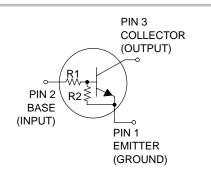
Preferred Devices

Bias Resistor Transistor

NPN Silicon Surface Mount Transistor with Monolithic Bias Resistor Network


This new series of digital transistors is designed to replace a single device and its external resistor bias network. The BRT (Bias Resistor Transistor) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base–emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space. The device is housed in the TO–92 package which is designed for through hole applications.

ON Semiconductor[™]

http://onsemi.com

NPN SILICON BIAS RESISTOR TRANSISTOR

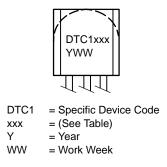
MAXIMUM RATINGS (T_A = 25° C unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Base Voltage	VCBO	50	Vdc
Collector-Emitter Voltage	VCEO	50	Vdc
Collector Current	۱C	100	mAdc
Total Power Dissipation @ T _A = 25°C (Note 1.) Derate above 25°C	PD	350 2.81	mW mW/°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Ambient (surface mounted)	$R_{ heta}JA$	357	°C/W
Operating and Storage Temperature Range	TJ, T _{stg}	–55 to +150	°C
Maximum Temperature for Soldering Purposes, Time in Solder Bath	ΤL	260 10	°C Sec

DEVICE MARKING AND RESISTOR VALUES


Device	Marking	R1 (K)	R2 (K)	Shipping
DTC114E	DTC114E	10	10	5000/Box
DTC124E	DTC124E	22	22	
DTC144E	DTC144E	47	47	
DTC114Y	DTC114Y	10	47	
DTC114T	DTC114T	10	~	
DTC143T	DTC143T	4.7	~	
DTD113E	DTD113E	1.0	1.0	
DTC123E	DTC123E	2.2	2.2	
DTC143E	DTC143E	4.7	4.7	
DTC143Z	DTC143Z	4.7	47	

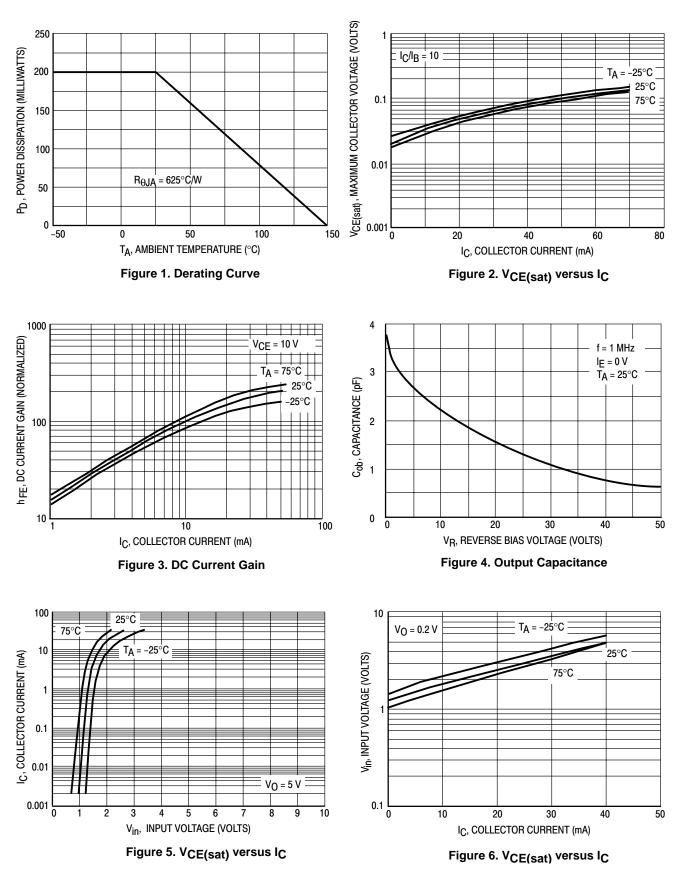
 Device mounted on a FR-4 glass epoxy printed circuit board using the minimum recommended footprint.

CASE 29 TO-92 (TO-226) STYLE 1

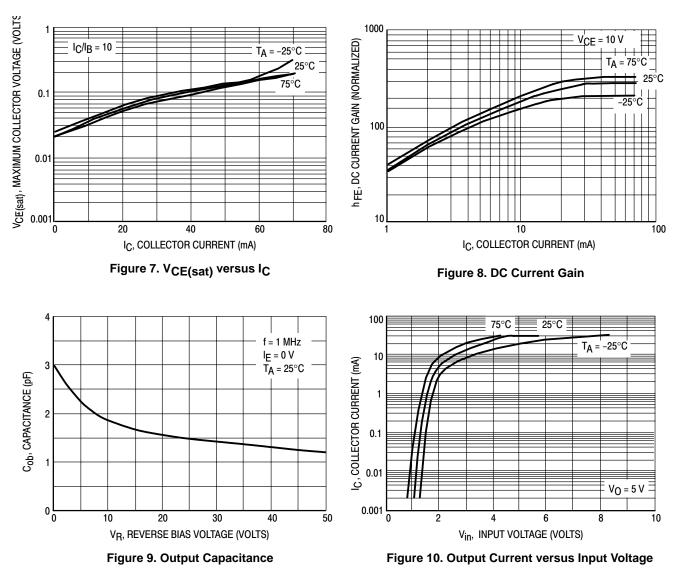
MARKING DIAGRAM

Preferred devices are recommended choices for future use and best overall value.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)


Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector–Base Cutoff Current ($V_{CB} = 50 \text{ V}, I_E = 0$)		ICBO	_	-	100	nAdc
Collector–Emitter Cutoff Current (V _{CE} =	50 V, I _B = 0)	ICEO	_	-	500	nAdc
Emitter–Base Cutoff Current ($V_{EB} = 6.0 \text{ V}, I_C = 0$)	DTC114E DTC124E DTC144E DTC114Y DTC114T DTC143T DTD113E DTC123E DTC143E DTC143Z	IEBO	- - - - - - - - - - -	- - - - - - - - - - - -	0.5 0.2 0.1 0.2 0.9 1.9 4.3 2.3 1.5 0.18	mAdc
Collector–Base Breakdown Voltage (I _C =	= 10 μA, I _E = 0)	V _(BR) CBO	50	-	-	Vdc
Collector–Emitter Breakdown Voltage (N $(I_C = 2.0 \text{ mA}, I_B = 0)$	V(BR)CEO	50	-	-	Vdc	
ON CHARACTERISTICS (Note 2.)		· · · · · ·		·		
DC Current Gain (V _{CE} = 10 V, I _C = 5.0 mA)	DTC114E DTC124E DTC144E DTC114Y DTC114Y DTC143T DTD113E DTC123E DTC143E DTC143Z	hfe	35 60 80 160 160 3.0 8.0 15 80	60 100 140 350 350 5.0 15 30 200	- - - - - - - - - - -	
Collector–Emitter Saturation Voltage ($I_C = 10 \text{ mA}, I_E = 0.3 \text{ mA}$) DTC144E/DTC114Y DTD113E/DTC143E ($I_C = 10 \text{ mA}, I_B = 5 \text{ mA}$) DTC123E ($I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$) DTC114T/DTC143T/ DTC143Z/DTC124E		VCE(sat)	-	-	0.25	Vdc
Output Voltage (on) $(V_{CC} = 5.0 \text{ V}, \text{ V}_{B} = 2.5 \text{ V}, \text{ R}_{L} = 1.0 \text{ kG}$ $(V_{CC} = 5.0 \text{ V}, \text{ V}_{B} = 3.5 \text{ V}, \text{ R}_{L} = 1.0 \text{ kG}$ 2 Pulse Test: Pulse Width < 300 us. Duty	DTC124E DTC114Y DTC114T DTC143T DTD113E DTC123E DTC143E DTC143Z DTC144E	VOL	- - - - - - - -	- - - - - - - - - - - -	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Vdc

2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%


ELECTRICAL CHARACTERISTICS (T_A = 25° C unless otherwise noted) (Continued)

	Characteristic		Symbol	Min	Тур	Max	Unit
(V _{CC} = 5.0 V, V	f) B = 0.5 V, R _L = 1.0 kΩ) B = 0.05 V, R _L = 1.0 kΩ) B = 0.25 V, R _L = 1.0 kΩ)	DTC114E DTC124E DTC144E DTC114Y DTC123E DTC143E DTC143E DTC114T DTC143T DTC143Z	VOH	4.9	_	_	Vdc
Input Resistor		DTC114E DTC124E DTC144E DTC114Y DTC114Y DTC143T DTC143T DTD113E DTC123E DTC143E DTC143Z	R1	7.0 15.4 32.9 7.0 7.0 3.3 0.7 1.5 3.3 3.3	10 22 47 10 10 4.7 1.0 2.2 4.7 4.7	13 28.6 61.1 13 13 6.1 1.3 2.9 6.1 6.1	kΩ
Resistor Ratio	DTC114E/DTC124E/DT DTC114Y DTC114T/DTC143T DTD113E/DTC123E/DT DTC143Z	-	R ₁ /R ₂	0.8 0.17 - 0.8 0.055	1.0 0.21 - 1.0 0.1	1.2 0.25 - 1.2 0.185	

TYPICAL ELECTRICAL CHARACTERISTICS DTC114E

TYPICAL ELECTRICAL CHARACTERISTICS DTC124E

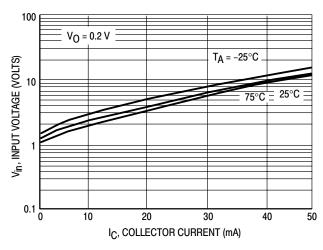
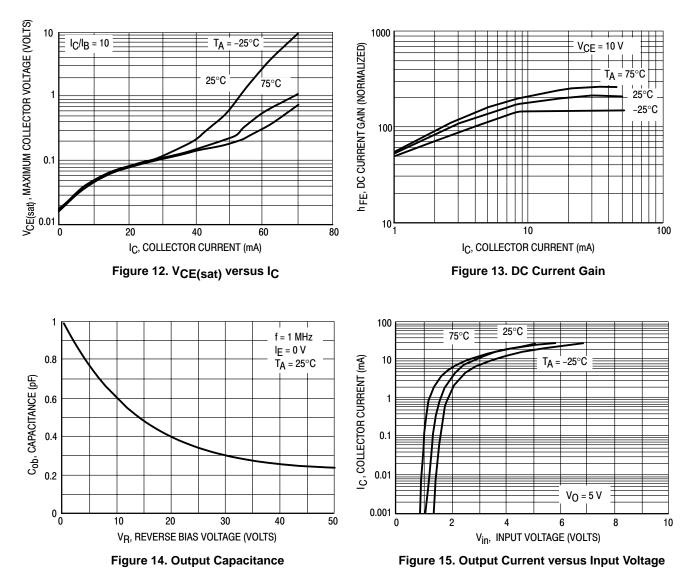



Figure 11. Input Voltage versus Output Current

TYPICAL ELECTRICAL CHARACTERISTICS DTC144E

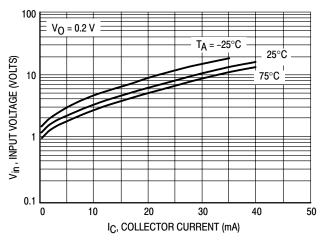
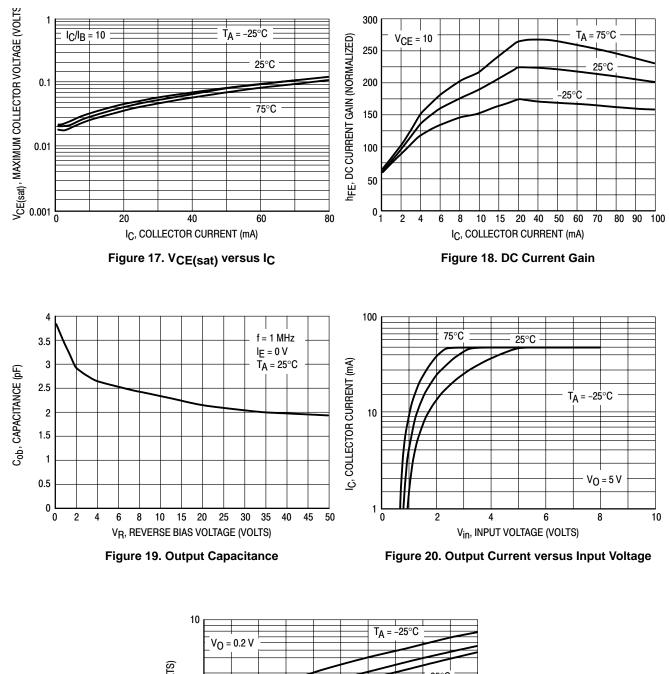
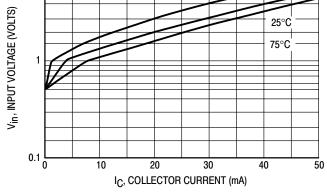




Figure 16. Input Voltage versus Output Current

TYPICAL ELECTRICAL CHARACTERISTICS DTC114Y

TYPICAL APPLICATIONS FOR NPN BRTs

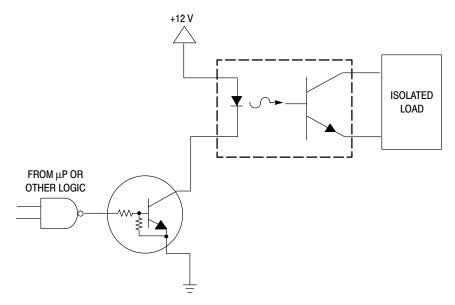


Figure 22. Level Shifter: Connects 12 or 24 Volt Circuits to Logic

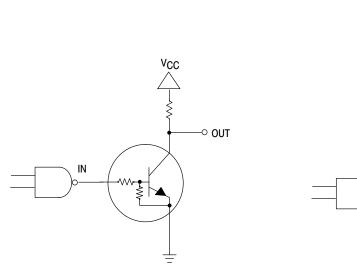
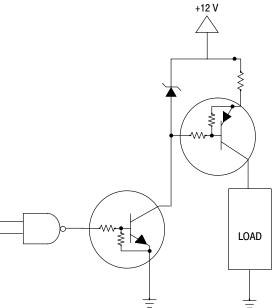
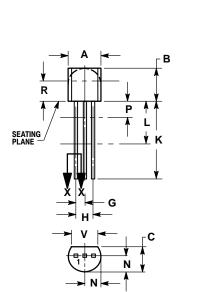
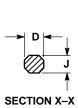



Figure 23. Open Collector Inverter: Inverts the Input Signal





PACKAGE DIMENSIONS

TO-92 **TO-226AA** CASE 29-11

ISSUE AL

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
С	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
Η	0.095	0.105	2.42	2.66
Ĺ	0.015	0.020	0.39	0.50
К	0.500		12.70	
L	0.250		6.35	
Ν	0.080	0.105	2.04	2.66
Ρ		0.100		2.54
R	0.115		2.93	
۷	0.135		3.43	

STYLE 1: PIN 1. EMITTER 2. BASE 3. COLLECTOR

http://onsemi.com

<u>Notes</u>

<u>Notes</u>

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

- Literature Distribution Center for ON Semiconductor
- P.O. Box 5163, Denver, Colorado 80217 USA
- Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.