24AA16/24LC16B

16K I ${ }^{2} \mathrm{C}^{1 \mathrm{~m}}$ Serial EEPROM

Device Selection Table

Part Number	Vcc Range	Max Clock Frequency	Temp Ranges
24 AA 16	$1.8-5.5$	$400 \mathrm{kHz}{ }^{(1)}$	I
24 LC 16 B	$2.5-5.5$	400 kHz	I, E

Note 1: 100 kHz for Vcc <2.5V

Features

- Single supply with operation down to 1.8 V
- Low-power CMOS technology
- 1 mA active current typical
- $1 \mu \mathrm{~A}$ standby current (max.) (I-temp)
- Organized as 8 blocks of 256 bytes ($8 \times 256 \times 8$)
- 2-wire serial interface bus, $\mathrm{I}^{2} \mathrm{C}^{\text {TM }}$ compatible
- Schmitt Trigger inputs for noise suppression
- Output slope control to eliminate ground bounce
- $100 \mathrm{kHz}(2.5 \mathrm{~V})$ and $400 \mathrm{kHz}(\geq 2.5 \mathrm{~V})$ compatibility
- Self-timed write cycle (including auto-erase)
- Page write buffer for up to 16 bytes
- 2 ms typical write cycle time for page write
- Hardware write-protect for entire memory
- Can be operated as a serial ROM
- Factory programming (QTP) available
- ESD protection $>4,000 \mathrm{~V}$
- 1,000,000 erase/write cycles
- Data retention > 200 years
- 8-lead PDIP, SOIC, TSSOP and MSOP packages
- 5-lead SOT-23 package
- Standard and Pb-free finishes available
- Available temperature ranges:
- Industrial (I): $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Automotive (E): $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Description

The Microchip Technology Inc. 24AA16/24LC16B ($24 \mathrm{XX} 16^{*}$) is a 16 Kbit Electrically Erasable PROM. The device is organized as eight blocks of 256×8-bit memory with a 2 -wire serial interface. Low-voltage design permits operation down to 1.8 V with standby and active currents of only $1 \mu \mathrm{~A}$ and 1 mA , respectively. The $24 \mathrm{XX1} 16$ also has a page write capability for up to 16 bytes of data. The 24 XX16 is available in the standard 8-pin PDIP, surface mount SOIC, TSSOP and MSOP packages and is also available in the 5-lead SOT-23 package.

Package Types

Note: Pins A0, A1 and A2 are not used by the 24LC16B. (No internal connections).

Block Diagram

*24XX16 is used in this document as a generic part number for the 24AA16/24LC16B devices.

24AA16/24LC16B

1.0 ELECTRICAL CHARACTERISTICS

Abstract

Absolute Maximum Ratings ${ }^{(\dagger)}$ Vcc

All inputs and outputs w.r.t. Vss -0.3 V to $\mathrm{Vcc}+1.0 \mathrm{~V}$ \qquad Ambient temperature with power applied.. $65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ESD protection on all pins

\dagger NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 1-1: DC CHARACTERISTICS

DC CHARACTERISTICS			$\begin{array}{\|l\|l\|} \hline \text { VcC }=+1.8 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\ \text { Industrial }(\mathrm{I}): & \mathrm{TA}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \text { Automotive }(\mathrm{E}): & \mathrm{TA}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \hline \end{array}$				
Param. No.	Symbol	Characteristic	Min	Typ	Max	Units	Conditions
$\begin{aligned} & \mathrm{D} 1 \\ & \mathrm{D} 2 \\ & \mathrm{D} 3 \\ & \mathrm{D} 4 \\ & \mathrm{D} 5 \end{aligned}$	VIH \qquad VIL VHYS Vol	WP, SCL and SDA pins High-level input voltage Low-level input voltage Hysteresis of Schmitt Trigger inputs Low-level output voltage	0.7 Vcc - . 05 Vcc	$\begin{aligned} & - \\ & - \end{aligned}$	0.3 Vcc - 0.40		\square
D6	ILI	Input leakage current	-	-	± 1	$\mu \mathrm{A}$	VIN $=.1 \mathrm{~V}$ to Vcc
D7	ILO	Output leakage current	-	-	± 1	$\mu \mathrm{A}$	Vout $=.1 \mathrm{~V}$ to Vcc
D8	CIN, Cout	Pin capacitance (all inputs/outputs)	-	-	10	pF	$\begin{aligned} & \text { VCC = 5.0V (Note 1) } \\ & \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \text { FCLK }=1 \mathrm{MHz} \end{aligned}$
$\begin{array}{\|l\|} \hline \text { D9 } \\ \text { D10 } \end{array}$	ICC write Icc read	Operating current	-	$\overline{-}$	$\begin{aligned} & 3 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{SCL}=400 \mathrm{kHz} \\ & - \end{aligned}$
D11	Iccs	Standby current	-	$\begin{aligned} & 0.3 \\ & .01 \end{aligned}$	$\begin{aligned} & 1 \\ & 5 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$	Industrial Automotive $\begin{aligned} & \mathrm{SDA}=\mathrm{SCL}=\mathrm{Vcc} \\ & \mathrm{WP}=\mathrm{VsS} \end{aligned}$

Note 1: This parameter is periodically sampled and not 100\% tested.
2: Typical measurements taken at room temperature.

TABLE 1-2: AC CHARACTERISTICS

AC CHARACTERISTICS			$\begin{array}{\|ll\|} \hline \mathrm{VCC}=+1.8 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\ \text { Industrial }(\mathrm{I}): & \mathrm{TA}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \text { Automotive }(\mathrm{E}): & \mathrm{TA}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \hline \end{array}$			
Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
1	FCLK	Clock frequency	—	$\begin{aligned} & \hline \hline 400 \\ & 100 \end{aligned}$	kHz	$\begin{aligned} & \hline 2.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V} \\ & 1.8 \mathrm{~V} \leq \mathrm{Vcc}<2.5 \mathrm{~V}(\mathbf{2 4 A A} \mathbf{6}) \end{aligned}$
2	THIGH	Clock high time	$\begin{gathered} 600 \\ 4000 \end{gathered}$	-	ns	$\begin{aligned} & 2.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V} \\ & 1.8 \mathrm{~V} \leq \mathrm{Vcc}<2.5 \mathrm{~V}(\mathbf{2 4 A A} \mathbf{4}) \end{aligned}$
3	TLOW	Clock low time	$\begin{aligned} & \hline 1300 \\ & 4700 \end{aligned}$	-	ns	$\begin{aligned} & 2.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V} \\ & 1.8 \mathrm{~V} \leq \mathrm{Vcc}<2.5 \mathrm{~V}(\mathbf{2 4 A A} \mathbf{4}) \end{aligned}$
4	TR	SDA and SCL rise time (Note 1)	-	$\begin{gathered} 300 \\ 1000 \end{gathered}$	ns	$\begin{aligned} & 2.5 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V} \text { (Note 1) } \\ & 1.8 \mathrm{~V} \leq \mathrm{Vcc}<2.5 \mathrm{~V} \text { (24AA16) } \\ & \text { (Note } \mathbf{1} \text {) } \end{aligned}$
5	TF	SDA and SCL fall time	-	300	ns	(Note 1)
6	THD:STA	Start condition hold time	$\begin{gathered} 600 \\ 4000 \end{gathered}$	-	ns	$\begin{aligned} & 2.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V} \\ & 1.8 \mathrm{~V} \leq \mathrm{Vcc}<2.5 \mathrm{~V}(\mathbf{2 4 A A} \mathbf{4}) \end{aligned}$
7	TSU:STA	Start condition setup time	$\begin{gathered} 600 \\ 4700 \end{gathered}$	-	ns	$\begin{aligned} & 2.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V} \\ & 1.8 \mathrm{~V} \leq \mathrm{Vcc}<2.5 \mathrm{~V}(\mathbf{2 4 A A} \mathbf{4}) \end{aligned}$
8	ThD:DAT	Data input hold time	0	-	ns	(Note 2)
9	TSu:DAT	Data input setup time	$\begin{aligned} & 100 \\ & 250 \end{aligned}$	-	ns	$\begin{aligned} & 2.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V} \\ & 1.8 \mathrm{~V} \leq \mathrm{Vcc}<2.5 \mathrm{~V}(\mathbf{2 4 A A} \mathbf{4}) \end{aligned}$
10	Tsu:sto	Stop condition setup time	$\begin{gathered} 600 \\ 4000 \end{gathered}$	-	ns	$\begin{aligned} & 2.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V} \\ & 1.8 \mathrm{~V} \leq \mathrm{Vcc}<2.5 \mathrm{~V}(\mathbf{2 4 A A} \mathbf{4}) \end{aligned}$
11	TAA	Output valid from clock (Note 2)	—	$\begin{gathered} 900 \\ 3500 \end{gathered}$	ns	$\begin{aligned} & 2.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V} \\ & 1.8 \mathrm{~V} \leq \mathrm{Vcc}<2.5 \mathrm{~V}(\mathbf{2 4 A A} \mathbf{4}) \end{aligned}$
12	TbuF	Bus free time: Time the bus must be free before a new transmission can start	$\begin{aligned} & \hline 1300 \\ & 4700 \end{aligned}$	-	ns	$\begin{aligned} & 2.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V} \\ & 1.8 \mathrm{~V} \leq \mathrm{Vcc}<2.5 \mathrm{~V}(\mathbf{2 4 A A} \mathbf{4}) \end{aligned}$
13	ToF	Output fall time from VIH minimum to VIL maximum	$20+0.1 \text { Св }$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	ns	$\begin{aligned} & \hline 2.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V} \\ & 1.8 \mathrm{~V} \leq \mathrm{Vcc}<2.5 \mathrm{~V}(\mathbf{2 4 A A} \mathbf{4}) \end{aligned}$
14	TSP	Input filter spike suppression (SDA and SCL pins)	-	50	ns	(Notes 1 and 3)
15	Twc	Write cycle time (byte or page)	-	5	ms	-
16	-	Endurance	1M	-	cycles	$25^{\circ} \mathrm{C}$, (Note 4)

Note 1: Not 100% tested. $\mathrm{CB}=$ total capacitance of one bus line in pF .
2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.
3: The combined TSP and VHYS specifications are due to new Schmitt Trigger inputs which provide improved noise spike suppression. This eliminates the need for a Tı specification for standard operation.
4: This parameter is not tested but ensured by characterization. For endurance estimates in a specific application, please consult the Total Endurance ${ }^{\text {TM }}$ Model which can be obtained from Microchip's web site: www.microchip.com.

24AA16/24LC16B

FIGURE 1-1: \quad BUS TIMING DATA

FIGURE 1-2: BUS TIMING START/STOP

2.0 FUNCTIONAL DESCRIPTION

The 24XX16 supports a bidirectional, 2-wire bus and data transmission protocol. A device that sends data onto the bus is defined as a transmitter, while a device receiving data is defined as a receiver. The bus has to be controlled by a master device which generates the serial clock (SCL), controls the bus access and generates the Start and Stop conditions, while the 24XX16 works as slave. Both master and slave can operate as transmitter or receiver, but the master device determines which mode is activated.

3.0 BUS CHARACTERISTICS

The following bus protocol has been defined:

- Data transfer may be initiated only when the bus is not busy.
- During data transfer, the data line must remain stable whenever the clock line is high. Changes in the data line while the clock line is high will be interpreted as a Start or Stop condition.
Accordingly, the following bus conditions have been defined (Figure 3-1).

3.1 Bus not Busy (A)

Both data and clock lines remain high.

3.2 Start Data Transfer (B)

A high-to-low transition of the SDA line while the clock (SCL) is high determines a Start condition. All commands must be preceded by a Start condition.

3.3 Stop Data Transfer (C)

A low-to-high transition of the SDA line while the clock (SCL) is high determines a Stop condition. All operations must be ended with a Stop condition.

3.4 Data Valid (D)

The state of the data line represents valid data when, after a Start condition, the data line is stable for the duration of the high period of the clock signal.
The data on the line must be changed during the low period of the clock signal. There is one clock pulse per bit of data.

Each data transfer is initiated with a Start condition and terminated with a Stop condition. The number of data bytes transferred between Start and Stop conditions is determined by the master device and is, theoretically unlimited, (although only the last sixteen will be stored when doing a write operation). When an overwrite does occur it will replace data in a first-in first-out (FIFO) fashion.

3.5 Acknowledge

Each receiving device, when addressed, is obliged to generate an acknowledge after the reception of each byte. The master device must generate an extra clock pulse which is associated with this Acknowledge bit.

Note:	The 24XX16 does not generate any Acknowledge bits if an internal programming cycle is in progress.

The device that acknowledges, has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable low during the high period of the acknowledge related clock pulse. Of course, setup and hold times must be taken into account. During reads, a master must signal an end of data to the slave by not generating an Acknowledge bit on the last byte that has been clocked out of the slave. In this case, the slave (24XX16) will leave the data line high to enable the master to generate the Stop condition.

FIGURE 3-1: DATA TRANSFER SEQUENCE ON THE SERIAL BUS

24AA16/24LC16B

3.6 Device Addressing

A control byte is the first byte received following the Start condition from the master device (Figure 3-2). The control byte consists of a four-bit control code. For the 24XX16, this is set as ' 1010 ' binary for read and write operations. The next three bits of the control byte are the block-select bits (B2, B1, B0). They are used by the master device to select which of the eight 256 word-blocks of memory are to be accessed. These bits are in effect the three Most Significant bits of the word address. It should be noted that the protocol limits the size of the memory to eight blocks of 256 words, therefore the protocol can support only one 24XX16 per system.
The last bit of the control byte defines the operation to be performed. When set to ' 1 ', a read operation is selected. When set to ' 0 ', a write operation is selected. Following the Start condition, the 24XX16 monitors the SDA bus checking the device type identifier being transmitted and, upon receiving a ' 1010 ' code, the slave device outputs an Acknowledge signal on the SDA line. Depending on the state of the R/W bit, the 24 XX 16 will select a read or write operation.

Operation	Control Code	Block Select	R/ $\overline{\mathbf{W}}$
Read	1010	Block Address	1
Write	1010	Block Address	0

FIGURE 3-2: CONTROL BYTE ALLOCATION

4.0 WRITE OPERATION

4.1 Byte Write

Following the Start condition from the master, the device code (4 bits), the block address (3 bits) and the R / \bar{W} bit, which is a logic-low, is placed onto the bus by the master transmitter. This indicates to the addressed slave receiver that a byte with a word address will follow once it has generated an Acknowledge bit during the ninth clock cycle. Therefore, the next byte transmitted by the master is the word address and will be written into the address pointer of the 24XX16. After receiving another Acknowledge signal from the 24XX16, the master device will transmit the data word to be written into the addressed memory location. The 24XX16 acknowledges again and the master generates a Stop condition. This initiates the internal write cycle and, during this time, the 24XX16 will not generate Acknowledge signals (Figure 4-1).

4.2 Page Write

The write control byte, word address and the first data byte are transmitted to the 24XX16 in the same way as in a byte write. However, instead of generating a Stop condition, the master transmits up to 16 data bytes to the 24 XX 16 , which are temporarily stored in the onchip page buffer and will be written into memory once the master has transmitted a Stop condition. Upon receipt of each word, the four lower-order address pointer bits are internally incremented by ' 1 '. The higher-order 7 bits of the word address remain constant. If the master should transmit more than 16 bytes prior to generating the Stop condition, the address counter will roll over and the previously received data will be overwritten. As with the byte write operation, once the Stop condition is received an internal write cycle will begin (Figure 4-2).

Note: Page write operations are limited to writing bytes within a single physical page, regardless of the number of bytes actually being written. Physical page boundaries start at addresses that are integer multiples of the page buffer size (or 'page-size') and end at addresses that are integer multiples of [page size - 1]. If a Page Write command attempts to write across a physical page boundary, the result is that the data wraps around to the beginning of the current page (overwriting data previously stored there), instead of being written to the next page, as might be expected. It is therefore necessary for the application software to prevent page write operations that would attempt to cross a page boundary.

FIGURE 4-1: BYTE WRITE

FIGURE 4-2: PAGE WRITE

24AA16/24LC16B

5.0 ACKNOWLEDGE POLLING

Since the device will not acknowledge during a write cycle, this can be used to determine when the cycle is complete (this feature can be used to maximize bus throughput). Once the Stop condition for a write command has been issued from the master, the device initiates the internally-timed write cycle and ACK polling can then be initiated immediately. This involves the master sending a Start condition followed by the control byte for a Write command ($R / \bar{W}=0$). If the device is still busy with the write cycle, no ACK will be returned. If the cycle is complete, the device will return the ACK and the master can then proceed with the next Read or Write command. See Figure 5-1 for a flow diagram of this operation.

FIGURE 5-1: ACKNOWLEDGE POLLING FLOW

6.0 WRITE-PROTECTION

The 24 XX 16 can be used as a serial ROM when the WP pin is connected to Vcc. Programming will be inhibited and the entire memory will be write-protected.

7.0 READ OPERATION

Read operations are initiated in the same way as write operations, with the exception that the R/W bit of the slave address is set to ' 1 '. There are three basic types of read operations: current address read, random read and sequential read.

7.1 Current Address Read

The 24XX16 contains an address counter that maintains the address of the last word accessed, internally incremented by ' 1 '. Therefore, if the previous access (either a read or write operation) was to address n, the next current address read operation would access data from address $n+1$. Upon receipt of the slave address with R / \bar{W} bit set to ' 1 ', the 24XX16 issues an acknowledge and transmits the 8 -bit data word. The master will not acknowledge the transfer but does generate a Stop condition and the 24XX16 discontinues transmission (Figure 7-1).

7.2 Random Read

Random read operations allow the master to access any memory location in a random manner. To perform this type of read operation, the word address must first be set. This is accomplished by sending the word address to the 24 XX16 as part of a write operation. Once the word address is sent, the master generates a Start condition following the acknowledge. This terminates the write operation, but not before the internal address pointer is set. The master then issues the control byte again, but with the R / \bar{W} bit set to a ' 1 '. The 24 XX 16 will then issue an acknowledge and transmit the 8 -bit data word. The master will not acknowledge the transfer but does generate a Stop condition and the 24XX16 will discontinue transmission (Figure 7-2).

7.3 Sequential Read

Sequential reads are initiated in the same way as a random read, except that once the 24XX16 transmits the first data byte, the master issues an acknowledge as opposed to a Stop condition in a random read. This directs the 24XX16 to transmit the next sequentiallyaddressed 8 -bit word (Figure 7-3).
To provide sequential reads, the 24XX16 contains an internal address pointer that is incremented by one upon completion of each operation. This address pointer allows the entire memory contents to be serially read during one operation.

7.4 Noise Protection

The 24XX16 employs a Vcc threshold detector circuit which disables the internal erase/write logic if the Vcc is below 1.5 V at nominal conditions.

The SCL and SDA inputs have Schmitt Trigger and filter circuits which suppress noise spikes to assure proper device operation, even on a noisy bus.

FIGURE 7-1: CURRENT ADDRESS READ

24AA16/24LC16B

FIGURE 7-2: RANDOM READ

FIGURE 7-3: SEQUENTIAL READ

24AA16/24LC16B

8.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 8-1.
TABLE 8-1: PIN FUNCTION TABLE

Name	PDIP	SOIC	TSSOP	MSOP	SOT-23	Description
A0	1	1	1	1	-	Not Connected
A1	2	2	2	2	-	Not Connected
A2	3	3	3	3	-	Not Connected
VsS	4	4	4	4	2	Ground
SDA	5	5	5	5	3	Serial Address/Data I/O
SCL	6	6	6	6	1	Serial Clock
WP	7	7	7	7	5	Write-Protect Input
Vcc	8	8	8	8	4	+1.8 V to 5.5V Power Supply

8.1 Serial Address/Data Input/Output (SDA)

SDA is a bidirectional pin used to transfer addresses and data into and out of the device. Since it is an opendrain terminal, the SDA bus requires a pull-up resistor to Vcc (typical $10 \mathrm{k} \Omega$ for $100 \mathrm{kHz}, 2 \mathrm{k} \Omega$ for 400 kHz).

For normal data transfer, SDA is allowed to change only during SCL low. Changes during SCL high are reserved for indicating Start and Stop conditions.

8.2 Serial Clock (SCL)

The SCL input is used to synchronize the data transfer to and from the device.

8.3 Write-Protect (WP)

The WP pin must be connected to either Vss or Vcc.
If tied to Vss, normal memory operation is enabled (read/write the entire memory 00-07FFH).

If tied to Vcc, write operations are inhibited. The entire memory will be write-protected. Read operations are not affected.

This feature allows the user to use the 24XX16 as a serial ROM when WP is enabled (tied to Vcc).

8.4 A0, A1, A2

The A0, A1 and A2 pins are not used by the 24XX16. They may be left floating or tied to either Vss or Vcc.

24AA16/24LC16B

9.0 PACKAGING INFORMATION

9.1 Package Marking Information

8-Lead PDIP (300 mil)

8-Lead SOIC (150 mil)

8-Lead MSOP

5-Lead SOT-23

Example:

Example:

Example:

Device	TSSOP/MSOP Marking Codes	
	STD	Pb-free
24AA16	4A16	G4A6
24LC16B	4L16	G4L6

Device	SOT-23 Marking Codes	
	STD	Pb-free
24AA16	B5	B5
24LC16B-I	M5	M5
24LC16B-E	N5	N5
Note:Pb-free part number using "G" suffix is marked on carton		

Legend:	XX...X	Customer specific information*
	T	Temperature grade (I, E)
	YY	Year code (last 2 digits of calendar year)
	WW	Week code (week of January 1 is week ${ }^{(01 \text { ' })}$
	NNN	Alphanumeric traceability code

*Standard QTP marking consists of Microchip part number, year code, week code, and traceability code.

24AA16/24LC16B

8-Lead Plastic Dual In-line (P) - 300 mil (PDIP)

UnitsDimension Limits		INCHES*			MILLIMETERS		
		MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	p		. 100			2.54	
Top to Seating Plane	A	. 140	. 155	. 170	3.56	3.94	4.32
Molded Package Thickness	A2	. 115	. 130	. 145	2.92	3.30	3.68
Base to Seating Plane	A1	. 015			0.38		
Shoulder to Shoulder Width	E	. 300	. 313	. 325	7.62	7.94	8.26
Molded Package Width	E1	. 240	. 250	. 260	6.10	6.35	6.60
Overall Length	D	. 360	. 373	. 385	9.14	9.46	9.78
Tip to Seating Plane	L	. 125	. 130	. 135	3.18	3.30	3.43
Lead Thickness	c	. 008	. 012	. 015	0.20	0.29	0.38
Upper Lead Width	B1	. 045	. 058	. 070	1.14	1.46	1.78
Lower Lead Width	B	. 014	. 018	. 022	0.36	0.46	0.56
Overall Row Spacing §	eB	. 310	. 370	. 430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter
§ Significant Characteristic
Notes
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed
010 " (0.254 mm) per side.
JEDEC Equivalent: MS-001
Drawing No. C04-018

24AA16/24LC16B

8-Lead Plastic Small Outline (SN) - Narrow, 150 mil (SOIC)

Units		INCHES*			MILLIMETERS		
Dimension Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		8			8	
Pitch	p		.050			1.27	
Overall Height	A	.053	.061	.069	1.35	1.55	1.75
Molded Package Thickness	A2	.052	.056	.061	1.32	1.42	1.55
Standoff §	A1	.004	.007	.010	0.10	0.18	0.25
Overall Width	E	.228	.237	.244	5.79	6.02	6.20
Molded Package Width	E 1	.146	.154	.157	3.71	3.91	3.99
Overall Length	D	.189	.193	.197	4.80	4.90	5.00
Chamfer Distance	h	.010	.015	.020	0.25	0.38	0.51
Foot Length	L	.019	.025	.030	0.48	0.62	0.76
Foot Angle	ϕ	0	4	8	0	4	8
Lead Thickness	C	.008	.009	.010	0.20	0.23	0.25
Lead Width	B	.013	.017	.020	0.33	0.42	0.51
Mold Draft Angle Top	0	12	15	0	12	15	
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter
§ Significant Characteristic
Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed
.010 " (0.254 mm) per side.
JEDEC Equivalent: MS-012
Drawing No. C04-057

8-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm (TSSOP)

Units		INCHES			MILLIMETERS*		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	p		. 026			0.65	
Overall Height	A			. 043			1.10
Molded Package Thickness	A2	. 033	. 035	. 037	0.85	0.90	0.95
Standoff §	A1	. 002	. 004	. 006	0.05	0.10	0.15
Overall Width	E	. 246	. 251	. 256	6.25	6.38	6.50
Molded Package Width	E1	. 169	. 173	. 177	4.30	4.40	4.50
Molded Package Length	D	. 114	. 118	. 122	2.90	3.00	3.10
Foot Length	L	. 020	. 024	. 028	0.50	0.60	0.70
Foot Angle	ϕ	0	4	8	0	4	8
Lead Thickness	c	. 004	. 006	. 008	0.09	0.15	0.20
Lead Width	B	. 007	. 010	. 012	0.19	0.25	0.30
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter
§ Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed $.005^{\prime \prime}(0.127 \mathrm{~mm})$ per side.
JEDEC Equivalent: MO-153
Drawing No. C04-086

8-Lead Plastic Micro Small Outline Package
 (MS) (MSOP)

24AA16/24LC16B

Units		INCHES			MILLIMETERS*		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	p	. 026 BSC			0.65 BSC		
Overall Height	A	-	-	. 043	-	-	1.10
Molded Package Thickness	A2	. 030	. 033	. 037	0.75	0.85	0.95
Standoff	A1	. 000	-	. 006	0.00	-	0.15
Overall Width	E	. 193 TYP.			4.90 BSC		
Molded Package Width	E1	. 118 BSC			3.00 BSC		
Overall Length	D	. 118 BSC			3.00 BSC		
Foot Length	L	. 016	. 024	. 031	0.40	0.60	0.80
Footprint (Reference)	F	. 037 REF			0.95 REF		
Foot Angle	ϕ	0°	-	8°	0°	-	8°
Lead Thickness	c	. 003	. 006	. 009	0.08	-	0.23
Lead Width	B	. 009	. 012	. 016	0.22	-	0.40
Mold Draft Angle Top	α	5°	-	15°	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°	5°	-	15°

*Controlling Parameter

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254 mm) per side.
JEDEC Equivalent: MO-187
Drawing No. C04-111

24AA16/24LC16B

APPENDIX A: REVISION HISTORY

Revision D
Corrections to Section 1.0, Electrical Characteristics.

24AA16/24LC16B

NOTES:

24AA16/24LC16B

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web site.
The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape ${ }^{\circledR}$ or Microsoft ${ }^{\circledR}$ Internet Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available at the following URL:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:
ftp://ftp.microchip.com
The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- Listing of seminars and events

SYSTEMS INFORMATION AND UPGRADE HOT LINE

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive the most current upgrade kits. The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and 1-480-792-7302 for the rest of the world.

24AA16/24LC16B

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.
Please list the following information, and use this outline to provide us with your comments about this document.

What are the best features of this document?
\qquad
2. How does this document meet your hardware and software development needs?
\qquad
3. Do you find the organization of this document easy to follow? If not, why?
\qquad
4. What additions to the document do you think would enhance the structure and subject?
\qquad
5. What deletions from the document could be made without affecting the overall usefulness?
\qquad
6. Is there any incorrect or misleading information (what and where)?
\qquad
7. How would you improve this document?
\qquad
\qquad

24AA16/24LC16B

PRODUCT IDENTIFICATION SYSTEM

PART NO.		Examples:	
Device		a)	24AA16-I/P: Industrial Temperature, 1.8V, PDIP package
			24AA16-//SN: Industrial Temperature,1.8V, SOIC package
$\begin{aligned} 24 \mathrm{AA} 16 \mathrm{~T}:= & 1.8 \mathrm{~V}, 16 \mathrm{Kbit} \mathrm{I}^{2} \mathrm{C} \text { Serial EEPROM } \\ & \text { (Tape and Reel) } \end{aligned}$		c)	24AA16T-I/OT: Industrial Temperature, 1.8 V , SOT-23 package, Tape and Reel
$24 \mathrm{LC} 16 \mathrm{~B}:=2.5 \mathrm{~V}, 16 \mathrm{Kbit}{ }^{2} \mathrm{C}$ Serial EEPROM			
24LC16BT: $=\begin{aligned} & 2.5 \mathrm{~V}, 16 \mathrm{Kbit} \mathrm{I}^{2} \mathrm{C} \text { Serial EEPROM } \\ & \text { (Tape and Reel) }\end{aligned}$			24LC16B-I/P: Industrial Temperature, 2.5V, PDIP package
Temperature Range:	$=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		24LC16B-E/SN: Automotive Temp.,2.5V SOIC package
	E $=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	f)	24LC16BT-I/OT: Industrial Temperature, 2.5 V , SOT-23 package, Tape and Reel
Package:	$\mathrm{P} \quad=\quad$ Plastic DIP (300 mil body), 8-lead		24LC16B-I/PG: Industrial Temperature, 2.5 V , PDIP package, Pb -free
	SN $=$ Plastic SOIC (150 mil body), 8-lead		24LC16BT-I/SNG: Industrial Temperature, 2.5 V , SOIC package, Tape and Reel, Pb -free
	ST $=$ Plastic TSSOP (4.4 mm), 8-lead		
	MS $=$ Plastic Micro Small Outline (MSOP), 8-lead OT = SOT-23, 5-lead (Tape and Reel only)		
Lead Finish	$\begin{aligned} \text { Blank } & =\text { Standard } 63 \% / 37 \% \text { SnPb } \\ \mathrm{G} & =\text { Pb-free (Matte Tin }- \text { Pure Sn) } \end{aligned}$		

Sales and Support

```
Data Sheets
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:
1. Your local Microchip sales office
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
3. The Microchip Worldwide Site (www.microchip.com)
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.
New Customer Notification System
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.
```


24AA16/24LC16B

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KeeLoq, MPLAB, PIC, PICmicro, PICSTART, PRO MATE and PowerSmart are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Application Maestro, dsPICDEM, dsPICDEM.net, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,
In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PowerCal, Powerlnfo, PowerMate, PowerTool, rfLAB, rfPIC, Select Mode, SmartSensor, SmartShunt, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.
© 2003, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro ${ }^{\circledR}$ 8-bit MCUs, KEELOQ ${ }^{\oplus}$ code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Atlanta

3780 Mansell Road, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034
Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848
Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071
Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo

2767 S. Albright Road
Kokomo, IN 46902
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles

18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888
Fax: 949-263-1338

Phoenix

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966
Fax: 480-792-4338

San Jose

2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950
Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Australia

Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100
Fax: 86-10-85282104
China - Chengdu
Rm. 2401-2402, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200
Fax: 86-28-86766599

China - Fuzhou

Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506
Fax: 86-591-7503521
China - Hong Kong SAR
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Shanghai
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700
Fax: 86-21-6275-5060

China - Shenzhen

Rm. 1812, 18/F, Building A, United Plaza
No. 5022 Binhe Road, Futian District
Shenzhen 518033, China
Tel: 86-755-82901380
Fax: 86-755-8295-1393

China - Shunde

Room 401, Hongjian Building
No. 2 Fengxiangnan Road, Ronggui Town
Shunde City, Guangdong 528303, China
Tel: 86-765-8395507 Fax: 86-765-8395571

China - Qingdao

Rm. B505A, Fullhope Plaza,
No. 12 Hong Kong Central Rd.
Qingdao 266071, China
Tel: 86-532-5027355 Fax: 86-532-5027205
India
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O'Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471-6166 Fax: 81-45-471-6122

Korea

168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5932 or

82-2-558-5934

Singapore

200 Middle Road
\#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan

Kaohsiung Branch
30F-1 No. 8
Min Chuan 2nd Road
Kaohsiung 806, Taiwan
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan

Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Austria

Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393

Denmark

Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45-4420-9895 Fax: 45-4420-9910

France

Parc d'Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany

Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy
Via Quasimodo, 12
20025 Legnano (MI)
Milan, Italy
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands

P. A. De Biesbosch 14

NL-5152 SC Drunen, Netherlands
Tel: 31-416-690399
Fax: 31-416-690340
United Kingdom
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44-118-921-5869
Fax: 44-118-921-5820

