = High 1-Phase 100% OFF	_	6	14	
	I _{CC5}	3	ENABLE A / B = High 2-Phase OFF	_	6	14	
	IM1	5	ENABLE A / B = Low 2-Phase ON	_	5	13	
	IM2		ENABLE A = Low, B = High 1-Phase ON	_	4.5	11	
	IM3		ENABLE A / B = High 2-Phase OFF	_	4	9	
Output Saturation Voltage	V _{SAT} 1	6	I _O = 0.5 A	_	0.35	0.8	\ <u>/</u>
(Lower-side)	V _{SAT} 2	- 6	I _O = 1.0 A	_	0.65	2.0	V
ON Resistor (Upper-side)	Ron1	7	I _O = 0.5 A	_	0.6	1.0	Ω
Diode Forward Voltage (Lower-side)	VF(L)	8	I _F = 1.0 A	_	1.4	2.0	٧
Diode Forward Voltage (Upper-side)	VF(H)	9	I _F = 1.0 A	_	0.95	1.8	V
Reference Voltage Range	V_{ref}	_		1.0	2.5	V _{CC} - 0.5	V
Reference Current	I _{ref}	10	V _{ref} = 2.5 V	_	0.2	5	μΑ
Reference Divider Ratio	GAIN	11	VNF / Vref	0.17	0.2	0.23	
Setting Current	I _{set}	_	V_{ref} = 2.5 V, RNF = 1 Ω	0.35	0.45	0.55	Α
Thermal Shutdown Temperature	TSD	_	Tj	_	165	_	°C
Thermal Shutdown Hysteriesis	ΔΤ	_		_	15	_	°C
Output Leakana Output	IL (H)	12	P-channel MOS		0	100	- μΑ
Output Leakage Current	IL (L)			_	0	50	
Pch MOS Drive Current	lG	13		330	530	730	μΑ

TEST CIRCUIT

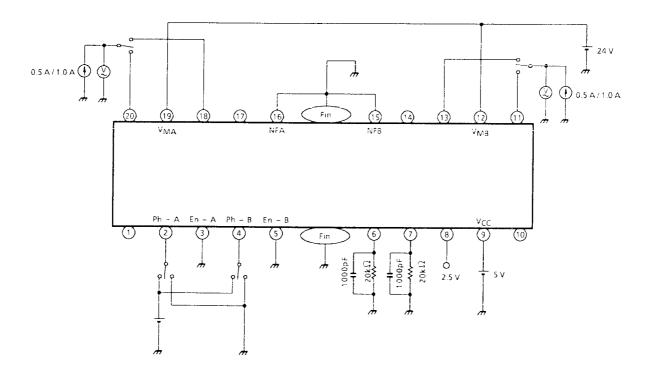

1. V_{IN} (H), V_{IN} (L)


2. I_{IN} (H), I_{IN} (L)

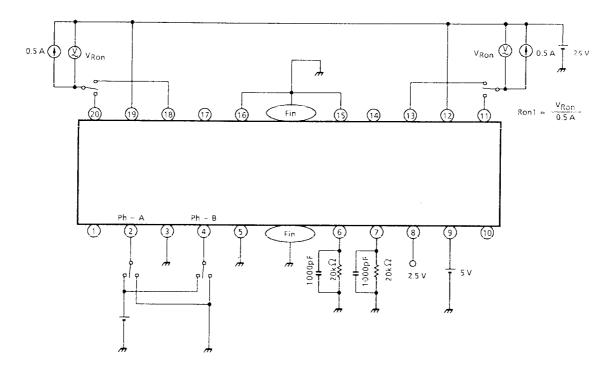
3. I_{CC}1, I_{CC}3, I_{CC}5



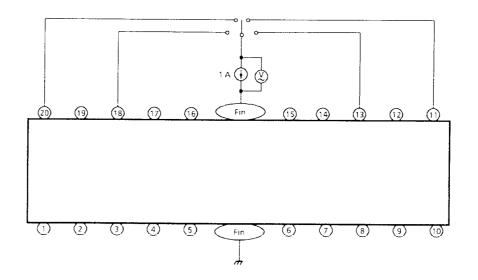
4. I_{CC}2, I_{CC}4

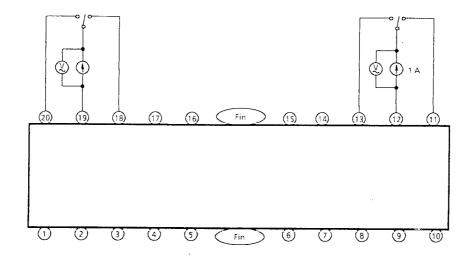

* Pn = A, Ph = B : High or Low

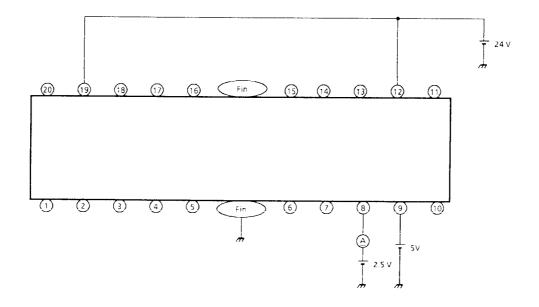
5. I_M1, I_M2, I_M3

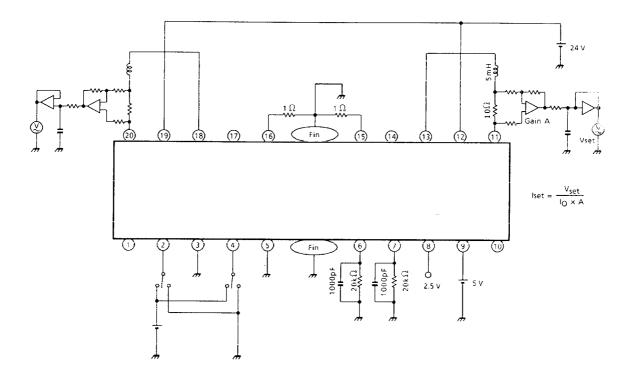


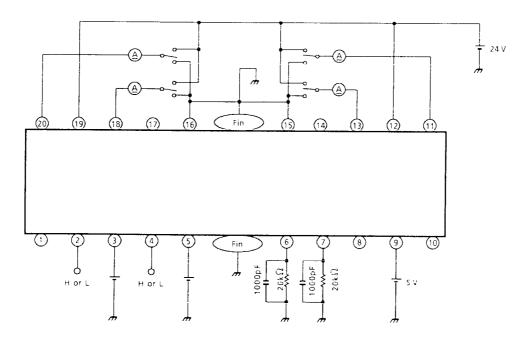
* Ph - A, Ph - B : High or Low

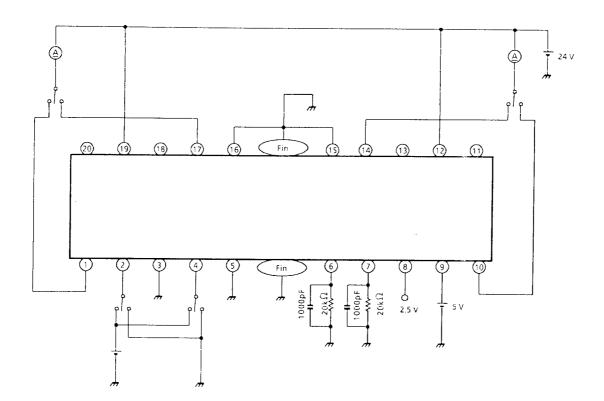

6. V_{SAT}1, V_{SAT}2


7. R_{on}1

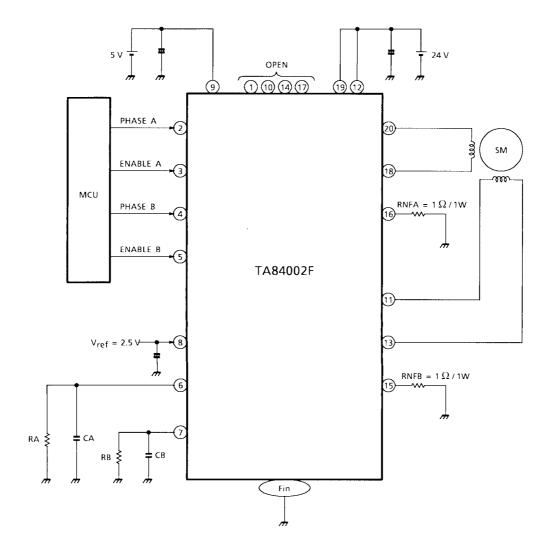

8. VF (L)


9. VF (H)


10. I_{ref}


11. I_{set}

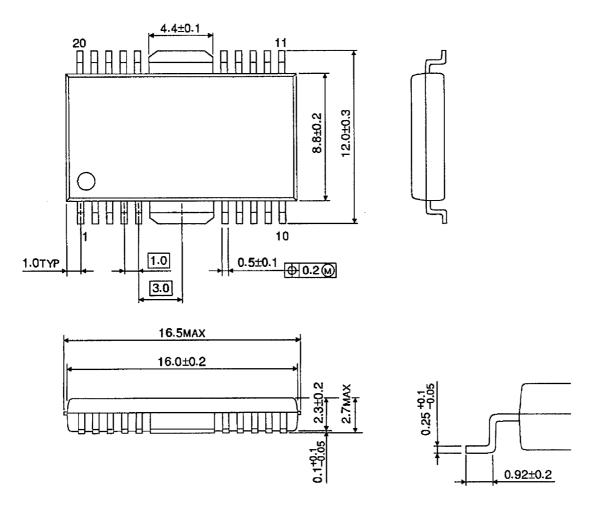
12. I_L (H), I_L (L)



13. I_G

APPLICATION CIRCUIT

In case of $I_{OUT} = 0.5 A$



Note 1: Capacitor for noise suppression to be connected between the Power Supply (V_{CC} , V_M , V_{ref}) and GND to stabilize the operation.

Note 2: Utmost care is necessary in the design of the output line, V_M and GND line since IC may be destroyed due to short-circuit between outputs, air contamination fault, or fault by improper grounding.

PACKAGE DIMENSIONS

HSOP20-P-450-1.00 Unit: mm

Weight: 0.79 g (Typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.