Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices.

Renesas Technology Corp. Customer Support Dept. April 1, 2003

MITSUBISHI MICROCOMPUTERS 4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

DESCRIPTION

The 4506 Group is a 4-bit single-chip microcomputer designed with CMOS technology. Its CPU is that of the 4500 series using a simple, high-speed instruction set. The computer is equipped with two 8-bit timers (each timer has a reload register), interrupts, and 10-bit A-D converter.

The various microcomputers in the 4506 Group include variations of the built-in memory size as shown in the table below.

FEATURES

- Minimum instruction execution time0.68 μs (at 4.4 MHz oscillation frequency, in high-speed mode)

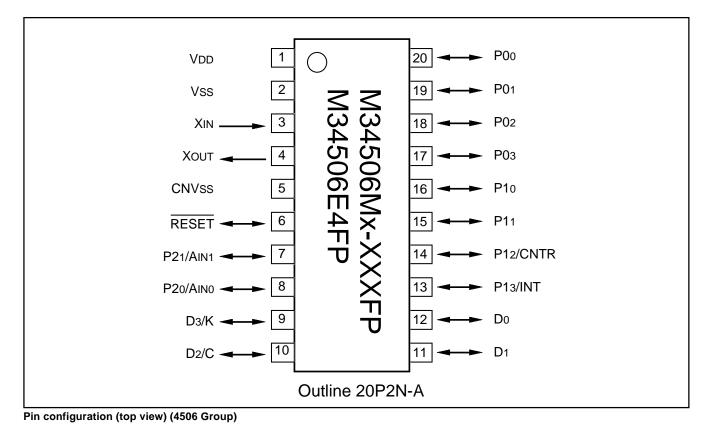
Timers

Timer 1	8-bit timer with a reload register
Timer 2	8-bit timer with a reload register
Interrupt	4 sources
•Key-on wakeup function pins	
Input/Output port	
●A-D converter10-bit	t successive comparison method
 Watchdog timer 	
•Clock generating circuit (cerami	c resonator/RC oscillation)

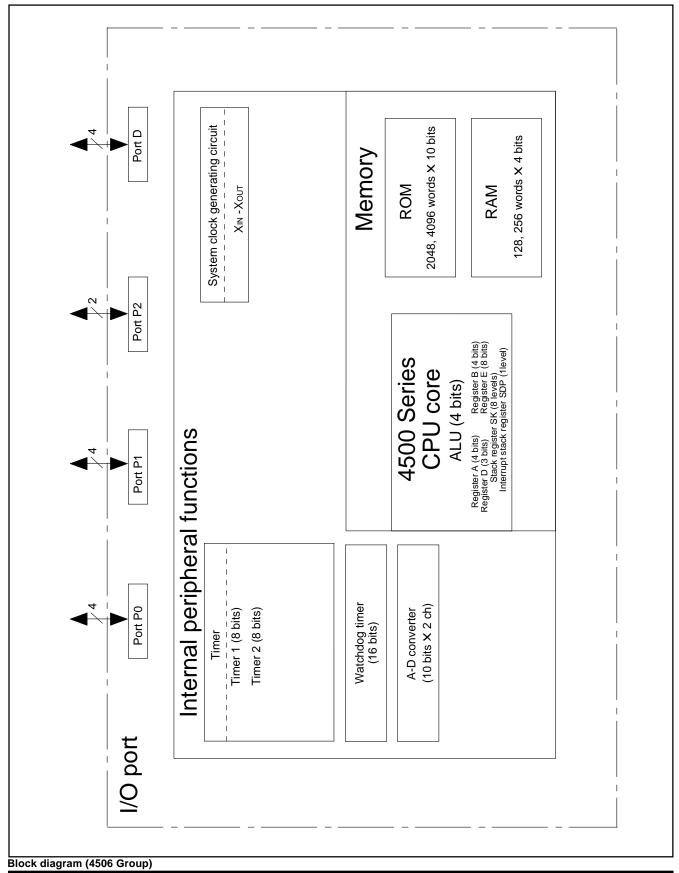
●LED drive directly enabled (port D)

APPLICATION

Electrical household appliance, consumer electronic products, office automation equipment, etc.


Product	ROM (PROM) size (X 10 bits)	RAM size (X 4 bits)	Package	ROM type
M34506M2-XXXFP	2048 words	128 words	20P2N-A	Mask ROM
M34506M4-XXXFP	4096 words	256 words	20P2N-A	Mask ROM
M34506E4FP (Note)	4096 words	256 words	20P2N-A	One Time PROM

Note: Shipped in blank.



SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

PIN CONFIGURATION

BLOCK DIAGRAM

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

PERFORMANCE OVERVIEW

Parameter		r	Function		
Number of basic instructions		ions	110		
Minimum instr	uction exe	cution time	0.68 μ s (at 4.4 MHz oscillation frequency, in high-speed mode)		
Memory sizes	ROM	M34506M2	2048 words X 10 bits		
		M34506M4/E4	4096 words X 10 bits		
RAM M34506M2		M34506M2	128 words X 4 bits		
		M34506M4/E4	256 words X 4 bits		
Input/Output ports	D0D3	I/O	Four independent I/O ports . Input is examined by skip decision. Ports D2 and D3 are equipped with a pull-up function and a key-on wakeup function. Both func- tions can be switched by software. Ports D2 and D3 are also used as ports C and K, respectively.		
	P00-P03	I/O	4-bit I/O port; each pin is equipped with a pull-up function and a key-on wakeup function. Both functions can be switched by software.		
	P10-P13	I/O	4-bit I/O port; each pin is equipped with a pull-up function and a key-on wakeup function. Both functions can be switched by software. Ports P12 and P13 are also used as CNTR and INT, respectively.		
	P20, P21	I/O	P-bit I/O port; each pin is equipped with a pull-up function and a key-on wakeup function. B unctions can be switched by software. Ports P20 and P21 are also used as AI№ and AI№1, respectively.		
	С	I/O	1-bit I/O; Port C is also used as port D2.		
	К	I/O	1-bit I/O; Port K is also used as port D3.		
	CNTR	Timer I/O	1-bit I/O; CNTR pin is also used as port P12.		
	INT Interrupt input		1-bit input; INT pin is also used as port P13.		
	AIN0, AIN1	Analog input	Two independent I/O ports; AIN0, AIN1 are also used as P20 and P21, respectively.		
Timers	Timer 1		8-bit programmable timer with a reload register.		
	Timer 2		8-bit programmable timer with a reload register and has a event counter.		
A-D converter			10-bit wide, This is equipped with an 8-bit comparator function.		
	Analog in	put	2 channel (AIN0 pin, AIN1 pin)		
Interrupt	Sources		4 (one for external, two for timer, one for A-D)		
	Nesting		1 level		
Subroutine ne	sting		8 levels		
Device structu	ıre		CMOS silicon gate		
Package			20-pin plastic molded SOP (20P2N-A)		
Operating temperature range		ange	-20 °C to 85 °C		
Supply voltage			$2.0~\rm V$ to $5.5~\rm V$ (It depends on the oscillation frequency and operating mode. Refer to the recommended operating condition.)		
Power Active mode dissipation		de	1.7 mA (at VDD = 5.0 V, 4.0 MHz oscillation frequency, in high-speed mode, output transistors in the cut-off state)		
(typical value)			0.5 mA (at VDD = 3.0 V, 2.0 MHz oscillation frequency, in high-speed mode, output transistors in the cut-off state)		
	RAM back	k-up mode	0.1 μ A (at room temperature, VDD = 5 V, output transistors in the cut-off state)		

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION

Pin	Name	Input/Output	Function
Vdd	Power supply	_	Connected to a plus power supply.
Vss	Ground	_	Connected to a 0 V power supply.
CNVss	CNVss	_	Connect CNVss to Vss and apply "L" (0V) to CNVss certainly.
RESET	Reset input/output	I/O	An N-channel open-drain I/O pin for a system reset. When the watchdog timer cause the system to be reset, the RESET pin outputs "L" level.
Xin	System clock input	Input	I/O pins of the system clock generating circuit. When using a ceramic resonator, connect
Xout	System clock output	Output	it between pins XIN and XOUT. A feedback resistor is built-in between them. When using the RC oscillation, connect a resistor and a capacitor to XIN, and leave XOUT pin open.
D0-D3	I/O port D	I/O	Each pin of port D has an independent 1-bit wide I/O function. Each pin has an out- put latch. For input use, set the latch of the specified bit to "1." Input is examined by skip decision. The output structure is N-channel open-drain. Ports D2 and D3 are equipped with a pull-up function and a key-on wakeup function. Both functions can be switched by software. Ports D2 and D3 are also used as ports C and K, respectively.
P00-P03	I/O port P0	I/O	Port P0 serves as a 4-bit I/O port, and it can be used as inputs when the output latch is set to "1." The output structure is N-channel open-drain. Port P0 has a key-on wakeup function and a pull-up function. Both functions can be switched by software.
P10-P13	I/O port P1	I/O	Port P1 serves as a 4-bit I/O port, and it can be used as inputs when the output latch is set to "1." The output structure is N-channel open-drain. Port P1 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Ports P12 and P13 are also used as CNTR and INT, respectively.
P20, P21	I/O port P2	I/O	Port P2 serves as a 2-bit I/O port, and it can be used as inputs when the output latch is set to "1." The output structure is N-channel open-drain. Port P2 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Ports P20 and P21 are also used as AIN0 and AIN1, respectively.
Port C	I/O port C	I/O	1-bit I/O port. Port C can be used as inputs when the output latch is set to "1." The output structure is N-channel open-drain. Port C has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Port C is also used as port D2.
Port K	I/O port K	I/O	1-bit I/O port. Port K can be used as inputs when the output latch is set to "1." The output structure is N-channel open-drain. Port K has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Port K is also used as port D ₃ .
CNTR	Timer input/output	I/O	CNTR pin has the function to input the clock for the timer 2 event counter, and to out- put the timer 1 or timer 2 underflow signal divided by 2. This pin is also used as port P12.
INT	Interrupt input	Input	INT pin accepts external interrupts. It has the key-on wakeup function which can be switched by software. This pin is also used as port P13.
AIN0-AIN1	Analog input	Input	A-D converter analog input pins. AIN0 and AIN1 are also used as ports P20 and P21, respectively.

MULTIFUNCTION

Pin	Multifunction	Pin	Multifunction	Pin	Multifunction	Pin	Multifunction
D2	С	С	D2	P20	AINO	AINO	P20
D3	К	К	D3	P21	AIN1	AIN1	P21
P12	CNTR	CNTR	P12				
P13	INT	INT	P13				

Notes 1: Pins except above have just single function.

2: The input/output of D2, D3, P12 and P13 can be used even when C, K, INT and CNTR (input) are selected.

3: The input of P12 can be used even when CNTR (output) is selected.4: The input/output of P20, P21 can be used even when AIN0, AIN1 are selected.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

DEFINITION OF CLOCK AND CYCLE

Operation source clock

The operation source clock is the source clock to operate this product. In this product, the following clocks are used.

- External ceramic resonator
- External RC oscillation
- Clock (f(XIN)) by the external clock
- Clock (f(RING)) of the ring oscillator which is the internal oscillator.
- System clock

The system clock is the basic clock for controlling this product. The system clock is selected by the bits 2 and 3 of the clock control register MR.

Table Selection of system clock

Register MR		System clock	Operation mode
MR3	MR2	(Note 1)	
0	0	f(XIN) or f(RING)	High-speed mode
0	1	f(XIN)/2 or f(RING)/2	Middle-speed mode
1	0	f(XIN)/4 or f(RING)/4	Low-speed mode
1	1	f(XIN)/8 or f(RING)/8	Default mode

Notes 1: The ring oscillator clock is f(RING), the clock by the ceramic resonator, RC oscillation or external clock is f(XIN).

2: The default mode is selected after system is released from reset and is returned from RAM back-up.

PORT FUNCTION

I/O Control Control Input Port Pin Remark Output structure Output registers unit instructions Port D I/O N-channel open-drain SD, RD D0, D1 1 D2/C (4) SZD, CLD Built-in programmable pull-up PU2, K2 D3/K SCP, RCP functions SNZCP Key-on wakeup functions (programmable) IAK, OKA Port P0 P00–P03 I/O N-channel open-drain 4 OP0A PU0, K0 Built-in programmable pull-up (4) IAP0 functions Key-on wakeup functions (programmable) Built-in programmable pull-up I/O OP1A PU1, K1 Port P1 P10, P11 N-channel open-drain 4 P12/CNTR, (4)IAP1 W6, I1 functions Key-on wakeup functions P13/INT (programmable) Built-in programmable pull-up Port P2 P20/AIN0 OP2A PU2, K2 I/O N-channel open-drain 2 P21/AIN1 (2) IAP2 Q1 functions Key-on wakeup functions (programmable)

The instruction clock is a signal derived by dividing the system clock by 3. The one instruction clock cycle generates the one machine cycle.

Machine cycle

The machine cycle is the standard cycle required to execute the instruction.

6

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

CONNECTIONS OF UNUSED PINS

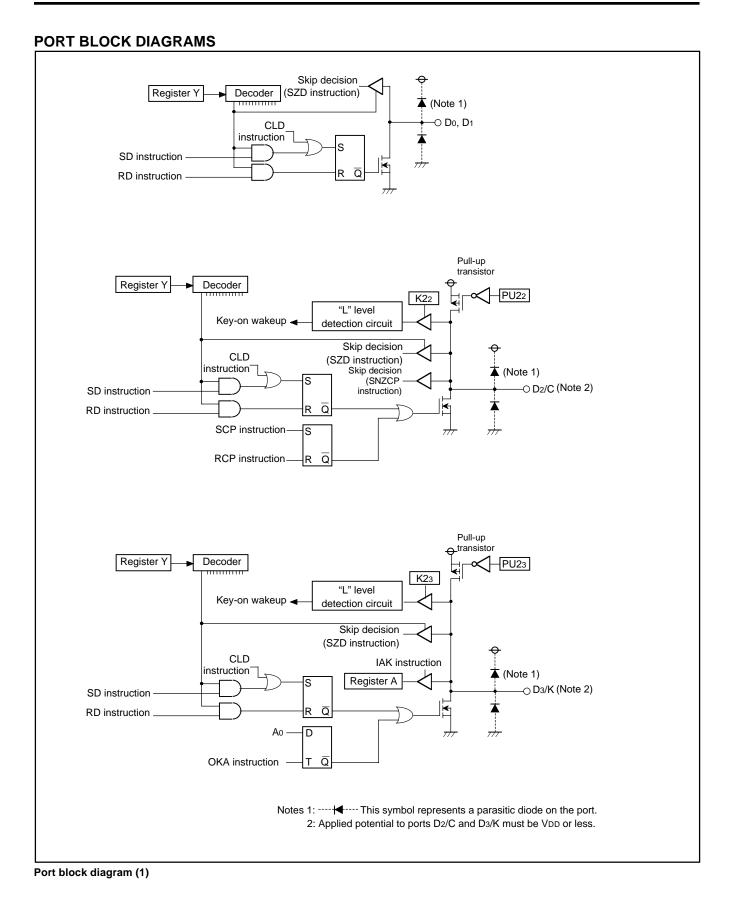
Pin	Connection	Usage condition
XIN	Connect to Vss.	System operates by the ring oscillator. (Note 1)
Xout	Open.	System operates by the external clock.
		(The ceramic resonator is selected with the CMCK instruction.)
		System operates by the RC oscillator.
		(The RC oscillation is selected with the CRCK instruction.)
		System operates by the ring oscillator. (Note 1)
D0, D1	Open. (Output latch is set to "1.")	
	Open. (Output latch is set to "0.")	
	Connect to Vss.	
D2/C	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. (Note 4)
D3/K	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)
	Connect to Vss.	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)
P00-P03	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. (Note 4)
	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)
	Connect to Vss.	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)
P10, P11	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. (Note 4)
P12/CNTR	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)
	Connect to Vss.	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)
P13/INT	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. The input to INT pin is disabled.
		(Notes 4, 5)
	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)
	Connect to Vss.	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)
P20/AIN0	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. (Note 4)
P21/AIN1	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)
	Connect to Vss.	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)

Notes 1: When the ceramic resonator or the RC oscillation is not selected by program, system operates by the ring oscillator (internal oscillator).

2: When the pull-up function is left valid, the supply current is increased. Do not select the pull-up function.

3: When the key-on wakeup function is left valid, the system returns from the RAM back-up state immediately after going into the RAM back-up state. Do not select the key-on wakeup function.

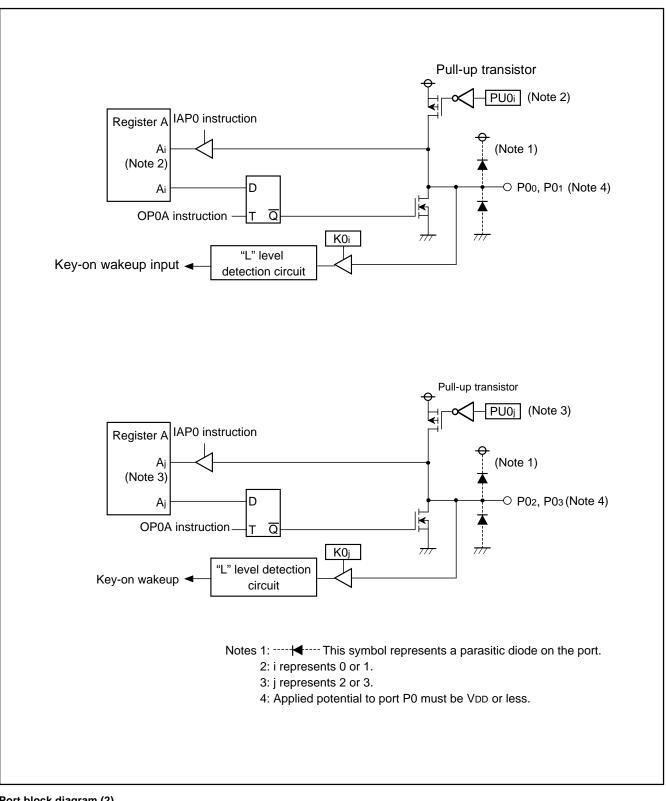
4: When selecting the key-on wakeup function, select also the pull-up function.


5: Clear the bit 3 (I13) of register I1 to "0" to disable to input to INT pin (after reset: I13 = "0")

(Note when connecting to VSS and VDD)

• Connect the unused pins to VSS and VDD using the thickest wire at the shortest distance against noise.

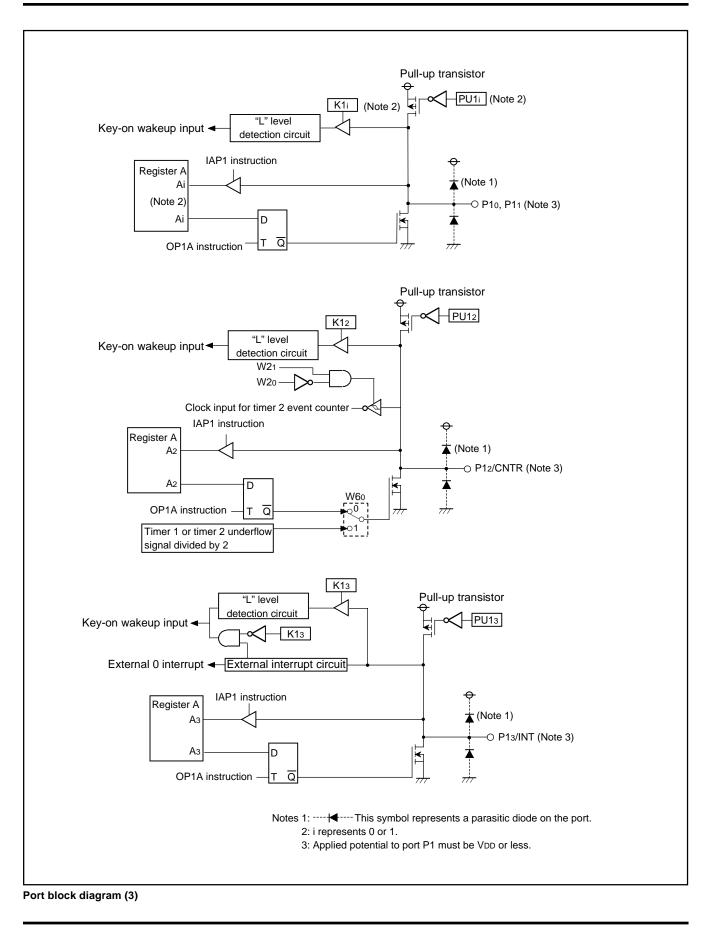
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER



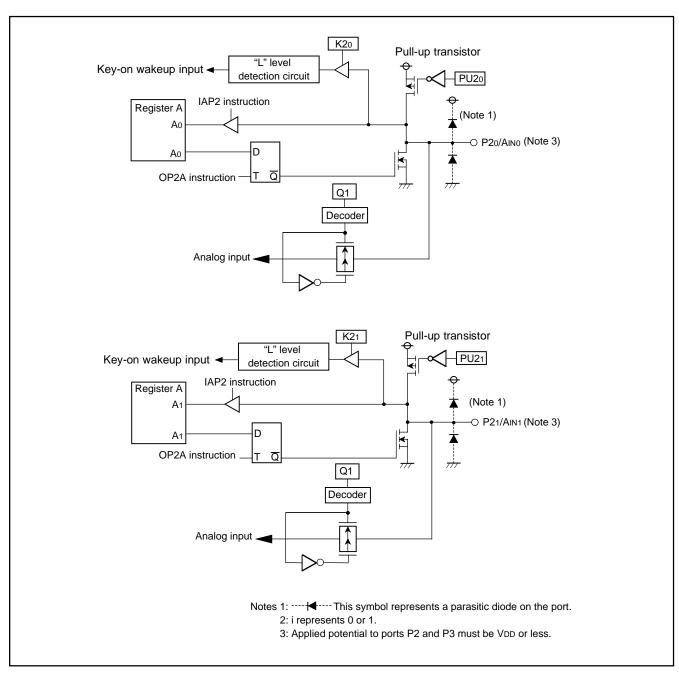
MITSUBISHI MICROCOMPUTERS

4506 Group

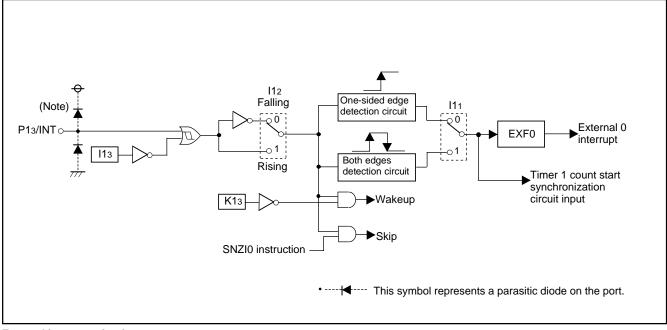
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER


Port block diagram (2)

MITSUBISHI MICROCOMPUTERS


4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER


SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Port block diagram (4)

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

External interrupt circuit structure

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

FUNCTION BLOCK OPERATIONS CPU

(1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4bit data addition, comparison, AND operation, OR operation, and bit manipulation.

(2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.

Carry flag CY is a 1-bit flag that is set to "1" when there is a carry with the AMC instruction (Figure 1).

It is unchanged with both A n instruction and AM instruction. The value of Ao is stored in carry flag CY with the RAR instruction (Figure 2).

Carry flag CY can be set to "1" with the SC instruction and cleared to "0" with the RC instruction.

(3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4-bit data, and for 8-bit data transfer together with register A.

Register E is an 8-bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 3).

Register E is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

(4) Register D

Register D is a 3-bit register.

It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed (Figure 4).

Register D is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

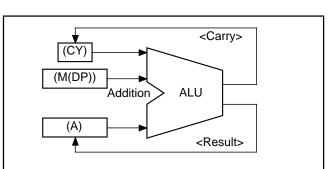


Fig. 1 AMC instruction execution example

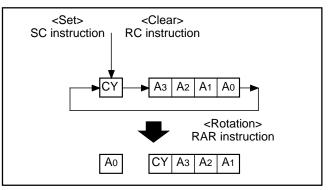


Fig. 2 RAR instruction execution example

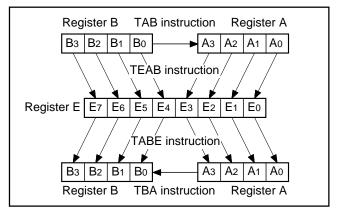


Fig. 3 Registers A, B and register E

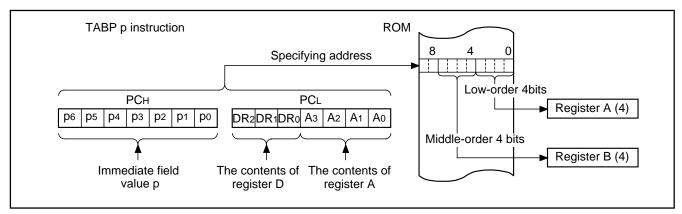


Fig. 4 TABP p instruction execution example

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(5) Stack registers (SKs) and stack pointer (SP)

Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

- branching to an interrupt service routine (referred to as an interrupt service routine),
- performing a subroutine call, or
- executing the table reference instruction (TABP p).

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together. The contents of registers SKs are destroyed when 8 levels are exceeded.

The register SK nesting level is pointed automatically by 3-bit stack pointer (SP). The contents of the stack pointer (SP) can be transferred to register A with the TASP instruction.

Figure 5 shows the stack registers (SKs) structure.

Figure 6 shows the example of operation at subroutine call.

(6) Interrupt stack register (SDP)

Interrupt stack register (SDP) is a 1-stage register. When an interrupt occurs, this register (SDP) is used to temporarily store the contents of data pointer, carry flag, skip flag, register A, and register B just before an interrupt until returning to the original routine. Unlike the stack registers (SKs), this register (SDP) is not used

when executing the subroutine call instruction and the table reference instruction.

(7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions. When an interrupt occurs, the contents of skip flag is stored automatically in the interrupt stack register (SDP) and the skip condition is retained.

Program cou	nter (PC)		
Executing BM instruction	j j		
SKo)	(SP) = 0	
SK1		(SP) = 1	
SK2		(SP) = 2	
SK3		(SP) = 3	
SK4	SK4		
SK5	SK5		
SK6	SK6		
SK7	SK7		
Stack pointer (SP) returning from RAM by executing the first contents of program When the BM instruct stack registers are and the contents of S	back-up mode st BM instruct counter is store ction is execute used ((SP) =	. It points "0" ion, and the ed in SK0. ed after eight 7), (SP) = 0	

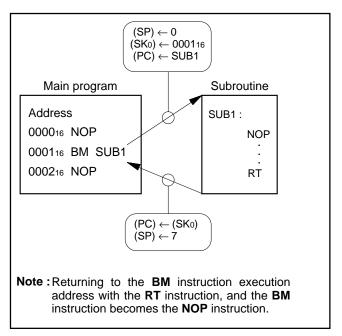


Fig. 6 Example of operation at subroutine call

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(8) Program counter (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.

Program counter consists of PCH (most significant bit to bit 7) which specifies to a ROM page and PCL (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 7).

Make sure that the PCH does not specify after the last page of the built-in ROM.

(9) Data pointer (DP)

Data pointer (DP) is used to specify a RAM address and consists of registers Z, X, and Y. Register Z specifies a RAM file group, register X specifies a file, and register Y specifies a RAM digit (Figure 8).

Register Y is also used to specify the port D bit position.

When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 9).

Note

Register Z of data pointer is undefined after system is released from reset.

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

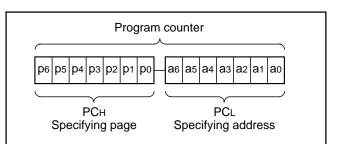


Fig. 7 Program counter (PC) structure

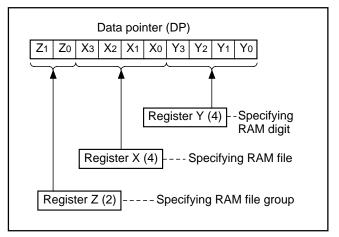


Fig. 8 Data pointer (DP) structure

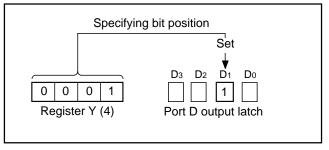


Fig. 9 SD instruction execution example

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

PROGRAM MEMOY (ROM)

The program memory is a mask ROM. 1 word of ROM is composed of 10 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127). Table 1 shows the ROM size and pages. Figure 10 shows the ROM map of M34506M4.

Table 1 ROM size and pages

Product	ROM (PROM) size (X 10 bits)	Pages
M34506M2	2048 words	16 (0 to 15)
M34506M4	4096 words	32 (0 to 31)
M34506E4	4096 words	32 (0 to 31)

A part of page 1 (addresses 008016 to 00FF16) is reserved for interrupt addresses (Figure 11). When an interrupt occurs, the address (interrupt address) corresponding to each interrupt is set in the program counter, and the instruction at the interrupt address is executed. When using an interrupt service routine, write the instruction generating the branch to that routine at an interrupt address.

Page 2 (addresses 010016 to 017F16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1-word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.

ROM pattern (bits 7 to 0) of all addresses can be used as data areas with the TABP $\ensuremath{\mathsf{p}}$ instruction.

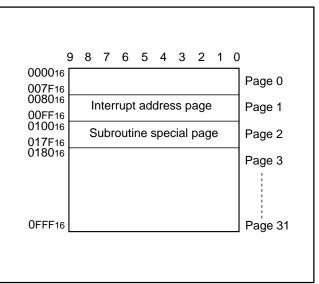


Fig. 10 ROM map of M34506M4/M34506E4

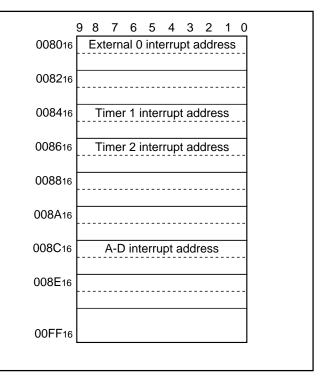


Fig. 11 Page 1 (addresses 008016 to 00FF16) structure

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB j, RB j, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers Z, X, and Y. Set a value to the data pointer certainly when executing an instruction to access RAM.

Table 2 shows the RAM size. Figure 12 shows the RAM map.

Note

Register Z of data pointer is undefined after system is released from reset.

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

Table 2 RAM size				
Product	RAM size			
M34506M2	128 words X 4 bits (512 bits)			
M34506M4	256 words X 4 bits (1024 bits)			
M34506E4	256 words X 4 bits (1024 bits)			

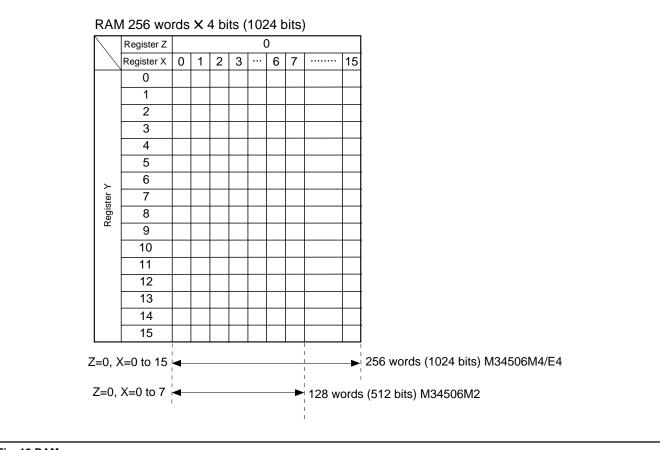


Fig. 12 RAM map

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

INTERRUPT FUNCTION

The interrupt type is a vectored interrupt branching to an individual address (interrupt address) according to each interrupt source. An interrupt occurs when the following 3 conditions are satisfied.

• An interrupt activated condition is satisfied (request flag = "1")

- Interrupt enable bit is enabled ("1")
- Interrupt enable flag is enabled (INTE = "1")

Table 3 shows interrupt sources. (Refer to each interrupt request flag for details of activated conditions.)

(1) Interrupt enable flag (INTE)

The interrupt enable flag (INTE) controls whether the every interrupt enable/disable. Interrupts are enabled when INTE flag is set to "1" with the EI instruction and disabled when INTE flag is cleared to "0" with the DI instruction. When any interrupt occurs, the INTE flag is automatically cleared to "0," so that other interrupts are disabled until the EI instruction is executed.

(2) Interrupt enable bit

Use an interrupt enable bit of interrupt control registers V1 and V2 to select the corresponding interrupt or skip instruction.

Table 4 shows the interrupt request flag, interrupt enable bit and skip instruction.

Table 5 shows the interrupt enable bit function.

(3) Interrupt request flag

When the activated condition for each interrupt is satisfied, the corresponding interrupt request flag is set to "1." Each interrupt request flag is cleared to "0" when either;

• an interrupt occurs, or

• the next instruction is skipped with a skip instruction.

Each interrupt request flag is set when the activated condition is satisfied even if the interrupt is disabled by the INTE flag or its interrupt enable bit. Once set, the interrupt request flag retains set until a clear condition is satisfied.

Accordingly, an interrupt occurs when the interrupt disable state is released while the interrupt request flag is set.

If more than one interrupt request flag is set when the interrupt disable state is released, the interrupt priority level is as follows shown in Table 3.

Table 3 Interrupt sources

Priority level	Interrupt name	Activated condition	Interrupt address				
1	External 0 interrupt	Level change of INT pin	Address 0 in page 1				
2	Timer 1 interrupt	Timer 1 underflow	Address 4 in page 1				
3	Timer 2 interrupt	Timer 2 underflow	Address 6 in page 1				
4	A-D interrupt	Completion of A-D conversion	Address C in page 1				

Table 4 Interrupt request flag, interrupt enable bit and skip instruction

Interrupt name	Request flag	Skip instruction	Enable bit
External 0 interrupt	EXF0	SNZ0	V10
Timer 1 interrupt	T1F	SNZT1	V12
Timer 2 interrupt	T2F	SNZT2	V13
A-D interrupt	ADF	SNZAD	V22

Table 5 Interrupt enable bit function

Interrupt enable bit	Occurrence of interrupt	Skip instruction
1	Enabled	Invalid
0	Disabled	Valid

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(4) Internal state during an interrupt

The internal state of the microcomputer during an interrupt is as follows (Figure 14).

- Program counter (PC)
- An interrupt address is set in program counter. The address to be executed when returning to the main routine is automatically stored in the stack register (SK).
- Interrupt enable flag (INTE)
- INTE flag is cleared to "0" so that interrupts are disabled.
- Interrupt request flag
 Only the request flag for the current interrupt source is cleared to "0."
- Data pointer, carry flag, skip flag, registers A and B The contents of these registers and flags are stored automatically
- in the interrupt stack register (SDP).

(5) Interrupt processing

When an interrupt occurs, a program at an interrupt address is executed after branching a data store sequence to stack register. Write the branch instruction to an interrupt service routine at an interrupt address.

Use the RTI instruction to return from an interrupt service routine. Interrupt enabled by executing the EI instruction is performed after executing 1 instruction (just after the next instruction is executed). Accordingly, when the EI instruction is executed just before the RTI instruction, interrupts are enabled after returning the main routine. (Refer to Figure 13)

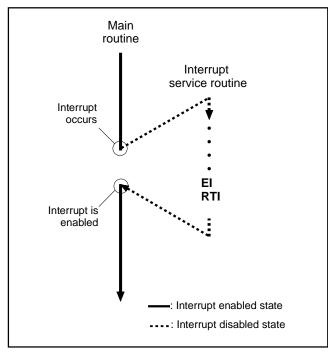
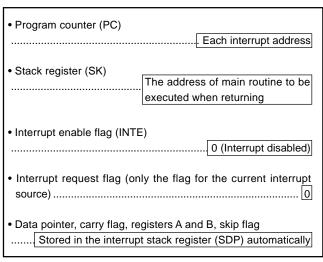
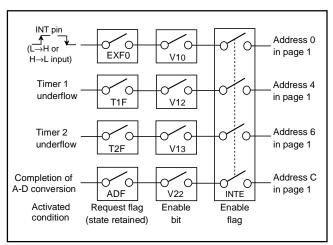
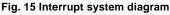





Fig. 13 Program example of interrupt processing

Fig. 14 Internal state when interrupt occurs

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(6) Interrupt control registers

Interrupt control register V1

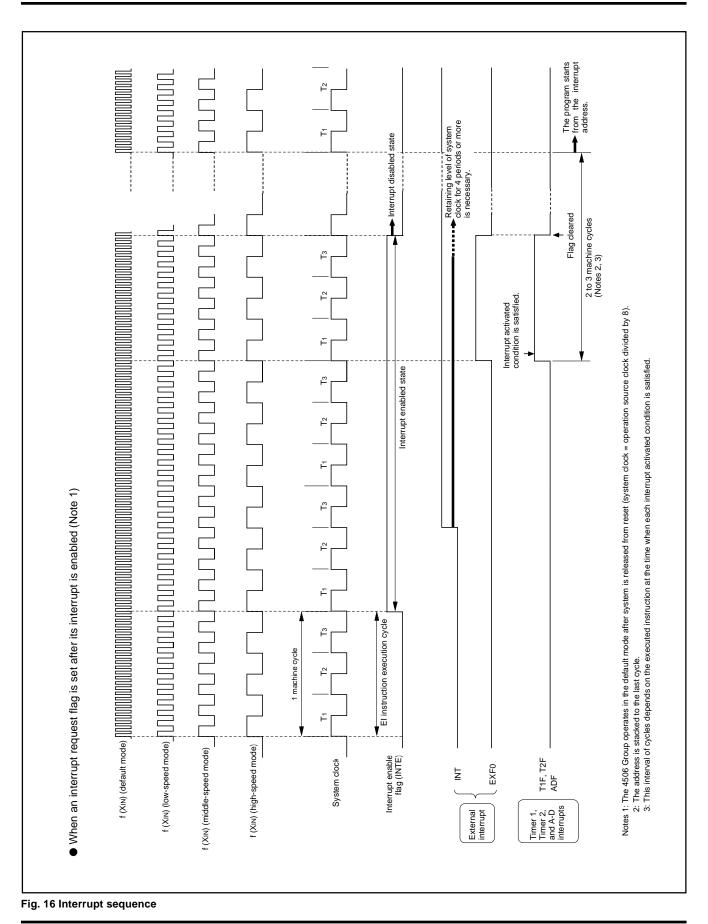
Interrupt enable bits of external 0, timer 1 and timer 2 are assigned to register V1. Set the contents of this register through register A with the TV1A instruction. The TAV1 instruction can be used to transfer the contents of register V1 to register A.

• Interrupt control register V2

The A-D interrupt enable bit is assigned to register V2. Set the contents of this register through register A with the TV2A instruction. The TAV2 instruction can be used to transfer the contents of register V2 to register A.

Table 6 Interrupt control registers

	Interrupt control register V1		reset : 00002	at RAM back-up : 00002	R/W	
\/12	V13 Timer 2 interrupt enable bit		Interrupt disabled (SNZT2 instruction is valid)		
V13			Interrupt enabled (SNZT2 instruction is invalid) (Note 2	2)	
V12	V12 Timer 1 interrupt enable bit		Interrupt disabled (SNZT1 instruction is valid)			
V 12		1	Interrupt enabled (SNZT1 instruction is invalid) (Note 2)			
V11	Not used	0	- This bit has no function, but read/write is enabled.			
VII	Not used	1				
V/10	V10 External 0 interrupt enable bit		Interrupt disabled (SNZ0 instruction is valid)			
V 10			Interrupt enabled (Interrupt enabled (SNZ0 instruction is invalid) (Note 2)		


	Interrupt control register V2		reset : 00002	at RAM back-up : 00002	R/W
\/23	V23 Not used		This hit has no function, but road/write is applied		
V23			This bit has no tur	This bit has no function, but read/write is enabled.	
V22	V22 A-D interrupt enable bit		Interrupt disabled (SNZAD instruction is valid)		
V 22		1	Interrupt enabled (SNZAD instruction is invalid) (Note 2)		
1/07	Not used	0	This bit has no function, but read/write is enabled.		
VZ1	V21 Not used				
1/00	V20 Not used		This bit has no function, but read/write is enabled.		
V20		1			

Notes 1: "R" represents read enabled, and "W" represents write enabled.2: These instructions are equivalent to the NOP instruction.

(7) Interrupt sequence

Interrupts only occur when the respective INTE flag, interrupt enable bits (V10, V12, V13, V22), and interrupt request flag are "1." The interrupt actually occurs 2 to 3 machine cycles after the cycle in which all three conditions are satisfied. The interrupt occurs after 3 machine cycles only when the three interrupt conditions are satisfied on execution of other than one-cycle instructions (Refer to Figure 16).

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Renesas Technology Corp.

EXTERNAL INTERRUPTS

The 4506 Group has the external 0 interrupt. An external interrupt request occurs when a valid waveform is input to an interrupt input pin (edge detection).

The external interrupt can be controlled with the interrupt control register I1.

Table 7 External interrupt activated conditions

Name	Input pin	Activated condition	Valid waveform selection bit
External 0 interrupt	INT	When the next waveform is input to INT pin	l1 1
		 Falling waveform ("H"→"L") 	l12
		 Rising waveform ("L"→"H") 	
		 Both rising and falling waveforms 	

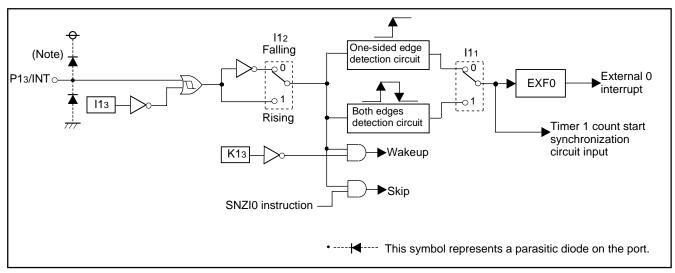


Fig. 17 External interrupt circuit structure

(1) External 0 interrupt request flag (EXF0)

External 0 interrupt request flag (EXF0) is set to "1" when a valid waveform is input to INT pin.

The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 16).

The state of EXF0 flag can be examined with the skip instruction (SNZ0). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF0 flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with the skip instruction.

- External 0 interrupt activated condition
- External 0 interrupt activated condition is satisfied when a valid waveform is input to INT pin.

The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 0 interrupt is as follows.

- ① Set the bit 3 of register I1 to "1" for the INT pin to be in the input enabled state.
- ② Select the valid waveform with the bits 1 and 2 of register I1.
- ③ Clear the EXF0 flag to "0" with the SNZ0 instruction.
- ④ Set the NOP instruction for the case when a skip is performed with the SNZ0 instruction.
- $\ensuremath{\texttt{\$}}$ Set both the external 0 interrupt enable bit (V10) and the INTE flag to "1."

The external 0 interrupt is now enabled. Now when a valid waveform is input to the INT pin, the EXF0 flag is set to "1" and the external 0 interrupt occurs.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(2) External interrupt control registers

• Interrupt control register I1

Register I1 controls the valid waveform for the external 0 interrupt. Set the contents of this register through register A with the TI1A instruction. The TAI1 instruction can be used to transfer the contents of register I1 to register A.

Table 8 External interrupt control register

Interrupt control register I1		at reset : 00002		at RAM back-up : state retained	R/W
113	113 INT pin input control bit (Note 2)		INT pin input disabled		
113		1	INT pin input enab	led	
			Falling waveform ("L" level of INT pin is recognized wi	th the SNZI0
112	Interrupt valid waveform for INT pin/	0	instruction)/"L" level		
112	return level selection bit (Note 2)	1	Rising waveform ("H" level of INT pin is recognized with the SNZI0		
			instruction)/"H" lev	el	
I1 1	INT his adda datastion singuit control hit	0	One-sided edge de	etected	
111	INT pin edge detection circuit control bit		Both edges detected		
110	INT pin	0 Disabled			
110	timer 1 control enable bit	1 Enabled			

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: When the contents of I12 and I13 are changed, the external interrupt request flag EXF0 may be set. Accordingly, clear EXF0 flag with the SNZ0 instruction when the bit 0 (V10) of register V1 to "0". In this time, set the NOP instruction after the SNZ0 instruction, for the case when a skip is performed with the SNZ0 instruction.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(3) Notes on interrupts

① Note [1] on bit 3 of register I1

When the input of the INT pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.

Depending on the input state of the P13/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 18⁽¹⁾) and then, change the bit 3 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag after executing at least one instruction (refer to Figure 18[®]).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 183).

:								
LA	4	; (XXX02)						
TV1A		; The SNZ0 instruction is valid						
LA	8	; (1 XXX 2)						
TI1A		; Control of INT pin input is changed						
NOP		2						
SNZ0		; The SNZ0 instruction is executed (EXF0 flag cleared)						
NOP		(EXI 0 hag oldared) 3						
x :	X : these bits are not used here.							

Fig. 18 External 0 interrupt program example-1

When the bit 3 of register I1 is cleared, the RAM back-up mode is selected and the input of INT pin is disabled, be careful about the following notes.

• When the key-on wakeup function of port P13 is not used (register K13 = "0"), clear bits 2 and 3 of register I1 before system enters to the RAM back-up mode. (refer to Figure 1910).

:	
LA 0	; (00 XX 2)
TI1A	; Input of INT disabled
DI	
EPOF	
POF	; RAM back-up
:	
X : the	se bits are not used here.

Fig. 19 External 0 interrupt program example-2

3 Note [3] on bit 2 of register I1

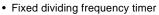
When the interrupt valid waveform of the P13/INT pin is changed with the bit 2 of register I1 in software, be careful about the following notes.

Depending on the input state of the P13/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 20①) and then, change the bit 2 of register I1 is changed.
In addition, execute the SNZ0 instruction to clear the EXF0 flag after executing at least one instruction (refer to Figure 20②).
Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 20③).

:		
LA	4	; (XXX02)
TV1A		; The SNZ0 instruction is valid
LA	12	
TI1A		; Interrupt valid waveform is changed
NOP		
SNZ0		; The SNZ0 instruction is executed
		(EXF0 flag cleared)
NOP		3
:		
X :	these	bits are not used here.

Fig. 20 External 0 interrupt program example-3

² Note [2] on bit 3 of register I1


SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

TIMERS

The 4506 Group has the following timers.

Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to n + 1), a timer interrupt request flag is set to "1," new data is loaded from the reload register, and count continues (auto-reload function).

The fixed dividing frequency timer has the fixed frequency dividing ratio (n). An interrupt request flag is set to "1" after every n count of a count pulse.

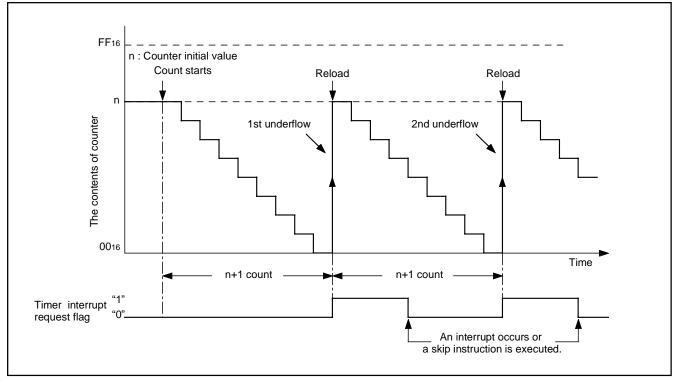
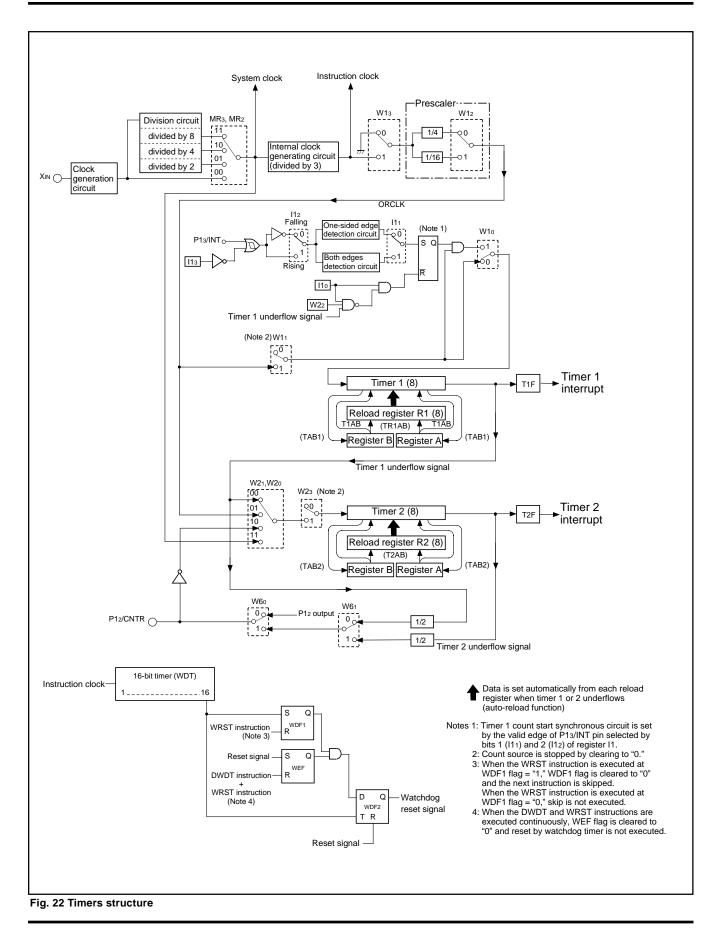


Fig. 21 Auto-reload function

The 4506 Group timer consists of the following circuits.

- Prescaler : frequency divider
- Timer 1 : 8-bit programmable timer
- Timer 2 : 8-bit programmable timer
- (Timers 1 and 2 have the interrupt function, respectively)
- 16-bit timer


Table 9 Function related timers

Prescaler and timers 1 and 2 can be controlled with the timer control registers W1, W2 and W6. The 16-bit timer is a free counter which is not controlled with the control register. Each function is described below.

Circuit	Structure	Count source	Frequency dividing ratio	Use of output signal	Control register
Prescaler	Frequency divider	 Instruction clock 	4, 16	Timer 1 and 2 count sources	W1
Timer 1	8-bit programmable	Prescaler output (ORCLK)	1 to 256	Timer 2 count source	W1
	binary down counter			CNTR output	W2
	(link to INT input)			Timer 1 interrupt	
Timer 2	8-bit programmable	Timer 1 underflow	1 to 256	CNTR output	W2
	binary down counter	• Prescaler output (ORCLK)		Timer 2 interrupt	
		CNTR input			
		System clock			
16-bit timer	16-bit fixed dividing	 Instruction clock 	65536	Watchdog timer	
	frequency binary down			(The 16th bit is counted twice)	
	counter				

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Table 10 Timer control registers

Timer control register W1		at reset : 00002		at RAM back-up : 00002	R/W
W13	W/As December and real bit		Stop (state initialized)		
VV 13	Prescaler control bit	1	Operating		
W/10	W12 Prescaler dividing ratio selection bit		Instruction clock di	vided by 4	
VV 12			Instruction clock divided by 16		
10/44		0	Stop (state retained)		
W11	Timer 1 control bit	1	Operating		
14/4 0	Timer 1 count start synchronous circuit	0	Count start synchro	onous circuit not selected	
VV10	W10 control bit		Count start synchro	onous circuit selected	
Timer control register W2		at reset : 00002		at RAM back-up : state retained	R/W

			u	00001.00002		
W23	W23 Timer 2 control bit		0 Stop (state retained)		d)	
VVZ3		1		Operating		
W22	W22 Timer 1 count auto-stop circuit selection)	Count auto-stop circuit not selected		
VVZZ	bit (Note 2)	1		Count auto-stop circuit selected		
		W21	W20		Count source	
W21	W21 Timer 2 count source selection bits		0	Timer 1 underflow	signal	
			1	Prescaler output (C	DRCLK)	
W20		1	0	CNTR input		
		1	1	System clock		

Timer control register W6		at reset : 00002		at RAM back-up : state retained	R/W	
W63 Not used		0	This bit has no function, but read/write is enabled.			
				This bit has no function, but read/while is enabled.		
W62	W62 Not used		This bit has no function, but read/write is enabled.			
VV02		1	This bit has no function, but read/while is enabled.			
W61	CNITE output coloction hit	0	Timer 1 underflow signal divided by 2 output			
0001	W61 CNTR output selection bit		Timer 2 underflow signal divided by 2 output			
W60	W60 P12/CNTR function selection bit		P12(I/O)/CNTR input (Note 3)			
VV00			P12 (input)/CNTR	input/output (Note 3)		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: This function is valid only when the timer 1 count start synchronization circuit is selected.

3: CNTR input is valid only when CNTR input is selected as the timer 2 count source.

(1) Timer control registers

• Timer control register W1

Register W1 controls the count operation of timer 1, the selection of count start synchronous circuit, and the frequency dividing ratio and count operation of prescaler. Set the contents of this register through register A with the TW1A instruction. The TAW1 instruction can be used to transfer the contents of register W1 to register A.

• Timer control register W2

Register W2 controls the selection of timer 1 count auto-stop circuit, and the count operation and count source of timer 2. Set the contents of this register through register A with the TW2A instruction. The TAW2 instruction can be used to transfer the contents of register W2 to register A. • Timer control register W6

Register W6 controls the P12/CNTR pin function and the selection of CNTR output. Set the contents of this register through register A with the TW6A instruction. The TAW6 instruction can be used to transfer the contents of register W6 to register A..

(2) Prescaler

Prescaler is a frequency divider. Its frequency dividing ratio can be selected. The count source of prescaler is the instruction clock. Use the bit 2 of register W1 to select the prescaler dividing ratio and the bit 3 to start and stop its operation. Prescaler is initialized, and the output signal (ORCLK) stops when the bit 3 of register W1 is cleared to "0."

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(3) Timer 1 (interrupt function)

Timer 1 is an 8-bit binary down counter with the timer 1 reload register (R1). Data can be set simultaneously in timer 1 and the reload register (R1) with the T1AB instruction. Stop counting and then execute the T1AB instruction to set data to timer 1. Data can be written to reload register (R1) with the TR1AB instruction.

When writing data to reload register R1 with the TR1AB instruction, the downcount after the underflow is started from the setting value of reload register R1.

Timer 1 starts counting after the following process;

① set data in timer 1, and

2 set the bit 1 of register W1 to "1."

However, INT pin input can be used as the start trigger for timer 1 count operation by setting the bit 0 of register W1 to "1."

Also, in this time, the auto-stop function by timer 1 underflow can be performed by setting the bit 2 of register W2 to "1."

When a value set is n, timer 1 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes "0"), the timer 1 interrupt request flag (T1F) is set to "1," new data is loaded from reload register R1, and count continues (auto-reload function).

Data can be read from timer 1 with the TAB1 instruction. When reading the data, stop the counter and then execute the TAB1 instruction.

(4) Timer 2 (interrupt function)

Timer 2 is an 8-bit binary down counter with the timer 2 reload register (R2). Data can be set simultaneously in timer 2 and the reload register (R2) with the T2AB instruction. Stop counting and then execute the T2AB instruction to set data to timer 2.

Timer 2 starts counting after the following process;

① set data in timer 2,

0 select the count source with the bits 0 and 1 of register W2, and 0 set the bit 3 of register W2 to "1."

When a value set is n, timer 2 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes "0"), the timer 2 interrupt request flag (T2F) is set to "1," new data is loaded from reload register R2, and count continues (auto-reload function).

Data can be read from timer 2 with the TAB2 instruction. When reading the data, stop the counter and then execute the TAB2 instruction.

(5) Timer interrupt request flags (T1F, T2F)

Each timer interrupt request flag is set to "1" when each timer underflows. The state of these flags can be examined with the skip instructions (SNZT1, SNZT2).

Use the interrupt control register V1 to select an interrupt or a skip instruction.

An interrupt request flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with a skip instruction.

(6) Count start synchronization circuit (timer 1)

Timer 1 has the count start synchronous circuit which synchronizes the input of INT pin, and can start the timer count operation.

Timer 1 count start synchronous circuit function is selected by setting the bit 0 of register W1 to "1." The control by INT pin input can be performed by setting the bit 0 of register I1 to "1."

The count start synchronous circuit is set by level change ("H" \rightarrow "L" or "L" \rightarrow "H") of INT pin input. This valid waveform is selected by bits 1 (I11) and 2 (I12) of register I1 as follows;

• I11 = "0": Synchronized with one-sided edge (falling or rising)

• I11 = "1": Synchronized with both edges (both falling and rising)

When register I11="0" (synchronized with the one-sided edge), the rising or falling waveform can be selected by the bit 2 of register I1;

I12 = "0": Falling waveform

I12 = "1": Rising waveform

When timer 1 count start synchronous circuit is used, the count start synchronous circuit is set, the count source is input to each timer by inputting valid waveform to INT pin. Once set, the count start synchronous circuit is cleared by clearing the bit I10 to "0" or reset.

However, when the count auto-stop circuit is selected (register W22 = "1"), the count start synchronous circuit is cleared (auto-stop) at the timer 1 underflow.

(7) Count auto-stop circuit (timer 1)

Timer 1 has the count auto-stop circuit which is used to stop timer 1 automatically by the timer 1 underflow when the count start synchronous circuit is used.

The count auto-stop cicuit is valid by setting the bit 2 of register W2 to "1". It is cleared by the timer 1 underflow and the count source to timer 1 is stopped.

This function is valid only when the timer 1 count start synchronous circuit is selected.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(8) Timer input/output pin (P12/CNTR pin)

CNTR pin is used to input the timer 2 count source and output the timer 1 and timer 2 underflow signal divided by 2.

The P12/CNTR pin function can be selected by bit 0 of register W6. The CNTR output signal can be selected by bit 1 of register W6.

When the CNTR input is selected for timer 2 count source, timer 2 counts the falling waveform of CNTR input.

(9) Precautions

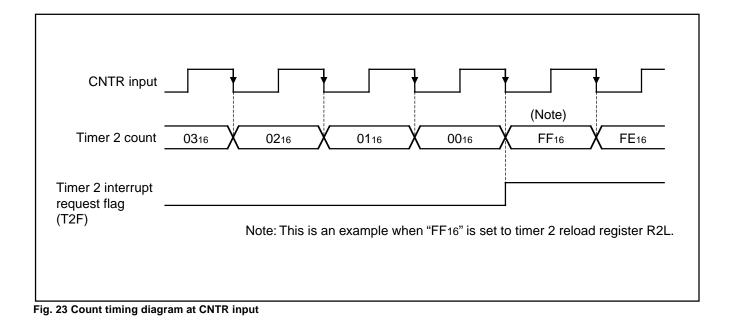
Note the following for the use of timers.

Prescaler

Stop the prescaler operation to change its frequency dividing ratio. •Count source

Stop timer 1 or 2 counting to change its count source.

•Reading the count value


Stop timer 1 or 2 counting and then execute the TAB1 or TAB2 instruction to read its data.

•Writing to the timer

Stop timer 1 or 2 counting and then execute the T1AB or T2AB instruction to write its data.

•Writing to reload register R1

When writing data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

WATCHDOG TIMER

Watchdog timer provides a method to reset the system when a program run-away occurs. Watchdog timer consists of timer WDT(16-bit binary counter), watchdog timer enable flag (WEF), and watchdog timer flags (WDF1, WDF2).

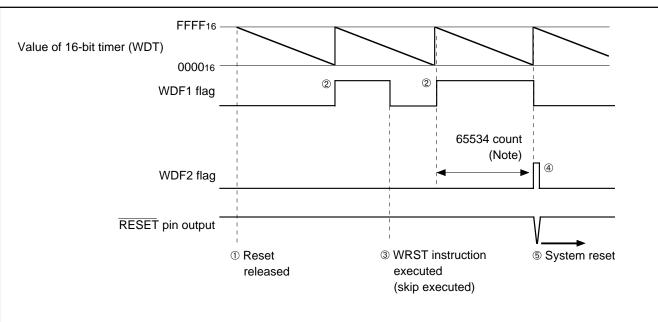
The timer WDT downcounts the instruction clocks as the count source from "FFFF16" after system is released from reset.

After the count is started, when the timer WDT underflow occurs (after the count value of timer WDT reaches "FFFF16," the next count pulse is input), the WDF1 flag is set to "1."

If the WRST instruction is never executed until the timer WDT underflow occurs (until timer WDT counts 65534), WDF2 flag is set to "1," and the $\overrightarrow{\text{RESET}}$ pin outputs "L" level to reset the microcomputer.

Execute the WRST instruction at each period of 65534 machine cycle or less by software when using watchdog timer to keep the microcomputer operating normally.

When the WEF flag is set to "1" after system is released from reset, the watchdog timer function is valid.


When the DWDT instruction and the WRST instruction are executed continuously, the WEF flag is cleared to "0" and the watchdog timer function is invalid.

However, in order to set the WEF flag to "1" again once it has cleared to "0", execute system reset.

The WRST instruction has the skip function. When the WRST instruction is executed while the WDF1 flag is "1", the WDF1 flag is cleared to "0" and the next instruction is skipped.

When the WRST instruction is executed while the WDF1 flag is "0", the next instruction is not skipped.

The skip function of the WRST instruction can be used even when the watchdog timer function is invalid.

 \odot After system is released from reset (= after program is started), timer WDT starts count down.

- $\ensuremath{\textcircled{O}}$ When timer WDT underflow occurs, WDF1 flag is set to "1."
- ③ When the WRST instruction is executed, WDF1 flag is cleared to "0," the next instruction is skipped.
- ④ When timer WDT underflow occurs while WDF1 flag is "1," WDF2 flag is set to "1" and the watchdog reset signal is output.
- ⑤ The output transistor of RESET pin is turned "ON" by the watchdog reset signal and system reset is executed.

Note: The number of count is equal to the number of cycle because the count source of watchdog timer is the instruction clock.

Fig. 24 Watchdog timer function

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

When the watchdog timer is used, clear the WDF1 flag at the period of 65534 machine cycles or less with the WRST instruction. When the watchdog timer is not used, execute the DWDT instruction and the WRST instruction continuously (refer to Figure 25).

The watchdog timer is not stopped with only the DWDT instruction. The contents of WDF1 flag and timer WDT are initialized at the RAM back-up mode.

When using the watchdog timer and the RAM back-up mode, initialize the WDF1 flag with the WRST instruction just before the microcomputer enters the RAM back-up state (refer to Figure 26)

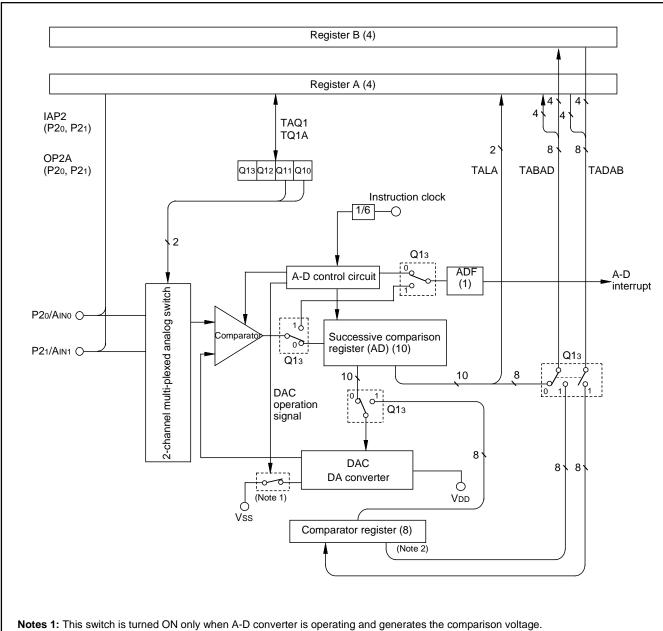
The watchdog timer function is valid after system is returned from the RAM back-up. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously every system is returned from the RAM back-up, and stop the watchdog timer function.

\$ WRST	; WDF1 flag cleared
:	
DWDT WRST	; Watchdog timer function enabled/disabled ; WEF and WDF1 flags cleared

Fia.	25 Proc	aram ex	ample t	o start/	stop wa	tchdog	timer
· · · · · ·	201103	grunn er	umpic t	0 J.u	010p 110	lionaog	the second secon

:	
WRST	; WDF1 flag cleared
NOP	
DI	; Interrupt disabled
EPOF	; POF instruction enabled
POF2	
\downarrow	
Oscillation	stop (RAM back-up mode)
:	

Fig. 26 Program example to enter the RAM back-up mode when using the watchdog timer


SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

A-D CONVERTER

The 4506 Group has a built-in A-D conversion circuit that performs conversion by 10-bit successive comparison method. Table 11 shows the characteristics of this A-D converter. This A-D converter can also be used as an 8-bit comparator to compare analog voltages input from the analog input pin with preset values.

Table 11 A-D converter characteristics

Parameter	Characteristics	
Conversion format	Successive comparison method	
Resolution	10 bits	
Relative accuracy	Linearity error: ±2LSB	
	Non-linearity error: ±0.9LSB	
Conversion speed	46.5 μ s (High-speed mode at 4.0 MHz oscillation frequency)	
Analog input pin	2	

 Notes 1: This switch is turned ON only when A-D converter is operating and generates the comparison voltage.
 2: Writing/reading data to the comparator register is possible only in the comparator mode (Q13=1). The value of the comparator register is retained even when the mode is switched to the A-D conversion mode (Q13=0) because it is separated from the successive comparison register (AD). Also, the resolution in the comparator mode is 8 bits because the comparator register consists of 8 bits.

Fig. 27 A-D conversion circuit structure

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

	A-D control register Q1		at	reset : 00002	at RAM back-up : state retained R/V	
010	A D operation mode selection bit	0)	A-D conversion mod	de	
Q13	A-D operation mode selection bit	1 Co		Comparator mode		
Q12	Not used	(This bit has no function, but read/write is enabled.		tion, but read/write is enabled.	
		Q11	Q10	Selected pins		
Q11 Analog input pin selection bits 0 0 AIN0 0 1 AIN1		0	0	AIN0		
Q10			0	Not available		
Sel 10		1	1	Not available		

Table 12 A-D control registers

Note: "R" represents read enabled, and "W" represents write enabled.

(1) Operating at A-D conversion mode

The A-D conversion mode is set by setting the bit 3 of register Q1 to "0."

(2) Successive comparison register AD

Register AD stores the A-D conversion result of an analog input in 10-bit digital data format. The contents of the high-order 8 bits of this register can be stored in register B and register A with the TABAD instruction. The contents of the low-order 2 bits of this register can be stored into the high-order 2 bits of register A with the TALA instruction. However, do not execute these instructions during A-D conversion.

When the contents of register AD is n, the logic value of the comparison voltage Vref generated from the built-in DA converter can be obtained with the reference voltage VDD by the following formula:

Logic value of comparison voltage Vref

$$V_{ref} = \frac{V_{DD}}{1024} \times n$$

n: The value of register AD (n = 0 to 1023)

(3) A-D conversion completion flag (ADF)

A-D conversion completion flag (ADF) is set to "1" when A-D conversion completes. The state of ADF flag can be examined with the skip instruction (SNZAD). Use the interrupt control register V2 to select the interrupt or the skip instruction.

The ADF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

(4) A-D conversion start instruction (ADST)

A-D conversion starts when the ADST instruction is executed. The conversion result is automatically stored in the register AD.

(5) A-D control register Q1

Register Q1 is used to select the operation mode and one of analog input pins.

(6) Operation description

A-D conversion is started with the A-D conversion start instruction (ADST). The internal operation during A-D conversion is as follows:

- 0 When the A-D conversion starts, the register AD is cleared to "00016."
- ② Next, the topmost bit of the register AD is set to "1," and the comparison voltage Vref is compared with the analog input voltage VIN.
- ③ When the comparison result is Vref < VIN, the topmost bit of the register AD remains set to "1." When the comparison result is Vref > VIN, it is cleared to "0."

The 4506 Group repeats this operation to the lowermost bit of the register AD to convert an analog value to a digital value. A-D conversion stops after 62 machine cycles (46.5 μ s when f(XIN) = 4.0 MHz in high-speed mode) from the start, and the conversion result is stored in the register AD. An A-D interrupt activated condition is satisfied and the ADF flag is set to "1" as soon as A-D conversion completes (Figure 28).

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

At starting conversion	Change of successive comparison register AD Comparison voltage (Vref) value
1st comparison	1 0 0 0 0 0 <u>VDD</u> 2
2nd comparison	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
3rd comparison	$*1$ $*2$ 1 \cdots 0 0 $\frac{V_{DD}}{2}$ \pm $\frac{V_{DD}}{4}$ \pm $\frac{V_{DD}}{8}$
After 10th comparison completes	A-D conversion result VDD ± VDD *1 *2 *3 *8 *9 *A 2 ± ± 1024

Table 13 Change of successive comparison register AD during A-D conversion

*1: 1st comparison result

*3: 3rd comparison result

*8: 8th comparison result

*9: 9th comparison result

*A: 10th comparison result

(7) A-D conversion timing chart

Figure 28 shows the A-D conversion timing chart.

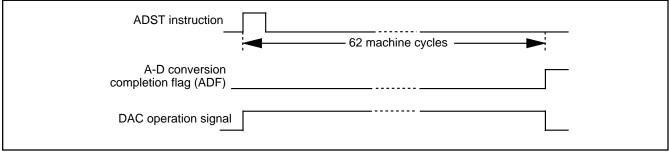


Fig. 28 A-D conversion timing chart

(8) How to use A-D conversion

How to use A-D conversion is explained using as example in which the analog input from P21/AIN1 pin is A-D converted, and the highorder 4 bits of the converted data are stored in address M(Z, X, Y)= (0, 0, 0), the middle-order 4 bits in address M(Z, X, Y) = (0, 0, 1), and the low-order 2 bits in address M(Z, X, Y) = (0, 0, 2) of RAM. The A-D interrupt is not used in this example.

- Select the AIN1 pin function and A-D conversion mode with the register Q1 (refer to Figure 29).
- 2 Execute the ADST instruction and start A-D conversion.
- ③ Examine the state of ADF flag with the SNZAD instruction to determine the end of A-D conversion.
- Transfer the low-order 2 bits of converted data to the high-order 2 bits of register A (TALA instruction).
- Transfer the contents of register A to M (Z, X, Y) = (0, 0, 2).
- Transfer the high-order 8 bits of converted data to registers A and B (TABAD instruction).
- \odot Transfer the contents of register A to M (Z, X, Y) = (0, 0, 1).
- Iransfer the contents of register B to register A, and then, store into M(Z, X, Y) = (0, 0, 0).

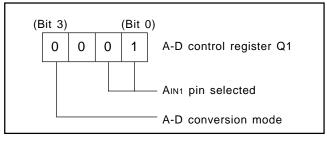


Fig. 29 Setting registers

(9) Operation at comparator mode

The A-D converter is set to comparator mode by setting bit 3 of the register Q1 to "1."

Below, the operation at comparator mode is described.

(10) Comparator register

In comparator mode, the built-in DA comparator is connected to the 8-bit comparator register as a register for setting comparison voltages. The contents of register B is stored in the high-order 4 bits of the comparator register and the contents of register A is stored in the low-order 4 bits of the comparator register with the TADAB instruction.

When changing from A-D conversion mode to comparator mode, the result of A-D conversion (register AD) is undefined.

However, because the comparator register is separated from register AD, the value is retained even when changing from comparator mode to A-D conversion mode. Note that the comparator register can be written and read at only comparator mode.

If the value in the comparator register is n, the logic value of comparison voltage V_{ref} generated by the built-in DA converter can be determined from the following formula:

Logic value of comparison voltage Vref

$$V_{ref} = \frac{V_{DD}}{256} \times n$$

n: The value of register AD (n = 0 to 255)

(11) Comparison result store flag (ADF)

In comparator mode, the ADF flag, which shows completion of A-D conversion, stores the results of comparing the analog input voltage with the comparison voltage. When the analog input voltage is lower than the comparison voltage, the ADF flag is set to "1." The state of ADF flag can be examined with the skip instruction (SNZAD). Use the interrupt control register V2 to select the interrupt or the skip instruction.

The ADF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

(12) Comparator operation start instruction (ADST instruction)

In comparator mode, executing ADST starts the comparator operating.

The comparator stops 8 machine cycles after it has started (6 μ s at f(XIN) = 4.0 MHz in high-speed mode). When the analog input voltage is lower than the comparison voltage, the ADF flag is set to "1."

(13) Notes for the use of A-D conversion 1

Note the following when using the analog input pins also for port P2 function:

Selection of analog input pins

Even when P20/AIN0, P21/AIN1 are set to pins for analog input, they continue to function as port P2 input/output. Accordingly, when any of them are used as I/O port and others are used as analog input pins, make sure to set the outputs of pins that are set for analog input to "1." Also, the port input function of the pin functions as an analog input is undefined.

TALA instruction

When the TALA instruction is executed, the low-order 2 bits of register AD is transferred to the high-order 2 bits of register A, simultaneously, the low-order 2 bits of register A is "0."

(14) Notes for the use of A-D conversion 2

Do not change the operating mode (both A-D conversion mode and comparator mode) of A-D converter with the bit 3 of register Q1 while the A-D converter is operating.

When the operating mode of A-D converter is changed from the comparator mode to A-D conversion mode with the bit 3 of register Q1, note the following;

- Clear the bit 2 of register V2 to "0" to change the operating mode of the A-D converter from the comparator mode to A-D conversion mode with the bit 3 of register Q1.
- The A-D conversion completion flag (ADF) may be set when the operating mode of the A-D converter is changed from the comparator mode to the A-D conversion mode. Accordingly, set a value to the bit 3 of register Q1, and execute the SNZAD instruction to clear the ADF flag.

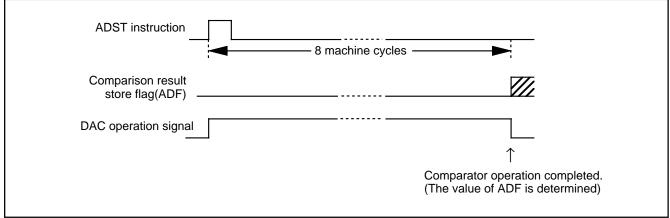


Fig. 30 Comparator operation timing chart

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(15) Definition of A-D converter accuracy

- The A-D conversion accuracy is defined below (refer to Figure 31).
- · Relative accuracy
 - ① Zero transition voltage (VoT)

This means an analog input voltage when the actual A-D conversion output data changes from "0" to "1."

2 Full-scale transition voltage (VFST)

This means an analog input voltage when the actual A-D conversion output data changes from "1023" to "1022."

3 Linearity error

This means a deviation from the line between VoT and VFST of a converted value between VoT and VFST.

④ Differential non-linearity error

This means a deviation from the input potential difference required to change a converter value between VoT and VFST by 1 LSB at the relative accuracy.

Absolute accuracy

This means a deviation from the ideal characteristics between 0 to VDD of actual A-D conversion characteristics.

- Vn: Analog input voltage when the output data changes from "n" to "n+1" (n = 0 to 1022)
- 1LSB at relative accuracy $\rightarrow \frac{VFST-V0T}{1022}$ (V)
- 1LSB at absolute accuracy $\rightarrow \frac{V_{DD}}{1024}$ (V)

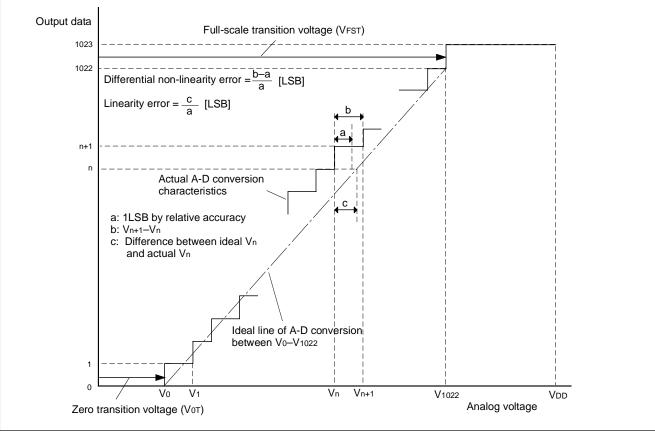


Fig. 31 Definition of A-D conversion accuracy

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

RESET FUNCTION

System reset is performed by applying "L" level to RESET pin for 1 machine cycle or more when the following condition is satisfied; the value of supply voltage is the minimum value or more of the recommended operating conditions.

Then when "H" level is applied to RESET pin, software starts from address 0 in page 0.

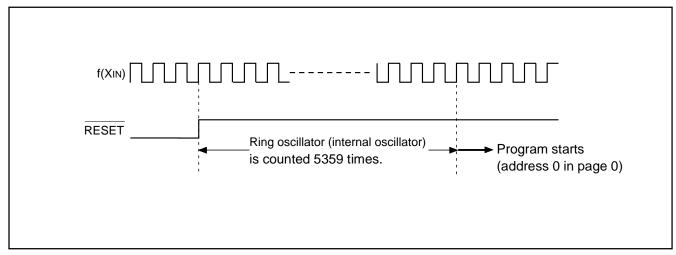


Fig. 32 Reset release timing

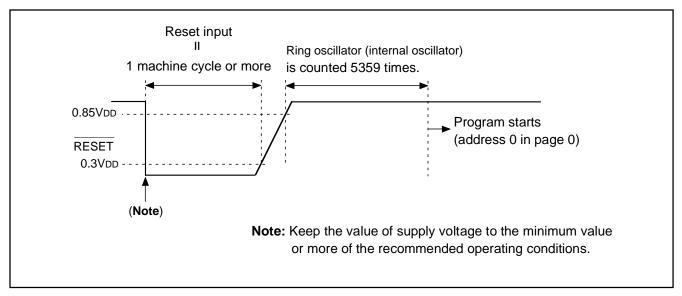


Fig. 33 RESET pin input waveform and reset operation

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(1) Power-on reset

Reset can be performed automatically at power on (power-on reset) by connecting a diode and a capacitor to $\overline{\text{RESET}}$ pin. Connect $\overline{\text{RESET}}$ pin and the external circuit at the shortest distance.

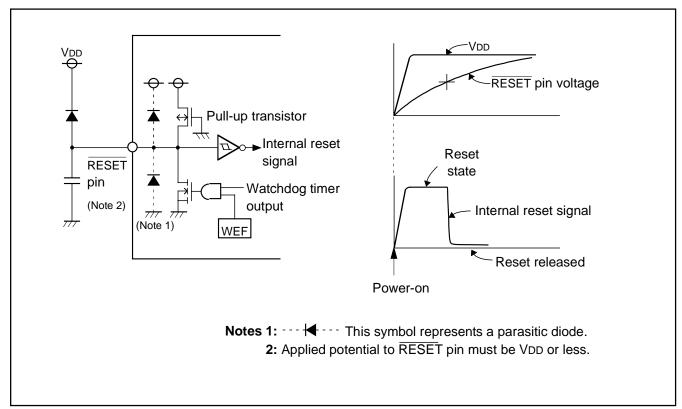


Fig. 34 Power-on reset circuit example

Table 14 Port state at reset

Name	Function	State
D0, D1	D0, D1	High-impedance (Note 1)
D2/C, D3/K	D2, D3	High-impedance (Notes 1, 2)
P00, P01, P02, P03	P00-P03	High-impedance (Notes 1, 2)
P10, P11, P12/CNTR, P13/INT	P10-P13	High-impedance (Notes 1, 2)
P20/AIN0, P21/AIN1	P20, P21	High-impedance (Notes 1, 2)

Notes 1: Output latch is set to "1."

2: Pull-up transistor is turned OFF.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(2) Internal state at reset

Figure 35 shows internal state at reset (they are the same after system is released from reset). The contents of timers, registers, flags and RAM except shown in Figure 35 are undefined, so set the initial value to them.

Program counter (PC)	
Address 0 in page 0 is set to program counter.	
Interrupt enable flag (INTE)	
Power down flag (P)	
External 0 interrupt request flag (EXF0)	
Interrupt control register V1	
Interrupt control register V2	
Interrupt control register I1	
Timer 1 interrupt request flag (T1F)	0
Timer 2 interrupt request flag (T2F)	0
Watchdog timer flags (WDF1, WDF2)	0
Watchdog timer enable flag (WEF)	1
Timer control register W1	
Timer control register W2	
Timer control register W6	
Clock control register MR	
Key-on wakeup control register K0	
Key-on wakeup control register K1	
Key-on wakeup control register K2	
Pull-up control register PU0	
Pull-up control register PU1	
Pull-up control register PU2	
A-D conversion completion flag (ADF)	0
A-D control register Q1	
• Carry flag (CY)	0
• Register A	
• Register B	
• Register D	XXX
• Register E	
Register X	
• Register Y	
• Register Z	
Stack pointer (SP)	
Oscillation clock	
Ceramic resonator circuit	Operating
RC oscillation circuit	Stop
	"X" represents undefined.

Fig. 35 Internal state at reset

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

RAM BACK-UP MODE

The 4506 Group has the RAM back-up mode.

When the POF2 instruction is executed continuously after the EPOF instruction, system enters the RAM back-up state.

The POF2 instruction is equal to the NOP instruction when the EPOF instruction is not executed before the POF2 instruction.

As oscillation stops retaining RAM, the function of reset circuit and states at RAM back-up mode, current dissipation can be reduced without losing the contents of RAM.

Table 14 shows the function and states retained at RAM back-up. Figure 36 shows the state transition.

(1) Identification of the start condition

Warm start (return from the RAM back-up state) or cold start (return from the normal reset state) can be identified by examining the state of the power down flag (P) with the SNZP instruction.

(2) Warm start condition

When the external wakeup signal is input after the system enters the RAM back-up state by executing the EPOF instruction and POF2 instruction continuously, the CPU starts executing the program from address 0 in page 0. In this case, the P flag is "1."

(3) Cold start condition

The CPU starts executing the program from address 0 in page 0 when;

• reset pulse is input to RESET pin, or

reset by watchdog timer is performed, or

In this case, the P flag is "0."

Table 14 Functions and states retained at RAM back-up

Function	RAM back-up
Program counter (PC), registers A, B, carry flag (CY), stack pointer (SP) (Note 2)	x
Contents of RAM	0
Port level	0
Selected oscillation circuit	0
Timer control register W1	x
Timer control registers W2, W6	0
Clock control register MR	x
Interrupt control registers V1, V2	x
Interrupt control register I1	0
Timer 1 function	x
Timer 2 function	(Note 3)
A-D conversion function	x
A-D control register Q1	0
Pull-up control registers PU0 to PU2	0
Key-on wakeup control registers K0 to K2	0
External 0 interrupt request flag (EXF0)	x
Timer 1 interrupt request flag (T1F)	x
Timer 2 interrupt request flag (T2F)	(Note 3)
Watchdog timer flags (WDF1)	X (Note 4)
Watchdog timer enable flag (WEF)	x
16-bit timer (WDT)	X (Note 4)
A-D conversion completion flag (ADF)	x
Interrupt enable flag (INTE)	x

Notes 1:"O" represents that the function can be retained, and "X" represents that the function is initialized.

Registers and flags other than the above are undefined at RAM back-up, and set an initial value after returning.

- 2: The stack pointer (SP) points the level of the stack register and is initialized to "7" at RAM back-up.
- 3: The state of the timer is undefined.
- 4: Initialize the watchdog timer with the WRST instruction, and then execute the POF2 instruction.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(4) Return signal

An external wakeup signal is used to return from the RAM back-up mode because the oscillation is stopped. Table 15 shows the return condition for each return source.

(5) Control registers

Key-on wakeup control register K0

Register K0 controls the port P0 key-on wakeup function. Set the contents of this register through register A with the TK0A instruction. In addition, the TAK0 instruction can be used to transfer the contents of register K0 to register A.

- Key-on wakeup control register K1 Register K1 controls the port P1 key-on wakeup function. Set the contents of this register through register A with the TK1A instruction. In addition, the TAK1 instruction can be used to transfer the contents of register K0 to register A.
- Key-on wakeup control register K2 Register K2 controls the ports P2, D2/C and D3/K key-on wakeup function. Set the contents of this register through register A with the TK2A instruction. In addition, the TAK2 instruction can be used to transfer the contents of register K2 to register A.

• Pull-up control register PU0

Register PU0 controls the ON/OFF of the port P0 pull-up transistor. Set the contents of this register through register A with the TPU0A instruction.

- Pull-up control register PU1 Register PU1 controls the ON/OFF of the port P1 pull-up transistor. Set the contents of this register through register A with the TPU1A instruction.
- Pull-up control register PU2

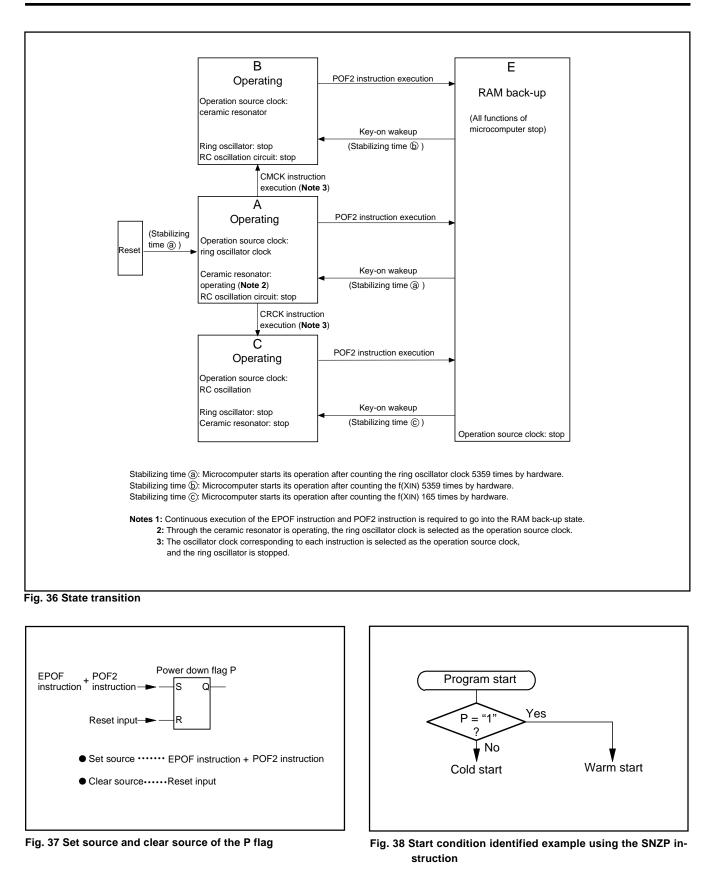
Register PU2 controls the ON/OFF of the ports P2, D2/C and D3/ K pull-up transistor. Set the contents of this register through register A with the TPU2A instruction.

• Interrupt control register I1

Register 11 controls the valid waveform of the external 0 interrupt, the input control of INT pin and the return input level. Set the contents of this register through register A with the TI1A instruction. In addition, the TA11 instruction can be used to transfer the contents of register I1 to register A.

Table 15 Return source and return condition

F	Return source	Return condition	Remarks
signal	Port P0 Port P1 (Note)	Return by an external "L" level in- put.	The key-on wakeup function can be selected by one port unit. Set the port using the key-on wakeup function to "H" level before going into the RAM back-up state.
	Port P2		back-up state.
enp	Ports D2/C, D3/K		
wakeup	Port P13/INT	Return by an external "H" level or	Select the return level ("L" level or "H" level) with the bit 2 of register I1 ac-
External	(Note)	"L" level input. The return level can be selected with the bit 2 (I12) of register I1. When the return level is input, the EXF0 flag is not set.	cording to the external state before going into the RAM back-up state.


Note: When the bit 3 (K13) of register K1 is "0", the key-on wakeup of the INT pin is valid ("H" or "L" level).

It is "1", the key-on wakeup of port P13 is valid ("L" level).

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Key-on wakeup control register K0		at	t reset : 00002	at RAM back-up : state retained	R/W
K03	Port P03 key-on wakeup	0	Key-on wakeup not	used	
KU3	control bit	1	Key-on wakeup use	ed	
1/00	Port P02 key-on wakeup	0 Key-on wakeup not u		used	
K02	control bit	1	Key-on wakeup used		
KOA	Port P01 key-on wakeup	0	Key-on wakeup not	used	
K01	control bit	1	Key-on wakeup use	ed	
KOa	Port P00 key-on wakeup	0	Key-on wakeup not	used	
K00	control bit	1	Key-on wakeup used		

Table 16 Key-on wakeup control register

Key-on wakeup control register K1		at	reset : 00002	at RAM back-up : state retained	R/W
K10	Port P13/INT key-on wakeup	0	P13 key-on wakeup	o not used/INT pin key-on wakeup used	
K13	control bit	1	P13 key-on wakeup	o used/INT pin key-on wakeup not used	
K10	Port P12/CNTR key-on wakeup	0 Key-on wakeup not used			
K12	K12 control bit	1	Key-on wakeup used		
144	Port P11 key-on wakeup	0	Key-on wakeup not used		
K11	control bit	1	Key-on wakeup use	ed	
K10	Port P10 key-on wakeup	0	Key-on wakeup not	tused	
K I U	control bit	1	Key-on wakeup used		

	Key-on wakeup control register K2		reset : 00002	at RAM back-up : state retained	R/W	
K23	Port D3/K key-on wakeup	0	Key-on wakeup not	used		
K23	control bit	1	Key-on wakeup use	ed		
K22	Port D2/C key-on wakeup	0 Key-on wakeup not		t used		
N22	control bit	1 Key-on wakeup used		ed		
K21	Port P21/AIN1 key-on wakeup	0 Key-on wakeup not used				
K 21	control bit	1	Key-on wakeup use	ed		
K Do	Port P20/AIN0 key-on wakeup	0	Key-on wakeup not	used		
K20	control bit	1	Key-on wakeup use	ed		

Note: "R" represents read enabled, and "W" represents write enabled.

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Table 17 Pull-up control register and interrupt control register

	Pull-up control register PU0	at	reset : 00002	at RAM back-up : state retained	W	
DU los	Port P03 pull-up transistor	0	Pull-up transistor O	FF		
PU03	control bit	1	Pull-up transistor O	Ν		
DUIDa	Port P02 pull-up transistor	0	Pull-up transistor O	FF		
PU02	control bit	1	Pull-up transistor O	N		
	Port P01 pull-up transistor	0	Pull-up transistor O	FF		
PU01	control bit	1	Pull-up transistor O	N		
DUIDa	Port P00 pull-up transistor	0	Pull-up transistor O	FF		
PU00	control bit	1	Pull-up transistor O	NC		
Pull-up control register PU1		at	reset : 00002	at RAM back-up : state retained	W	
DUIA	Port P13/INT pull-up transistor	0	Pull-up transistor O	FF		
PU13	control hit	4		NI		

PU13	control bit	1	Pull-up transistor ON
DUIA	Port P12/CNTR pull-up transistor	0	Pull-up transistor OFF
PU12	control bit	1	Pull-up transistor ON
	Port P11 pull-up transistor	0	Pull-up transistor OFF
PU11	control bit	1	Pull-up transistor ON
	Port P10 pull-up transistor	0	Pull-up transistor OFF
PU10	control bit	1	Pull-up transistor ON

	Pull-up control register PU2	at reset : 00002		at RAM back-up : state retained	W	
DUDa	Port D3/K pull-up transistor	0	Pull-up transistor O) FF		
PU23	control bit	1 Pull-up transistor OI		N		
DUDa	Port D2/C pull-up transistor	0 Pull-up transistor O		DFF		
PU22	control bit	1 Pull-up transistor O		Ν		
PU21	Port P21/AIN1 pull-up transistor	0 Pull-up transistor OFF				
P021	control bit	1 Pull-up transistor ON		N		
PU20	Port P20/AIN0 pull-up transistor	0 Pull-up transistor C		FF		
P020	control bit	1	Pull-up transistor O	N		

	Interrupt control register I1		reset : 00002	at RAM back-up : state retained	R/W	
13	113 INT pin input control bit (Note 2)		INT pin input disab	INT pin input disabled		
113		1	INT pin input enab	led		
	Interrupt valid waveform for INT pin/	0	Falling waveform ("L" level of INT pin is recognized wit	th the SNZI0	
12		0	instruction)/"L" level			
112	return level selection bit (Note 2)	1	Rising waveform ("H" level of INT pin is recognized with the SNZI0			
			instruction)/"H" lev	el		
11.4	INIT his adda datastian sireuit control hit	0	0 One-sided edge detected			
111	I11 INT pin edge detection circuit control bit		Both edges detected			
110	INT pin	0	Disabled			
110	timer 1 control enable bit	1	Enabled			

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: When the contents of 112 and 113 are changed, the external interrupt request flag EXF0 may be set. Accordingly, clear EXF0 flag with the SNZ0 instruction when the bit 0 (V10) of register V1 to "0". In this time, set the NOP instruction after the SNZ0 instruction, for the case when a skip is performed with the SNZ0 instruction.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

CLOCK CONTROL

- The clock control circuit consists of the following circuits.
- Ring oscillator (internal oscillator)
- Ceramic oscillator
- RC oscillation circuit
- Multi-plexer (clock selection circuit)
- Frequency divider
- Internal clock generating circuit

The system clock and the instruction clock are generated as the source clock for operation by these circuits.

Figure 39 shows the structure of the clock control circuit.

The 4506 Group operates by the ring oscillator clock (f(RING)) which is the internal oscillator after system is released from reset. Also, the ceramic resonator or the RC oscillation can be used for the source oscillation (f(XIN)) of the 4506 Group. The CMCK instruction or CRCK instruction is executed to select the ceramic resonator or RC oscillator, respectively.

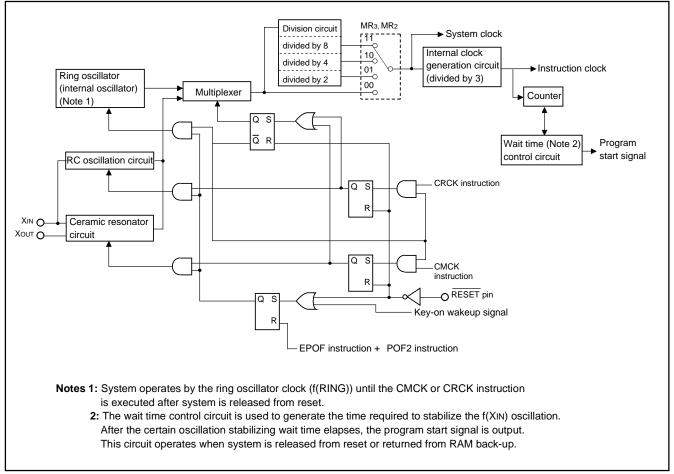


Fig. 39 Clock control circuit structure

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(1) Selection of source oscillation (f(XIN))

The ceramic resonator or RC oscillation can be used for the source oscillation of the MCU.

After system is released from reset, the MCU starts operation by the clock output from the ring oscillator which is the internal oscillator.

When the ceramic resonator is used, execute the CMCK instruction. When the RC oscillation is used, execute the CRCK instruction. The oscillation circuit by the CMCK or CRCK instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these two instructions is valid. Other oscillation circuit and the ring oscillator stop.

Execute the CMCK or the CRCK instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended). Also, when the CMCK or the CRCK instruction is not executed in program, the MCU operates by the ring oscillator.

(2) Ring oscillator operation

When the MCU operates by the ring oscillator as the source oscillation (f(XIN)) without using the ceramic resonator or the RC oscillator, connect XIN pin to VSS and leave XOUT pin open (Figure 41).

The clock frequency of the ring oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

(3) Ceramic resonator

When the ceramic resonator is used as the source oscillation (f(XIN)), connect the ceramic resonator and the external circuit to pins XIN and XOUT at the shortest distance. Then, execute the CMCK instruction. A feedback resistor is built in between pins XIN and XOUT (Figure 42).

(4) RC oscillation

When the RC oscillation is used as the source oscillation (f(XIN)), connect the XIN pin to the external circuit of resistor R and the capacitor C at the shortest distance and leave XOUT pin open. Then, execute the CRCK instruction (Figure 43).

The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

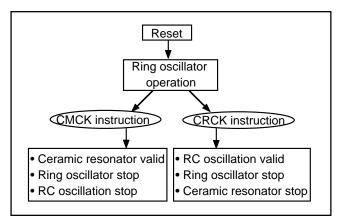


Fig. 40 Switch to ceramic resonance/RC oscillation

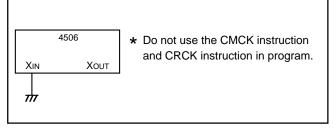
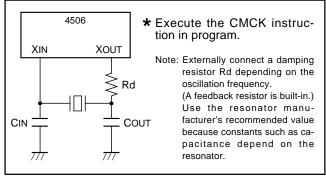
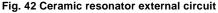




Fig. 41 Handling of XIN and XOUT when operating ring oscillator

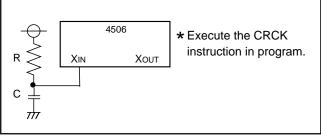


Fig. 43 External RC oscillation circuit

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(5) External clock

When the external signal clock is used as the source oscillation (f(XIN)), connect the XIN pin to the clock source and leave XOUT pin open. Then, execute the CMCK instruction (Figure 44).

Be careful that the maximum value of the oscillation frequency when using the external clock differs from the value when using the ceramic resonator (refer to the recommended operating condition). Also, note that the RAM back-up mode (POF2 instruction) cannot be used when using the external clock.

(6) Clock control register MR

Register MR controls system clock. Set the contents of this register through register A with the TMRA instruction. In addition, the TAMR instruction can be used to transfer the contents of register MR to register A.

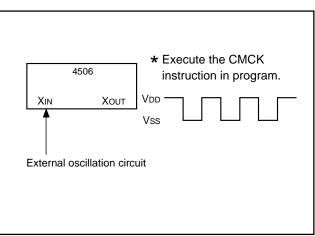


Fig. 44 External clock input circuit

Table 17 Clock control register MR

Clock control register MR		at reset : 11002		reset : 11002	at RAM back-up : 11002	R/W
		MR3	MR2	System clock		
MR3		0	0	f(XIN) (high-speed n	node)	
	System clock selection bits	0	1	f(XIN)/2 (middle-speed mode)		
MR2		1	0	f(XIN)/4 (low-speed mode)		
		1	1	f(XIN)/8 (default mo	de)	
MR1	Not used	0				
	IMR1 Not used		1 This bit has no fund		tion, but read/write is enabled.	
MRo	MR0 Not used		0			
WINU	Not used	1		This bit has no function, but read/write is enabled.		

Note : "R" represents read enabled, and "W" represents write enabled.

ROM ORDERING METHOD

Please submit the information described below when ordering Mask ROM.

- (three sets containing the identical data)
- (3) Mark Specification Form 1

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

LIST OF PRECAUTIONS

① Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up;

- connect a bypass capacitor (approx. 0.1 $\mu\text{F})$ between pins VDD and Vss at the shortest distance,
- equalize its wiring in width and length, and

• use relatively thick wire.

In the One Time PROM version, CNVss pin is also used as VPP pin. Accordingly, when using this pin, connect this pin to Vss through a resistor about 5 k Ω (connect this resistor to CNVss/VPP pin as close as possible).

②Register initial values 1

The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values.

- Register Z (2 bits)
- Register D (3 bits)
- Register E (8 bits)

③Register initial values 2

The initial value of the following registers are undefined at RAM back-up. After system is returned from RAM back-up, set initial values.

- Register Z (2 bits)
- Register X (4 bits)
- Register Y (4 bits)
- Register D (3 bits)
- Register E (8 bits)

④ Stack registers (SKs) and stack pointer (SP)

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together.

5 Prescaler

Stop the prescaler operation to change its frequency dividing ratio.

6 Timer count source

Stop timer 1 or 2 counting to change its count source.

⑦ Reading the count value

Stop timer 1 or 2 counting and then execute the TAB1 or TAB2 instruction to read its data.

Writing to the timer

Stop timer 1 or 2 counting and then execute the T1AB or T2AB instruction to write its data.

Writing to reload register R1

When writing data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.

[®]Watchdog timer

- The watchdog timer function is valid after system is released from reset. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously, and clear the WEF flag to "0" to stop the watchdog timer function.
- The watchdog timer function is valid after system is returned from the RAM back-up. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously every system is returned from the RAM back-up, and stop the watchdog timer function.

10 Multifunction

- The input/output of D2, D3, P12 and P13 can be used even when C, K, INT and CNTR (input) are selected.
- The input of P12 can be used even when CNTR (output) is selected.
- The input/output of P20 and P21 can be used even when AIN0 and AIN1 are selected.

¹² Program counter

Make sure that the PCH does not specify after the last page of the built-in ROM.

¹³POF2 instruction

When the POF2 instruction is executed continuously after the EPOF instruction, system enters the RAM back-up state.

Note that system cannot enter the RAM back-up state when executing only the POF2 instruction.

Be sure to disable interrupts by executing the DI instruction before executing the EPOF instruction and the POF2 instruction continuously.

^{(III}) P13/INT pin

Note [1] on bit 3 of register I1

When the input of the INT pin is controlled with the bit 3 of register 11 in software, be careful about the following notes.

Depending on the input state of the P13/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 45⁽¹⁾) and then, change the bit 3 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag after executing at least one instruction (refer to Figure 45⁽²⁾). Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 45⁽³⁾).

	:	
	LA	4 ; (XXX 02)
	TV1A	; The SNZ0 instruction is valid ${f I}$
	LA	8 ; (1 XXX 2)
	TI1A	; Control of INT pin input is changed
	NOP	
	SNZ0	; The SNZ0 instruction is executed
		(EXF0 flag cleared)
	NOP	3
	:	X : these bits are not used here.
ł	ig. 45 Extern	al 0 interrupt program example-1

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Note [2] on bit 3 of register I1

When the bit 3 of register I1 is cleared, the RAM back-up mode is selected and the input of INT pin is disabled, be careful about the following notes.

When the key-on wakeup function of port P13 is not used (register K13 = "0"), clear bits 2 and 3 of register I1 before system enters to the RAM back-up mode. (refer to Figure 46⁽¹⁾).

:						
LA	0	; (00XX2)				
TI1A		; Input of INT disabled①				
DI						
EPOF						
POF2		; RAM back-up				
:						
X : these bits are not used here.						

Fig. 46 External 0 interrupt program example-2

Note [3] on bit 2 of register I1

When the interrupt valid waveform of the P13/INT pin is changed with the bit 2 of register I1 in software, be careful about the following notes.

Depending on the input state of the P13/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 47⁽¹⁾) and then, change the bit 2 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag after executing at least one instruction (refer to Figure 47@). Also, set the NOP instruction for the case when a skip is per-

formed with the SNZ0 instruction (refer to Figure 47³).

:								
LA	4	; (XXX02)						
TV1A		; The SNZ0 instruction is valid						
LA	12							
TI1A		; Interrupt valid waveform is changed						
NOP								
SNZ0		; The SNZ0 instruction is executed						
		(EXF0 flag cleared)						
NOP		3						
:								
x :	X : these bits are not used here.							

Fig. 47 External 0 interrupt program example-3

Clock control

Execute the CMCK or the CRCK instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended).

The oscillation circuit by the CMCK or CRCK instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these two instruction is valid. Other oscillation circuits and the ring oscillator stop.

⁶Ring oscillator

The clock frequency of the ring oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

Also, the oscillation stabilize wait time after system is released from reset is generated by the ring oscillator clock. When considering the oscillation stabilize wait time after system is released from reset, be careful that the variable frequency of the ring oscillator clock.

C External clock

When the external signal clock is used as the source oscillation (f(XIN)), note that the RAM back-up mode (POF2 instructions) cannot be used.

Notes for the use of A-D conversion 1

Note the following when using the analog input pins also for port P2 function:

• Selection of analog input pins

Even when P20/AIN0 and P21/AIN1 are set to pins for analog input, they continue to function as port P2 input/output. Accordingly, when any of them are used as I/O port and others are used as analog input pins, make sure to set the outputs of pins that are set for analog input to "1." Also, the port input function of the pin functions as an analog input is undefined.

TALA instruction

When the TALA instruction is executed, the low-order 2 bits of register AD is transferred to the high-order 2 bits of register A, simultaneously, the low-order 2 bits of register A is "0."

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

⁽⁹⁾ Notes for the use of A-D conversion 2

Do not change the operating mode (both A-D conversion mode and comparator mode) of A-D converter with the bit 3 of register Q1 while the A-D converter is operating.

When the operating mode of A-D converter is changed from the comparator mode to A-D conversion mode with the bit 3 of register Q1, note the following;

- Clear the bit 2 of register V2 to "0" (refer to Figure 48⁽¹⁾) to change the operating mode of the A-D converter from the comparator mode to A-D conversion mode with the bit 3 of register Q1.
- The A-D conversion completion flag (ADF) may be set when the operating mode of the A-D converter is changed from the comparator mode to the A-D conversion mode. Accordingly, set a value to the bit 3 of register Q1, and execute the SNZAD instruction to clear the ADF flag.

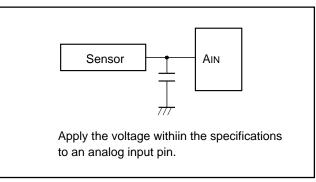

LA 8	; (X 0 X X ₂)						
TV2A	; The SNZAD instruction is valid ①						
LA 0	; (0 XXX 2)						
TQ1A	; Operation mode of A-D converter is						
	changed from comparator mode to A-D						
	conversion mode.						
SNZAD							
NOP							
:							
	X : this bit is not related to change the operation mode of A-D converter.						

Fig. 48 External 0 interrupt program example-3

1 Notes for the use of A-D conversion 3

Each analog input pin is equipped with a capacitor which is used to compare the analog voltage. Accordingly, when the analog voltage is input from the circuit with high-impedance and, charge/ discharge noise is generated and the sufficient A-D accuracy may not be obtained. Therefore, reduce the impedance or, connect a capacitor (0.01 μ F to 1 μ F) to analog input pins (Figure 49).

When the overvoltage applied to the A-D conversion circuit may occur, connect an external circuit in order to keep the voltage within the rated range as shown the Figure 50. In addition, test the application products sufficiently.

Fig. 49 Analog input external circuit example-1

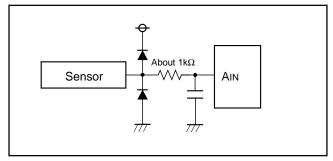


Fig. 50 Analog input external circuit example-2

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

CONTROL REGISTERS

	Interrupt control register V1		reset : 00002	at RAM back-up : 00002	R/W
V13	Timer 2 interrupt enable bit	0	Interrupt disabled (SNZT2 instruction is valid)	
V13	Timer 2 interrupt enable bit	1	Interrupt enabled (SNZT2 instruction is invalid) (Note 2	2)
V12	Timer 1 interrupt enable bit	0	Interrupt disabled (SNZT1 instruction is valid)		
V 12		1	Interrupt enabled (SNZT1 instruction is invalid) (Note 2	2)
V11	Not used	0	This bit has no function, but read/write is enabled.		
V I 1		1			
V10	External 0 interrupt enable bit	0	Interrupt disabled (SNZ0 instruction is valid)	
V 10		1	Interrupt enabled (SNZ0 instruction is invalid) (Note 2)	

	Interrupt control register V2		reset : 00002	at RAM back-up : 00002	R/W
V23	Not used	0			
VZ3		1	I his bit has no tun	ction, but read/write is enabled.	
1/20	A-D interrupt enable bit	0	Interrupt disabled (SNZAD instruction is valid)		
V22		1	Interrupt enabled (SNZAD instruction is invalid) (Note 2)		
Vor	Not used	0	This bit has no function, but read/write is enabled.		
V21		1			
1/00	Not used	0	This bit has no function, but read/write is enabled.		
V20		1			

	Interrupt control register I1		reset : 00002	at RAM back-up : state retained	R/W
13	INT sis issue control bit (Note 2)		INT pin input disab	led	
113	INT pin input control bit (Note 3)	1	INT pin input enab	led	
112	Interrupt valid waveform for INT pin/ return level selection bit (Note 3)	orm for INT pin/ 0 Falling waveform ("L" level of INT pin instruction)/"L" level			th the SNZI0
112		1	Rising waveform (' instruction)/"H" lev	Ή" level of INT pin is recognized win el	th the SNZI0
111	INT pip adda dataction circuit control bit	0	One-sided edge de	etected	
111	INT pin edge detection circuit control bit	1	Both edges detect	ed	
110	INT pin	0	Disabled		
110	timer 1 control enable bit	1	Enabled		

	Clock control register MR		at reset : 11002		at RAM back-up : 11002	R/W
		MRз	MR2		System clock	·
MR3		0	0	f(XIN) (high-speed n	node)	
	System clock selection bits	0	1	f(XIN)/2 (middle-speed mode)		
MR2		1	0	f(XIN)/4 (low-speed mode)		
		1	1	f(XIN)/8 (default mo	de)	
MR1	Netword)			
IVITS 1	Not used	1		This bit has no function, but read/write is enabled.		
MRo	Not used	0				
IVIICO	Not used	1	1	This bit has no function, but read/write is enabled.		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: These instructions are equivalent to the NOP instruction.

3: When the contents of I12 and I13 are changed, the external interrupt request flag EXF0 may be set. Accordingly, clear EXF0 flag with the SNZ0 instruction when the bit 0 (V10) of register V1 to "0". In this time, set the NOP instruction after the SNZ0 instruction, for the case when a skip is performed with the SNZ0 instruction.

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

	Timer control register W1		reset : 00002	at RAM back-up : 00002	R/W	
W13	V13 Prescaler control bit		Stop (state initialize	Stop (state initialized)		
VV 13		1	Operating	Operating		
W12	Prescaler dividing ratio selection bit	0	Instruction clock divided by 4			
VVIZ		1	Instruction clock divided by 16			
W11	Timer 1 control bit	0	Stop (state retained	d)		
VV I 1		1	Operating			
W10	Timer 1 count start synchronous circuit control bit	0	Count start synchronous circuit not selected			
VVIU		1	Count start synchro	onous circuit selected		

	Timer control register W2		at	reset : 00002	at RAM back-up : state retained	R/W
W23	Timer 2 control bit	(0 Stop (state retained)		d)	
1125		1		Operating		
W22	Timer 1 count auto-stop circuit selection	0		0 Count auto-stop circuit not selected		
1122	bit (Note 2)		1	Count auto-stop circuit selected		
			W20		Count source	
W21	Timer 2 count source selection bits	0	0	Timer 1 underflow	signal	
		0	1	Prescaler output (C	DRCLK)	
W20		1	0	CNTR input		
		1	1	System clock		

	Timer control register W6		reset : 00002	at RAM back-up : state retained	R/W
W63	Not used	0	This bit has no function, but read/write is enabled.		
		1			
W62	Not used	0	This bit has no function, but read/write is enabled.		
VV02		1			
W61	CNTR output selection bit	0	Timer 1 underflow	signal divided by 2 output	
VVO1		1	Timer 2 underflow signal divided by 2 output		
W60	P12/CNTR function selection bit	0	P12(I/O)/CNTR input (Note 3)		
VV00		1	P12 (input)/CNTR input/output (Note 3)		

	A-D control register Q1		at	reset : 00002	at RAM back-up : state retained	R/W
Q13	A D encention mode calestics bit)	A-D conversion mode		
Q13	A-D operation mode selection bit	1		Comparator mode		
Q12	Not used	0		This bit has no function, but read/write is enabled.		
			Q10		Selected pins	
Q11	Analog input pin selection bits	0	0	AINO		
		0	1	AIN1		
Q10		1	0	Not available		
QIO		1	1	Not available		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: This function is valid only when the timer 1 count start synchronization circuit is selected.
 3: CNTR input is valid only when CNTR input is selected as the timer 2 count source.

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Key-on wakeup control register K0		at reset : 00002		at RAM back-up : state retained	R/W		
KOo	Port P03 key-on wakeup	0 Key-on wakeup not used		used			
K03	control bit	1	1 Key-on wakeup used				
K02	Port P02 key-on wakeup	0	Key-on wakeup not used				
K02	control bit	1	1 Key-on wakeup used				
K01	Port P01 key-on wakeup	0	Key-on wakeup not used				
KU 1	control bit	1	Key-on wakeup used				
K00	Port P00 key-on wakeup	0	Key-on wakeup not used				
control bit		1	Key-on wakeup used				

	Key-on wakeup control register K1		reset : 00002	at RAM back-up : state retained	R/W		
K10	Port P13/INT key-on wakeup	0	P13 key-on wakeup	not used/INT pin key-on wakeup used			
K13	control bit	1	P13 key-on wakeup used/INT pin key-on wakeup not used				
K10	Port P12/CNTR key-on wakeup	0	Key-on wakeup not used				
K 12	K12 control bit		Key-on wakeup used				
K 44	Port P11 key-on wakeup	0	Key-on wakeup not	used			
K11	control bit	1	Key-on wakeup used				
K10	Port P10 key-on wakeup	0	Key-on wakeup not used				
r 10	K10 control bit		Key-on wakeup used				

Key-on wakeup control register K2		at reset : 00002		at RAM back-up : state retained	R/W		
K23	Port D3/K key-on wakeup	0	Key-on wakeup not	used			
NZ3	control bit	1	Key-on wakeup used				
K22	Port D2/C key-on wakeup	0	Key-on wakeup not used				
N22	control bit	1	ed				
K21	Port P21/AIN1 key-on wakeup	0	Key-on wakeup not used				
NZ1	control bit	1	Key-on wakeup used				
K20	Port P20/AIN0 key-on wakeup	0	Key-on wakeup not used				
control bit		1	Key-on wakeup used				

Note: "R" represents read enabled, and "W" represents write enabled.

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Pull-up control register PU0		at reset : 00002		at RAM back-up : state retained	W		
	Port P03 pull-up transistor	0 Pull-up transistor O		 DFF			
PU03	control bit	1	Pull-up transistor ON				
DUO	Port P02 pull-up transistor	0	Pull-up transistor OFF				
PU02	control bit	1	Pull-up transistor ON				
DU O.	Port P01 pull-up transistor	0	Pull-up transistor OFF				
PU01	control bit	1	Pull-up transistor ON				
DUOs	Port P00 pull-up transistor	0	Pull-up transistor OFF				
PU00	control bit	1	Pull-up transistor ON				

Pull-up control register PU1		at reset : 00002		at RAM back-up : state retained	W		
PU13	Port P13/INT pull-up transistor	0	Pull-up transistor O	FF			
P013	control bit	1	1 Pull-up transistor ON				
DUIA	Port P12/CNTR pull-up transistor	0	Pull-up transistor OFF				
PU12 control bit		1	Pull-up transistor ON				
PU11	Port P11 pull-up transistor	0	Pull-up transistor OFF				
PUII	control bit	1	Pull-up transistor ON				
PU10	Port P10 pull-up transistor	0	Pull-up transistor OFF				
PU10	control bit	1	Pull-up transistor ON				

	Pull-up control register PU2	at reset : 00002		at RAM back-up : state retained	W	
PU23	Port D3/K pull-up transistor	0 Pull-up transistor OFF				
P023	control bit	1	1 Pull-up transistor ON			
DUDa	Port D2/C pull-up transistor	0	Pull-up transistor OFF			
PU22	control bit	1	Pull-up transistor O	Ν		
DU0.	Port P21/AIN1 pull-up transistor	0	Pull-up transistor O	FF		
PU21	control bit	1	Pull-up transistor O	N		
PU20	Port P20/AIN0 pull-up transistor	0	Pull-up transistor OFF			
P020	control bit	1	N			

Notes 1: "R" represents read enabled, and "W" represents write enabled.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

INSTRUCTIONS

The 4506 Group has the 110 instructions. Each instruction is described as follows;

(1) Index list of instruction function

- (2) Machine instructions (index by alphabet)
- (3) Machine instructions (index by function)

(4) Instruction code table

SYMBOL

The symbols shown below are used in the following list of instruction function and the machine instructions.

Symbol	Contents	Symbol	Contents
А	Register A (4 bits)	WDF1	Watchdog timer flag
В	Register B (4 bits)	WEF	Watchdog timer enable flag
DR	Register D (3 bits)	INTE	Interrupt enable flag
E	Register E (8 bits)	EXF0	External 0 interrupt request flag
Q1	A-D control register Q1 (4 bits)	Р	Power down flag
V1	Interrupt control register V1 (4 bits)	ADF	A-D conversion completion flag
V2	Interrupt control register V2 (4 bits)		
11	Interrupt control register I1 (4 bits)	D	Port D (4 bits)
W1	Timer control register W1 (4 bits)	P0	Port P0 (4 bits)
W2	Timer control register W2 (4 bits)	P1	Port P1 (4 bits)
W6	Timer control register W6 (4 bits)	P2	Port P2 (2 bits)
MR	Clock control register MR (4 bits)	С	Port C (1 bit)
К0	Key-on wakeup control register K0 (4 bits)	к	Port K (1 bit)
K1	Key-on wakeup control register K1 (4 bits)		
К2	Key-on wakeup control register K2 (4 bits)	x	Hexadecimal variable
PU0	Pull-up control register PU0 (4 bits)	у	Hexadecimal variable
PU1	Pull-up control register PU1 (4 bits)	z	Hexadecimal variable
PU2	Pull-up control register PU2 (4 bits)	р	Hexadecimal variable
х	Register X (4 bits)	n	Hexadecimal constant
Y	Register Y (4 bits)	i	Hexadecimal constant
z	Register Z (2 bits)	j	Hexadecimal constant
DP	Data pointer (10 bits)	A3A2A1A0	Binary notation of hexadecimal variable A
	(It consists of registers X, Y, and Z)		(same for others)
PC	Program counter (14 bits)		
РСн	High-order 7 bits of program counter	\leftarrow	Direction of data movement
PCL	Low-order 7 bits of program counter	\leftrightarrow	Data exchange between a register and memory
SK	Stack register (14 bits X 8)	?	Decision of state shown before "?"
SP	Stack pointer (3 bits)	()	Contents of registers and memories
CY	Carry flag	—	Negate, Flag unchanged after executing instruction
R1	Timer 1 reload register	M(DP)	RAM address pointed by the data pointer
R2	Timer 2 reload register	а	Label indicating address a6 a5 a4 a3 a2 a1 a0
T1	Timer 1	p, a	Label indicating address a6 a5 a4 a3 a2 a1 a0
T2	Timer 2		in page p5 p4 p3 p2 p1 p0
T1F	Timer 1 interrupt request flag	С	Hex. C + Hex. number x (also same for others)
T2F	Timer 2 interrupt request flag	+	
		x	

Note : Some instructions of the 4506 Group has the skip function to unexecute the next described instruction. The 4506 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Group Group Mnemonic Function Page Mnemonic Function Page ing ing TAB $(A) \leftarrow (B)$ 75, 88 XAMI j $(\mathsf{A}) \leftarrow \to (\mathsf{M}(\mathsf{DP}))$ 87, 88 RAM to register transfer $(X) \leftarrow (X) EXOR(j)$ ТВА $(B) \leftarrow (A)$ 81,88 i = 0 to 15 $(Y) \leftarrow (Y) + 1$ TAY $(A) \leftarrow (Y)$ 81,88 ТМА ј $(M(DP)) \leftarrow (A)$ 83, 88 TYA $(Y) \leftarrow (A)$ 86, 88 $(X) \leftarrow (X) \mathsf{EXOR}(j)$ j = 0 to 15 TEAB $(E7-E4) \leftarrow (B)$ 82, 88 $(E_3-E_0) \leftarrow (A)$ LA n (A) ← n 66, 90 Register to register transfer n = 0 to 15 TABE $(\mathsf{B}) \leftarrow (\mathsf{E}_7-\mathsf{E}_4)$ 76, 88 $(\mathsf{A}) \gets (\mathsf{E3-E0})$ TABP p $(SP) \leftarrow (SP) + 1$ 76, 90 $(SK(SP)) \leftarrow (PC)$ TDA $(DR_2-DR_0) \leftarrow (A_2-A_0)$ 81,88 $(PCH) \leftarrow p (Note)$ $(PCL) \leftarrow (DR2 - DR0, A3 - A0)$ TAD $(A_2-A_0) \leftarrow (DR_2-DR_0)$ 76, 88 $(B) \leftarrow (ROM(PC))_{7-4}$ $(A_3) \leftarrow 0$ $(A) \leftarrow (ROM(PC))_{3-0}$ $(\mathsf{PC}) \leftarrow (\mathsf{SK}(\mathsf{SP}))$ TAZ $(A1, A0) \leftarrow (Z1, Z0)$ 81, 88 $(SP) \leftarrow (SP) - 1$ (A3, A2) ← 0 AM $(A) \leftarrow (A) + (M(DP))$ 60, 90 TAX $(A) \leftarrow (X)$ 80, 88 60, 90 AMC $(A) \leftarrow (A) + (M(DP)) + (CY)$ TASP 79, 88 $(A_2-A_0) \leftarrow (SP_2-SP_0)$ $(CY) \leftarrow Carry$ $(A_3) \leftarrow 0$ Arithmetic operation A n 60, 90 $(A) \leftarrow (A) + n$ LXY x, y $(X) \leftarrow x x = 0 \text{ to } 15$ 66, 88 n = 0 to 15 $(Y) \leftarrow y y = 0 \text{ to } 15$ RAM addresses AND $(A) \leftarrow (A) AND (M(DP))$ 61,90 LZ z $(Z) \leftarrow z z = 0 \text{ to } 3$ 66, 88 OR $(A) \leftarrow (A) \text{ OR } (M(DP))$ 68, 90 INY $(Y) \leftarrow (Y) + 1$ 66, 88 SC $(CY) \leftarrow 1$ 71,90 DEY 63, 88 $(Y) \leftarrow (Y) - 1$ RC $(CY) \leftarrow 0$ 69,90 $(A) \leftarrow (M(DP))$ TAM j 78, 88 $(X) \leftarrow (X) EXOR(j)$ SZC (CY) = 0 ?74, 90 j = 0 to 15 RAM to register transfer CMA $(A) \leftarrow (\overline{A})$ 63,90 XAM j $(\mathsf{A}) \leftarrow \to (\mathsf{M}(\mathsf{DP}))$ 86, 88 $(X) \leftarrow (X) EXOR(j)$ RAR \rightarrow CY \rightarrow A3A2A1A0 68, 90 j = 0 to 15 XAMD j $(\mathsf{A}) \leftarrow \to (\mathsf{M}(\mathsf{DP}))$ 87,88 $(X) \leftarrow (X) EXOR(j)$ j = 0 to 15 $(Y) \leftarrow (Y) - 1$

INDEX LIST OF INSTRUCTION FUNCTION

Note: p is 0 to 15 for M34506M2,

p is 0 to 31 for M34506M4/E4.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Group- ing	Mnemonic	Function	Page	Group- ing	Mnemonic	Function	Page
	SB j	(Mj(DP)) ← 1	70, 90		DI	$(INTE) \leftarrow 0$	64, 94
_		j = 0 to 3					64.04
Bit operation	RB j	 (Mj(DP)) ← 0	69, 90		EI	(INTE) ← 1	64, 94
pera	· ,	j = 0 to 3	,		SNZ0	V10 = 0: (EXF0) = 1 ?	72, 94
Bito						After skipping, (EXF0) \leftarrow 0	
	SZB j	(Mj(DP)) = 0 ?	74, 90			V10 = 1: SNZ0 = NOP	
		j = 0 to 3			SNZI0	l12 = 1 : (INT) = "H" ?	73, 94
u c	SEAM	(A) = (M(DP)) ?	72, 90	atior		$I_{12} = 0 : (INT) = "L"$?	,
Comparison operation				ppera			
omp	SEA n	(A) = n?	71, 90	upt e	TAV1	$(A) \leftarrow (V1)$	79, 94
ΟĞ		n = 0 to 15		Interrupt operation	TV1A	$(V1) \leftarrow (A)$	85, 94
	Ва	(PCL) ← a6–a0	61, 92	<u> </u>			, -
ion					TAV2	$(A) \leftarrow (V2)$	79, 94
berat	BL p, a	$(PCH) \leftarrow p (Note)$	61, 92		TV2A		95 04
do ri		(PCL) ← a6–a0			IVZA	(V2) ← (A)	85, 94
Branch operation	BLA p	(РСн) \leftarrow р (Note)	61, 92		TAI1	$(A) \leftarrow (I1)$	77, 94
В		$(PCL) \leftarrow (DR2-DR0, A3-A0)$					
	BM a	(SP) ← (SP) + 1	62, 92		TI1A	$(I1) \leftarrow (A)$	82, 94
	Divi a	$(SF) \leftarrow (SF) + 1$ $(SK(SP)) \leftarrow (PC)$	02, 92		TAW1	(A) ← (W1)	80, 94
		(PCH) ← 2					
_		$(PCL) \leftarrow a6-a0$			TW1A	$(W1) \leftarrow (A)$	85, 94
Subroutine operation	BML p, a	 (SP) ← (SP) + 1	62, 92		TAW2	(A) ← (W2)	80, 94
oper	p,	$(SK(SP)) \leftarrow (PC)$	-,				
ine o		$(PCH) \gets p \; (Note)$			TW2A	$(W2) \leftarrow (A)$	85, 94
rout		(PCL) ← a6–a0			TANAG		80.04
Sub	BMLA p	(SP) ← (SP) + 1	62, 92		TAW6	(A) ← (W6)	80, 94
		$(SK(SP)) \leftarrow (PC)$	- , -		TW6A	$(W6) \leftarrow (A)$	86, 94
		$(PCH) \gets p \; (Note)$		tion			
		$(PCL) \leftarrow (DR2-DR0, A3-A0)$		pera	TAB1	$(B) \leftarrow (T17 - T14)$ $(A) \leftarrow (T13 - T10)$	75, 94
	RTI	$(PC) \leftarrow (SK(SP))$	70, 92	Timer operation			
		$(SP) \leftarrow (SP) - 1$		Lig	T1AB	(R17–R14) ← (B)	74, 94
						$(T17-T14) \leftarrow (B)$	
	RT	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	70, 92			(R13–R10) ← (A) (T13–T10) ← (A)	
Return operation							
	RTS	$(PC) \gets (SK(SP))$	70, 92		TAB2	(B) ← (T27–T24)	75, 94
		$(SP) \leftarrow (SP) - 1$				(A) ← (T23–T20)	
tetur					T2AB	(R27–R24) ← (B)	75, 94
Ľ						$(T27-T24) \leftarrow (B)$	
						(R23–R20) ← (A)	
	0 to 15 for M					(T23−T20) ← (A)	

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Note: p is 0 to 15 for M34506M2, p is 0 to 31 for M34506M4/E4.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Group- ing	Mnemonic	F INSTRUCTION FUNCT Function	Page		Group- ing	Mnemonic	Function	Page
	TR1AB	$(R17-R14) \leftarrow (B)$ $(R13-R10) \leftarrow (A)$	84, 94		ing	IAK	(A0) ← (K) (A3–A1) ← 0	65, 96
Timer operation	SNZT1	V12 = 0: (T1F) = 1 ? After skipping, (T1F) \leftarrow 0	73, 94			ОКА	(K) ← (A0)	67, 96
ner op(V12 = 1: SNZT1 = NOP				ткоа	(K0) ← (A)	82, 96
Tin	SNZT2	V13 = 0: (T2F) = 1 ? After skipping, (T2F) \leftarrow 0 V13 = 1: SNZT2 = NOP	73, 94		eration	TAK0 TK1A	(A) ← (K0) (K1) ← (A)	77, 96 82, 96
	IAP0	(A) ← (P0)	65, 96	-	Input/Output operation	TAK1	(A) ← (K1)	77, 96
	OP0A	$(P0) \gets (A)$	67, 96		nput/Ou	TK2A	(K2) ← (A)	83, 96
	IAP1	$(A) \gets (P1)$	65, 96		_	TAK2	(A) ← (K2)	78, 96
	OP1A	$(P1) \gets (A)$	67, 96			TPU0A	(PU0) ← (A)	83, 96
	IAP2	$(A1, A0) \leftarrow (P21, P20)$ $(A3, A2) \leftarrow 0$	65, 96			TPU1A	(PU1) ← (A)	84, 96
	OP2A	(P21, P20) ← (A1, A0)	68, 96			TPU2A	(PU2) ← (A)	84, 96
	CLD	(D) ← 1	62, 96			TABAD	In A-D conversion mode (Q13 = 0), (B) \leftarrow (AD9-AD6)	76, 98
ion	RD	$(D(Y)) \leftarrow 0$ (Y) = 0 to 3	69, 96				$\begin{array}{l} (A) \leftarrow (AD5AD2)\\ \text{In comparator mode (Q13 = 1),}\\ (B) \leftarrow (AD7AD4)\\ (A) \leftarrow (AD3AD0) \end{array}$	
out operat	SD	$(D(Y)) \leftarrow 1$ (Y) = 0 to 3	71, 96			TALA	$(A_3, A_2) \leftarrow (AD_1, AD_0)$ $(A_1, A_0) \leftarrow 0$	78, 98
Input/Output operation	SZD	(D(Y)) = 0 ? (Y) = 0 to 3	74, 96		tion	TADAB	$(AD7-AD4) \leftarrow (B)$ $(AD3-AD0) \leftarrow (A)$	77, 98
	SCP	(C) ← 1	71, 96		i opera	TAQ1	$(A) \leftarrow (Q1)$	79, 98
	RCP	$(C) \leftarrow 0$	69, 96		iversior	TQ1A	$(Q1) \leftarrow (A)$	84, 98
	SNZCP	(C) = 1 ?	72, 96		A-D conversion operation	ADST	$(ADF) \leftarrow 0$	60, 98
							Q13 = 0: A-D conversion starting Q13 = 1: Comparator operation starting	
						SNZAD	V22 = 0: (ADF) = 1 ? After skipping, (ADF) \leftarrow 0 V22 = 1: SNZAD = NOP	72, 98

INDEX LIST OF INSTRUCTION FUNCTION (continued)

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

INDEX LIST O	F INSTRUCTION FUNCT	ION (coi	ntinued)
Group-			_

Group- ing	Mnemonic	Function	Page
	NOP	$(PC) \leftarrow (PC) + 1$	67, 98
	POF2	RAM back-up	68, 98
	EPOF	POF2 instructions valid	64, 98
	SNZP	(P) = 1 ?	73, 98
	DWDT	Stop of watchdog timer func- tion enabled	64, 98
eration	WRST	(WDF1) = 1 ? After skipping, (WDF1) \leftarrow 0	86, 98
Other operation	СМСК	Ceramic oscillation circuit selected	63, 98
	CRCK	RC oscillation circuit selected	63, 98
	TAMR	$(A) \gets (MR)$	78, 98
	TMRA	$(MR) \leftarrow (A)$	83, 98

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

MACHINE INSTRUCTIONS (INDEX BY ALPHABET)

A n (Add n	and accumulator)				
Instruction code	D9 D0 0 0 0 1 1 0 n n n n n 0 0 6 n 40	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 1 0 1 1 1 1 2 0 0 1 16	1	1	-	Overflow = 0
Operation:	$(A) \leftarrow (A) + n$	Grouping:	Arithmetic	operation	
-	n = 0 to 15		: Adds the	/alue n in	the immediate field to
			register A,	and stores	a result in register A.
			The contents	s of carry fla	g CY remains unchanged.
					ction when there is no
					t of operation.
					struction when there is
			overflow as	s the resul	t of operation.
ADST (A-D	conversion STart)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 0 1 1 1 1 1 <u>2</u> 2 9 F 16	words	cycles		
		1	1	-	-
Operation:	$(ADF) \leftarrow 0$	Grouping:	A-D conve	rsion opera	ation
	Q13 = 0: A-D conversion starting		: Clears (0)	to A-D c	onversion completion
	Q13 = 1: Comparator operation starting		flag ADF, a	ind the A-D	conversion at the A-D
	(Q13 : bit 3 of A-D control register Q1)				3 = 0) or the compara-
					comparator mode (Q13
			= 1) is star	ted.	
	ccumulator and Memory)	1		1	
Instruction		Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 0 1 0 1 0 2 0 0 A 16	1			
		1	1		_
Operation:	$(A) \leftarrow (A) + (M(DP))$	Grouping:	Arithmetic	operation	
		Description			f M(DP) to register A.
					egister A. The contents
			of carry fla	g CY rema	ains unchanged.
AMC (Add	accumulator, Memory and Carry)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles		entp containen
		1	1	0/1	-
Operation:	$(A) \leftarrow (A) + (M(DP)) + (CY)$	Crouning	Arithmatia	onorotion	
Operation.	$(A) \leftarrow (A) + (M(DF)) + (CT)$ $(CY) \leftarrow Carry$	Grouping:	Arithmetic		f M(DP) and carry flag
		Description			res the result in regis-
			ter A and c		-
				,	

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

AND (logic	al AND between accumulator and memory)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 1 0 0 0 2 0 1 8 16	words	cycles 1	_	
			•		
Operation:	$(A) \leftarrow (A) AND (M(DP))$	Grouping:	Arithmetic		
		Description			ation between the con-
					and the contents of
			M(DP), an	d stores th	e result in register A.
B a (Branc	h to address a)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 1 1 a6 a5 a4 a3 a2 a1 a0 1 8 a	words	cycles		•
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	-	-
Operation:	(PCL) ← a6 to a0	Grouping:	Branch op	eration	
-		Description			: Branches to address
			a in the identical page.		
		Note:			ddress within the page
			including t	his instruct	ion.
	anch Long to address a in page p)				
Instruction		Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 1 1 1 p4 p3 p2 p1 p0 2 0 ^E p 1 ₁₆	2	2	_	
			2		
	1 0 0 a6 a5 a4 a3 a2 a1 a0 2 2 a a ₁₆	Grouping:	Branch op	eration	
Operation:	$(PCH) \leftarrow p$	Description	: Branch our	t of a page	: Branches to address
	$(PCL) \leftarrow a6 to a0$		a in page p		
		Note:			06M2, and p is 0 to 31
			for M3450	6M4/E4.	
BLA p (Bra	anch Long to address (D) + (A) in page p)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles		•
		2	2	-	-
	1 0 0 p4 0 0 p3 p2 p1 p0 2 p p 16		<u> </u>		
		Grouping:	Branch op		· Branchas to address
Operation:	$(PCH) \leftarrow p$	Description			: Branches to address 2 A1 A0)2 specified by
	$(PCL) \leftarrow (DR_2-DR_0, A_3-A_0)$		registers D		
		Note:	-		06M2, and p is 0 to 31
			for M3450		, and p to 0 to 01

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

BM a (Bran	nch and Mark to address a in page 2)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	0 1 0 a6 a5 a4 a3 a2 a1 a0 1 a a	words	cycles			
		1	1	-	-	
Operation:	$(SP) \leftarrow (SP) + 1$	Grouping:	Subroutine	call opera	ation	
-	$(SK(SP)) \leftarrow (PC)$	Description		-	in page 2 : Calls the	
	$(PCH) \leftarrow 2$				s a in page 2.	
	$(PCL) \leftarrow a6-a0$	Note:			ig from page 2 to an-	
					be called with the BM	
					arts on page 2.	
					the stack because the	
			maximum l	evel of sub	routine nesting is 8.	
BML p. a (Branch and Mark Long to address a in page p)				0	
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code		words	cycles	i lag e i		
ooue	0 0 1 1 0 p4 p3 p2 p1 p0 2 0 p p1 p	2	2	_	_	
	1 0 0 a6 a5 a4 a3 a2 a1 a0 2 a a	2	2			
	1 0 0 a6 a5 a4 a3 a2 a1 a0 ₂ 2 a a ₁₆	Grouping:	Subroutine	call opera	ation	
Operation:	$(SP) \leftarrow (SP) + 1$				Calls the subroutine at	
oporation	$(SK(SP)) \leftarrow (PC)$	••••	address a			
	(PCH) ← p	Note:	p is 0 to 15 for M34506M2, and p is 0 to 31			
	$(PCL) \leftarrow a6-a0$		for M34506M4/E4.			
			Be careful	not to ove	the stack because the	
					routine nesting is 8.	
BMI A n (B	anch and Mark Long to address (D) + (A) in page					
Instruction		Number of	Number of	Flag CY	Skip condition	
code		words	cycles	r lug O l		
ooue	0 0 0 0 1 1 0 0 0 0 2 0 3 0 16	2	2	_	_	
	1 0 0 p4 0 0 p3 p2 p1 p0 2 2 p p 16	_	_			
	1 0 0 p4 0 0 p3 p2 p1 p0 2 2 p p ₁₆	Grouping:	Subroutine	call opera	ation	
Operation:	$(SP) \leftarrow (SP) + 1$	Description	: Call the su	broutine :	Calls the subroutine at	
•	$(SK(SP)) \leftarrow (PC)$	address (DR2 DR1 DR0 A3 A2 A1 A0)2 spec				
	(PCH) ← p		nd A in page p.			
	$(PCL) \leftarrow (DR_2 - DR_0, A_3 - A_0)$	Note:	p is 0 to 1	5 for M34	506M2, and p is 0 to 31	
			for M34506	M4/E4.		
			Be careful	not to ove	the stack because the	
			maximum l	evel of sub	routine nesting is 8.	
CLD (CLea	r port D)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	0 0 0 0 0 1 0 0 1 1 0 0 1 1 1	words	cycles			
	10	1	1	-	-	
Operation:	(D) ← 1	Grouping:	Input/Outp			
•	· ·		: Sets (1) to			
		Description				
		Description		pon 21		
		Description		pon 21		
		Description				
		Description		P0		
		Description		p		

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

CMA (CoM	plement of Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 1 1 0 0 ₂ 0 1 C ₁₆	words 1	cycles 1	-	_
Operation:	$(A) \leftarrow \overline{(A)}$	Grouping:	Arithmetic	operation	
				e one's co	mplement for register er A.
CMCK (Clo	ock select: ceraMic oscillation ClocK)	•			
Instruction code	D9 D0 1 0 1 0 0 1 1 0 1 0 2 2 9 A 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	_
Operation:	Ceramic oscillation circuit selected	Grouping:	Other oper	ration	
		Description	: Selects th stops the r		oscillation circuit and or.
CRCK (Clo	ck select: Rc oscillation ClocK)				
Instruction code	D9 D0 1 0 1 0 0 1 1 0 1 1 2 2 9 B 16	Number of words	Number of cycles	Flag CY	Skip condition
Operation:	RC oscillation circuit selected	Grouping: Description	Other oper : Selects the the ring os	e RC oscill	ation circuit and stops
DEY (DEcr	ement register Y)				
Instruction code	D9 D0 0 0 0 0 1 0 1 1 1 0 1 7 0	Number of words	Number of cycles	Flag CY	Skip condition
	216	1	1	-	(Y) = 15
Operation:	$(Y) \leftarrow (Y) - 1$	Grouping: RAM addresses Description: Subtracts 1 from the contents of register As a result of subtraction, when the contents of register Y is 15, the next instruct is skipped. When the contents of register is not 15, the next instruction is executed			

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

DI (Disable	Interrupt)				
Instruction code	D9 D0 0 0 0 0 0 0 0 1 0 0 0 4 4	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	(INTE) ← 0	Grouping: Description Note:	disables th Interrupt is	to interrupt le interrupt disabled	t enable flag INTE, and
DWDT (Dis	able WatchDog Timer)				
Instruction code	D9 D0 1 0 1 0 0 1 1 1 0 0 2 2 9 C 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	Stop of watchdog timer function enabled	Grouping:	Other oper	ation	
EI (Enable	Interrupt)	Description	•	struction	timer function by the after executing the
	D9 D0	Number of	Number of	Flag CY	Skip condition
code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	words	cycles		
Operation:	(INTE) / 1				ation
Operation.	(INTE) ← 1	Grouping: Description	Interrupt co		enable flag INTE, and
		Note:	enables the Interrupt is	e interrupt s enabled l	
EPOF (Ena	able POF instruction)				
Instruction code	D9 D0 0 0 0 1 0 1 1 0 1 1 0 5 B (c)	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	POF2 instruction valid	Grouping: Description		immedia	te after POF or POF2 xecuting the EPOF in-

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

IAK (Input)	Accumulator from port K)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 0 1 1 1 1 ₂ 2 6 F ₁₆	words	cycles		
		1	1	-	-
Operation:	$(Ao) \leftarrow (K)$	Grouping:	Input/Outp	ut operatio	n
	(A3–A1) ← 0				ts of port K to the bit 0
		-	(Ao) of reg	ister A.	
		Note:			n is executed, "0" is
				-	rder 3 bits (A3-A1) of
			register A.		
	t Accumulator from port P0)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles	l'iug o'i	Chip contaition
		1	1	_	_
Operation:	$(A) \leftarrow (P0)$	Grouping:	Input/Outp		
		Description	I: Transfers	the input of	port P0 to register A.
	t Accumulator from port P1)		1		
Instruction		Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 1 0 0 0 1 2 6 1	1	1	_	
Operation:	$(A) \leftarrow (P1)$	Grouping:	Input/Outp		
		Description	: Transfers	the input of	port P1 to register A.
IAP2 (Input	t Accumulator from port P2)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 0 0 0 1 0 ₂ 2 6 2 ₁₆	words	cycles		
		1	1	-	_
Operation:	(A1, A0) ← (P21, P20)	Grouping:	Input/Outp	ut operatio	n
	(A3, A2) ← 0	Description			f port P2 to the low-or-
			der 2 bits (-
		Note:			n is executed, "0" is rder 2 bits (A3, A2) of
			register A.	-	INEL 2 DILS (A3, A2) OF
		1			

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

INY (INcrei	ment register Y)					
Instruction code	D9 D0 D0 0 1 0 0 1 3 10	Number of words	Number of cycles	Flag CY	Skip condition	
		1	1	-	(Y) = 0	
Operation:	(Y) ← (Y) + 1	Grouping:RAM addressesDescription:Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. When the contents of register Y is not 0, the next instruction is executed.				
LA n (Load	I n in Accumulator)					
Instruction code	D9 D0 D0 0 1 1 1 1 p p p 0 7 p	Number of words	Number of cycles	Flag CY	Skip condition	
		1	1	-	Continuous description	
Operation:	(A) ← n n = 0 to 15	Grouping: Arithmetic operation Description: Loads the value n in the immediate field register A. When the LA instructions are continuod coded and executed, only the first LA struction is executed and other instructions coded continuously skipped.				
LXY x, y (L	.oad register X and Y with x and y)					
Instruction code	D9 D0 1 1 x3 x2 x1 x0 y3 y2 y1 y0 3 x y	Number of words	Number of cycles	Flag CY	Skip condition	
		1	1	-	Continuous description	
Operation:	$(X) \leftarrow x x = 0 \text{ to } 15$ $(Y) \leftarrow y y = 0 \text{ to } 15$	Grouping: RAM addresses Description: Loads the value x in the immediate fiel register X, and the value y in the immediate field to register Y. When the LXY institutions are continuously coded and executional only the first LXY instruction is executional other LXY instructions coded continuously are skipped.				
LZ z (Load	register Z with z)	1				
Instruction code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words	Number of cycles	Flag CY	Skip condition	
		1	1	-	-	
Operation:	$(Z) \leftarrow z \ z = 0 \text{ to } 3$	Grouping: Description	RAM addre		the immediate field to	

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

NOP (No C	Peration)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16	words	cycles		
		1	1	-	_
Operation:	$(PC) \leftarrow (PC) + 1$	Grouping:	Other oper	ration	
		Description			1 to program counter nain unchanged.
OKA (Outp	ut port K from Accumulator)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 0 1 1 1 1 1 2 2 1 F ₁₆	1	1	-	-
Operation:	$(K) \leftarrow (Ao)$	Grouping:	Input/Outp	ut operatio	n
		Description		e contents	of bit 0 (A0) of register
	put port P0 from Accumulator)				
Instruction		Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 1 0 0 0 0 0 0 0 0 ₂ 2 2 0 ₁₆	1	1	-	_
Operation:	$(P0) \leftarrow (A)$	Grouping:	Input/Outp	ut operatio	n
		Description	i: Outputs th P0.	ne content	s of register A to port
OP1A (Out	put port P1 from Accumulator)				
Instruction code	D9 D0 1 0 0 1 0 0 0 1 2 2 1	Number of words	Number of cycles	Flag CY	Skip condition
coue	1 0 0 0 1 0 0 0 1 ₂ 2 1 ₁₆	1	1	-	_
Operation:	(P1) ← (A)	Grouping: Description	Input/Outp Outputs th P1.		n s of register A to port

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

OP2A (Out	put port P2 from Accumulator)				
Instruction code	D9 D0 1 0 0 1 0 0 1 0 2 2 2 2 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	-
Operation:	(P21, P20) ← (A1, A0)	Grouping:	Input/Outp	ut operatic	n
		Description			of the low-order 2 bits
			(A1, A0) of	register A	to port P2.
OR (logical	OR between accumulator and memory)	•			
Instruction code	D9 D0 0 0 1 1 0 0 1 0 1 0	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 0 1 1 0 0 1 2 0 1 9 16	1	1	-	_
Operation:	$(A) \leftarrow (A) \text{ OR } (M(DP))$	Grouping:	Arithmetic	operation	
		Description		•	tion between the con-
					and the contents of e result in register A.
POF2 (Pow	ver OFf2)				
Instruction code	D9 D0 0 0 0 1 0 0 0 0 8 10	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	RAM back-up	Grouping:	Other oper		
		Description			RAM back-up state by
			-		2 instruction after ex- struction. Operations of
			all function		
		Note:		• •	n is not executed before
			0		tion, this instruction is instruction.
RAR (Rota	te Accumulator Right)	1			
Instruction code	D9 D0 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 1 1 1 1 0 1 2 0 1 1 1 1 1 1 1 1 1 1	1	1	0/1	-
Operation:	⊢ CY → A3A2A1A0	Grouping:	Arithmetic	operation	
		Description			ontents of register A in- of carry flag CY to the

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

RB j (Rese	t Bit)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1	cycles 1	-	_
Operation:	$(Mj(DP)) \leftarrow 0$	Grouping:	Bit operation	i i i i i i i i i i i i i i i i i i i	
	j = 0 to 3		: Clears (0)	the conten	ts of bit j (bit specified e immediate field) of
RC (Reset 0	Carry flag)				
Instruction code		Number of words	Number of cycles	Flag CY	Skip condition
		1	1	0	-
Operation:	$(CY) \leftarrow 0$	Grouping: Description:	Arithmetic		
RCP (Rese	t Port C)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 0 1 1 0 0 2 2 8 C	words 1	cycles 1	_	
Operation:	(C) ← 0	Grouping:	Input/Outp	ut operatio	n
		Description	: Clears (0)	to port C.	
RD (Reset	port D specified by register Y)				
Instruction code	D9 D0 0 0 0 0 1 0 1 0 0 0 1 4	Number of words	Number of cycles	Flag CY	Skip condition
	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	1	-	_
Operation:	$(D(Y)) \leftarrow 0$ However, (Y) = 0 to 3	Grouping: Input/Output operation Description: Clears (0) to a bit of port D specified by registe Note: Set 0 to 3 to register Y because port D four ports (Do–D3). When values except above are set to register Y, this instruction is equivalent to to NOP instruction.			D specified by register Y. r Y because port D is above are set to regis-

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

RT (ReTurr	n from subroutine)				
Instruction code	D9 D0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 4 4 4	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	2	-	-
Operation:	$(PC) \leftarrow (SK(SP))$	Grouping:	Return ope		
	(SP) ← (SP) – 1	Description	: Returns f called the		outine to the routine
RTI (ReTur	n from Interrupt)				
Instruction code	D9 D0 0 0 0 1 0 0 1 1 0 0 0 1 4 6 46	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	$(PC) \gets (SK(SP))$	Grouping:	Return ope		
	$(SP) \leftarrow (SP) - 1$	Description			upt service routine to
		main routine. Returns each value of data pointer (X			of data pointer (X, V, Z)
		carry flag, skip status, NOP mode status			
				•	iption of the LA/LXY in-
				-	and register B to the
			states just	before inte	errupt.
	rn from subroutine and Skip)	1	I	1	
Instruction code		Number of words	Number of cycles	Flag CY	Skip condition
COUE	0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 0 4 5 16	1	2	-	Skip at uncondition
Operation:	$(PC) \leftarrow (SK(SP))$	Grouping:	Return ope	eration	
	$(SP) \leftarrow (SP) - 1$	Description			outine to the routine
			struction at		, and skips the next in-
			Struction a		011.
SB j (Set B	it)				
Instruction code	D9 D0 0 0 0 1 0 1 1 1 j j 0 0 5 C +i , o	Number of words	Number of cycles	Flag CY	Skip condition
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	-	_
Operation:	$(Mj(DP)) \leftarrow 0$	Grouping:	Bit operation	on	
-	j = 0 to 3	Description	: Sets (1) the	e contents	of bit j (bit specified by nediate field) of M(DP).

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

SC (Set Ca	arry flag)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 0 0 1 1 1 2 0 0 7 16	words 1	cycles 1	1	_
Operation:	(CY) ← 1	Grouping:	Arithmetic	operation	
			: Sets (1) to	carry flag	CY.
SCP (Set F	Port C)				
Instruction code	D9 D0 1 0 1 0 0 1 1 0 1 2 8 D	Number of words	Number of cycles	Flag CY	Skip condition
	<u> </u>	1	1	-	-
Operation:	(C) ← 1	Grouping:	Input/Outp	ut operatio	งท
		Description	: Sets (1) to	port C.	
	rt D specified by register Y)				
Instruction code	D9 D0 D0 0 1 0 1 0 1 0 1 5 10 10 1 5 10 10 10 10 10 10 10 10 10 10 10 10 10	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	_
Operation:	$(D(Y)) \leftarrow 1$	Grouping:	Input/Outp		
	(Y) = 0 to 3	Description: Sets (1) to a bit of port D specified by register Y Note: Set 0 to 3 to register Y because port D four ports (D0–D3). When values except above are set to reg ter Y, this instruction is equivalent to th NOP instruction.			above are set to regis-
SEA n (Ski	p Equal, Accumulator with immediate data n)	•			
Instruction code	D9 D0 0 0 1 0 1 0 1 0 2 5 16	Number of words	Number of cycles	Flag CY	Skip condition
		2	2	-	(A) = n
	0 0 0 1 1 1 n n n n ₂ 0 7 n ₁₆	Grouping:	Compariso	on operatio	n
Operation:	(A) = n ? n = 0 to 15	Description: Skips the next instruction when the contents of register A is equal to the value of the immediate field. Executes the next instruction when the contents of register A is not equal to the value in the immediate field.			equal to the value n in struction when the con- not equal to the value n

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

SEAM (Ski	p Equal, Accumulator with Memory)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code		words	cycles			
	0 0 0 0 1 0 0 1 1 0 2 0 2 0 16	1	1	-	(A) = (M(DP))	
Operation:	(A) = (M(DP)) ?	Grouping:	Compariso	n operatio	n	
		Description	: Skips the	next instr	uction when the con-	
			tents of reg	gister A is e	equal to the contents of	
			M(DP).			
			Executes t	he next ins	struction when the con-	
				-	is not equal to the	
			contents of	f M(DP).		
	o if Non Zero condition of external 0 interrupt reques					
Instruction		Number of words	Number of cycles	Flag CY	Skip condition	
code	0 0 0 0 1 1 1 0 0 0 2 0 3 8 16	1	1		V10 = 0: (EXF0) = 1	
			I	_	$V 10 = 0. (L \times F 0) = 1$	
Operation:	V10 = 0: (EXF0) = 1 ?	Grouping:	Interrupt op	peration		
-	After skipping, (EXF0) \leftarrow 0	Description	: When V10	= 0 : Skip	os the next instruction	
	V10 = 1: SNZ0 = NOP		when exter	nal 0 inter	rupt request flag EXF0	
	(V10 : bit 0 of the interrupt control register V1)		is "1." After	skipping,	clears (0) to the EXF0	
			flag. When	the EXF	0 flag is "0," executes	
			the next ins			
					instruction is equiva-	
			lent to the I	NOP instru	iction.	
SNZAD (S	kip if Non Zero condition of A-D conversion completi	ion flag)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 1 0 0 0 0 1 1 1 ₂ 2 8 7 ₁₆	words	cycles			
		1	1	-	V22 = 0: (ADF) = 1	
Operation:	V22 = 0: (ADF) = 1 ?	Grouping: A-D conversion operation				
	After skipping, (ADF) \leftarrow 0	Description	: When V22	= 0 : Skip	os the next instruction	
	V22 = 1: SNZAD = NOP	when A-D conversion completion flag				
	(V22 : bit 2 of the interrupt control register V2)	is "1." After skipping, clears (0) to the				
			-		lag is "0," executes the	
			next instru		. , ,	
					s instruction is equiva-	
			lent to the	NOP Instru		
	kip if Non Zero condition of Port C)	1				
Instruction		Number of	Number of	Flag CY	Skip condition	
code	1 0 1 0 0 0 1 0 0 1 ₂ 2 8 9 ₁₆	words	cycles			
		1	1	-	(C) = 1	
Operation:	(C) = 1 ?	Grouping:	Input/Outp			
		Description	•		uction when the con-	
			tents of po		, , , , ,	
					struction when the con-	
			tents of po	π C is "0."		

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

SNZIO (Skip	o if l	Von	Zerc	o cono	ditio	n of	exte	rna	al O	Int	err	upt	input	pin)			
Instruction	D9								D0					Number of	Number of	Flag CY	Skip condition
code	0	0	0	0 1	1	1	0	1	0	Γ	0	3	A 16	words	cycles		
	<u> </u>	<u> </u>	•	<u> </u>	· ·	·	<u> </u>	•		2 L	•	•	16	1	1	-	I12 = 0 : (INT) = "L" I12 = 1 : (INT) = "H"
Operation:	l12	= 0 :	(INT)	= "L" '	?									Grouping:	Interrupt o	peration	-
-	I 12	= 1 :	(INT)	= "H"	?									Description			os the next instruction
	(112	: bit	2 of t	he inte	rrupt	t cont	rol re	gist	ter I1)							T pin is "L." Executes
																nstruction	when the level of INT
															pin is "H."	4 . 014	a tha mant instantion
																	os the next instruction T pin is "H." Executes
																	when the level of INT
															pin is "L."	istruction	
SNZP (Skip	if N	lon	Zero	cond	litior	n of F	Pow	er	dow	n f	lag)					
Instruction	D9								D0			-		Number of	Number of	Flag CY	Skip condition
code	0	0	0	0 0	0	0	0	1	1	_ [0	0	3 16	words	cycles		
							-			2 L	-	-	16	1	1	-	(P) = 1
Operation:	(P)	= 1 3	>											Grouping:	Other oper	ation	
														Description	1: Skips the r	next instru	ction when the P flag is
															"1".		
															After skip	ping, the	P flag remains un-
															changed.		
																the next i	nstruction when the P
															flag is "0."		
			_														
SNZT1 (Ski		Nor	Zer	o con	ditic	on of	Im	er		ter	rup	ot re	equest				
Instruction	D9	1							Do	г				Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	1	0 0	0	0	0	0	0	2 L	2	8	0	1	1	_	V12 = 0: (T1F) = 1
																	v 12 = 0. (1 11) = 1
Operation:) = 1 ?										Grouping:	Timer oper		
				, (T1F))								Description	n: When V12	= 0 : Ski	os the next instruction
				T1 = N													pt request flag T1F is
	(V1	2 = b	it 2 of	interru	upt co	ontrol	regis	ster	· V1)								clears (0) to the T1F
															-		lag is "0," executes the
															next instru		
															lent to the		s instruction is equiva-
																NOF INSU	
SNZT2 (Ski	-	Nor	Zer	o con	ditic	on of	Tim	er		ter	rup	ot re	equest				
Instruction	D9	1			1				D0	Г				Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	1	0 0	0	0	0	0	1	2	2	8	116	1	1	-	V13 = 0: (T2F) = 1
Operation:	1/1/	- 0.	(T25) = 1 ?										Grouping:	Timer oper	 ation	
operation.				, (T2F))								Description			os the next instruction
				, (121) T2 = N		,								Description			pt request flag T2F is
				interru		ontrol	reais	ster	· V1)								clears (0) to the T2F
	, • 1	2 - 0					- Sal		,								lag is "0," executes the
															next instru		
																	s instruction is equiva-
															lent to the		

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

SZB j (Skip	o if Zerc	o, Bit))													
Instruction	D9						D0				Number of	Number of	Flag CY	Skip condition		
code	0 0	0	0 1	0	0	0 j	j	2 0	2	j ₁₆	words	cycles 1	_	(Mj(DP)) = 0		
														j = 0 to 3		
Operation:	(Mj(DP		?								Grouping:	Bit operation	on			
	j = 0 to	3									Description	Description: Skips the next instruction when the con-				
												tents of bi	t j (bit spe	cified by the value j in		
													,	of M(DP) is "0."		
														struction when the con-		
												tents of bit	j of M(DP)) IS "1."		
SZC (Skip	if Zero	Carr	y flag)													
Instruction	D9	Can	y nay)				D0				Number of	Number of	Flag CY	Skip condition		
code			0 1	0	4					F	words	cycles	l lag O l	Skip condition		
oode	0 0	0	0 1	0	1	1 1	1	2 0	2	- 16	1	1	_	(CY) = 0		
														(- / -		
Operation:	(CY) =	0?									Grouping:	Arithmetic				
											Description			uction when the con-		
												tents of ca				
													ping, the	CY flag remains un-		
												changed.	he next inc	truction when the con		
												tents of the		struction when the con-		
												tents of the	ecriagis	5 1.		
070 (01)			D					~								
SZD (Skip		port	D spe	CITIE	ea by	regis)			Number of	Number of		Olvin eenditien		
code	D9			_			D0				Number of words	cycles	Flag CY	Skip condition		
coue	0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 16				2	2	_	(D(Y)) = 0								
	0 0	0	0 1	0	1	0 1	1	0	2	B 16	-	-		(Y) = 0 to 3		
		0		Ū				2	2	D 16						
Operation:	(D(Y)) =	= 0 ?									Grouping: Description	Input/Outp				
	(Y) = 0	to 3									Description: Skips the next instruction when a bit of po D specified by register Y is "0." Executes th					
											Nata			the bit is "1."		
											Note:	four ports		er Y because port D is		
												When valu	ies except	above are set to regis-		
														n is equivalent to the		
T1AB (Tra	nsfer da	ata to	timer	1 a	nd re	aiste	r R1	from	Acc	umula	tor and red	NOP instruister B)				
Instruction	D9					5 0	Do				Number of	Number of	Flag CY	Skip condition		
code	1 0	0	0 1	1	0	0 0	0	2	3	0 16	words	cycles		-		
			-					2 📖	-	16	1	1	-	-		
Operation:	(T17–T	14) ←	(B)								Grouping:	Timer oper	ration	1		
	(R17–R	,	. ,								Description	· ·		nts of register B to the		
	, (T13–T											high-order	4 bits of t	imer 1 and timer 1 re-		
	(R13–R	,	. ,									load regist	ter R1. Tra	insfers the contents of		
												register A	to the low-	order 4 bits of timer 1		
												and timer ?	1 reload re	gister R1.		
											1					

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

T2AB (Trar	nsfer data to timer 2 and register R2 from Accumula	tor and reg	ister B)		
Instruction code		Number of words	Number of cycles	Flag CY	Skip condition
COUE	1 0 0 0 1 1 0 0 0 1 ₂ 2 3 1 ₁₆	1	1	-	_
Operation:	$(T27-T24) \leftarrow (B)$ $(R27-R24) \leftarrow (B)$ $(T23-T20) \leftarrow (A)$ $(R23-R20) \leftarrow (A)$	Grouping: Description	high-order load regist	the conter 4 bits of t er R2. Tra to the low-	nts of register B to the imer 2 and timer 2 re- nsfers the contents of order 4 bits of timer 2 gister R2.
TAB (Trans	fer data to Accumulator from register B)				
Instruction code	D9 D0 0 0 0 0 1 1 1 1 0 0 0 1 E 10	Number of words	Number of cycles	Flag CY	Skip condition
	<u> </u>	1	1	-	_
Operation:	(A) ← (B)	Grouping: Description	Other operative Transfers t ister A.		ts of register B to reg-
TAB1 (Trar	nsfer data to Accumulator and register B from timer	1)			
Instruction code	D9 D0 D0 1 1 1 0 0 0 0 2 7 0	Number of words	Number of cycles	Flag CY	Skip condition
	<u> </u>	1	1	-	-
Operation:	(B) ← (T17–T14) (A) ← (T13–T10)	Grouping: Description	timer 1 to r	he high-or egister B. the low-ore	der 4 bits (T17–T14) of der 4 bits (T13–T10) of
TAB2 (Trar	sfer data to Accumulator and register B from timer	2)			
Instruction code	D9 D0 1 0 0 1 1 1 0 0 0 1 2 7 1 10	Number of words	Number of cycles	Flag CY	Skip condition
	<u> </u>	1	1	-	_
Operation:	(B) ← (T27–T24) (A) ← (T23–T20)	Grouping: Description	timer 2 to r	he high-or egister B. the low-ore	der 4 bits (T27–T24) of der 4 bits (T23–T20) of

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

TABAD (T	ransfer data to Accumulator and register B from regi	ster AD)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 1 1 0 0 1 ₂ 2 7 9 ₁₆	words 1	cycles 1	_	_
Operation: TABE (Tra Instruction code Operation:	In A-D conversion mode (Q13 = 0), (B) \leftarrow (AD9-AD6) (A) \leftarrow (AD5-AD2) In comparator mode (Q13 = 1), (B) \leftarrow (AD7-AD4) (A) \leftarrow (AD3-AD0) (Q13 : bit 3 of A-D control register Q1) nsfer data to Accumulator and register B from regist D9 D0 0 0 0 1 0 1 0 1 0 1 0 2 0 2 A 16 (B) \leftarrow (E7-E4) (A) \leftarrow (E3-E0)	Grouping: Description	A-D convert A-D convert fers the h register AD der 4 bits register A. transfers th of register A 4 bits (AD3 Number of cycles 1 Register to	rsion operations conversion igh-order 0 to registe (AD5-AI In the com ne middle- AD to regis -AD0) of re Flag CY - o register to	mode (Q13 = 0), trans- 4 bits (AD9–AD6) of r B, and the middle-or- D2) of register AD to parator mode (Q13 = 1), order 4 bits (AD7–AD4) ter B, and the low-order egister AD to register A. Skip condition – ransfer
TABP p (T Instruction	ransfer data to Accumulator and register B from Pro	gram mem	register E f of register ory in page Number of	to register E to regist	order 4 bits (E7–E4) of B, and low-order 4 bits er A. Skip condition
code	0 0 1 0 0 p4 p3 p2 p1 p0 2 0 8 p1 16	words 1	cycles 3	-	
Operation:	$\begin{split} (SP) &\leftarrow (SP) + 1 \\ (SK(SP)) &\leftarrow (PC) \\ (PCH) &\leftarrow p \\ (PCL) &\leftarrow (DR2 - DR0, A3 - A0) \\ (B) &\leftarrow (ROM(PC))7 - 4 \\ (A) &\leftarrow (ROM(PC))3 - 0 \\ (PC) &\leftarrow (SK(SP)) \\ (SP) &\leftarrow (SP) - 1 \end{split}$	Grouping: Description Note:	0 to registe pattern in A0)2 specifi p is 0 to 19 for M34506 When this	bits 7 to 4 to address (I ied by regis 5 for M345 6M4/E4. instruction or the state	o register B and bits 3 to bits 7 to 0 are the ROM DR2 DR1 DR0 A3 A2 A1 sters A and D in page p. 506M2, and p is 0 to 31 is executed, be careful ck because 1 stage of I.
TAD (Trans	sfer data to Accumulator from register D)	1		1	
Instruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words	Number of cycles	Flag CY	Skip condition
Operation:	$(A_2-A_0) \leftarrow (DR_2-DR_0)$ $(A_3) \leftarrow 0$	Grouping: Description Note:	low-order 3 When this	the conter 3 bits (A2– 5 instruction	ransfer nts of register D to the Ao) of register A. on is executed, "0" is a) of register A.

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

TADAB (Tr	ansfer data to register AD from Accumulator from re	egister B)					
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition		
code	1 0 0 0 1 1 1 0 0 1 ₂ 2 3 9 ₁₆	1	1	_			
		<u> </u>					
Operation:	$(AD7-AD4) \leftarrow (B)$	Grouping:	A-D conver				
	$(AD_3-AD_0) \leftarrow (A)$	Description: In the A-D conversion mode (Q13 = 0), this instruction is equivalent to the NOP instruction.					
					node (Q13 = 1), trans-		
		fers the contents of register B to the					
					97–AD4) of comparator		
					ntents of register A to		
			tor register	•	AD3-AD0) of compara-		
			0		ontrol register Q1)		
TAI1 (Trans	sfer data to Accumulator from register I1)		(
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	1 0 0 1 0 1 0 0 1 1 ₂ 2 5 3 ₁₆	words	cycles				
		1	1	-	-		
Operation:	$(A) \leftarrow (I1)$	Grouping:	Interrupt op	peration			
		Description	: Transfers	the conter	nts of interrupt control		
			register I1	to register	Α.		
TAK0 (Tran	nsfer data to Accumulator from register K0)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	1 0 0 1 0 1 0 1 1 0 ₂ 2 5 6 ₁₆	words	cycles				
		1	1	-	-		
Operation:	(A) ← (K0)	Grouping:	Input/Outp	ut operatio	n		
		Description: Transfers the contents of key-on wakeup					
		control register K0 to register A.					
TAK1 (Trar	nsfer data to Accumulator from register K1)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	1 0 0 1 0 1 1 0 0 1 ₂ 2 5 9 ₁₆	words	cycles				
		1	1	-	-		
Operation:	(A) ← (K1)	Grouping:	Input/Outp	ut operatio	'n		
•		Description	: Transfers	the conter	nts of key-on wakeup		
			control reg	ister K1 to	register A.		
			-				

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

TAK2 (Trai	nsfer data to Accumulator from register K2)				
Instruction code	D9 D0 1 0 0 1 0 1 1 0 1 0 2 5 A 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	_
Operation:	$(A) \gets (K2)$	Grouping:	Input/Outp	ut operatio	n
		Description	: Transfers control reg		nts of key-on wakeup register A.
TALA (Tra	nsfer data to Accumulator from register LA)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	_
Operation:	$(A3, A2) \leftarrow (AD1, AD0)$	Grouping:	A-D conve	ersion oper	ation
	(A1, A0) ← 0	Description	register AI of register After this	D to the hig A. instructio the low-o	der 2 bits (AD1, AD0) of gh-order 2 bits (A3, A2) on is executed, "0" is rder 2 bits (A1, A0) of
TAM j (Tra	nsfer data to Accumulator from Memory)	1			
Instruction code	D9 D0 1 0 1 1 0 0 j j j j 2 C j 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	_
Operation:	$(A) \gets (M(DP))$	Grouping:	RAM to re	gister trans	sfer
	(X) ← (X)EXOR(j) j = 0 to 15	Descriptior	register A performed	, an exclu between r mediate fi	e contents of M(DP) to usive OR operation is egister X and the value eld, and stores the re-
TAMR (Tra	nsfer data to Accumulator from register MR)				
Instruction code	D9 D0 1 0 0 1 0 1 0 0 1 0 2 5 2 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	_
Operation:	$(A) \leftarrow (MR)$	Grouping:	Other oper		
		Descriptior	n: Transfers ister MR to		ts of clock control reg-

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

TAQ1 (Trai	nsfer data to Accumulator from register Q1)						
Instruction		Number of	Number of	Flag CY	Skip condition		
code	1 0 0 1 0 0 1 0 0 2 2 4 4	words 1	cycles 1	-	_		
Operation:	(A) ← (Q1)	0	A D		- 12		
Operation.	$(A) \leftarrow (Q1)$	Grouping: Description	A-D conve		ation ts of A-D control regis-		
		Description	ter Q1 to re		to of A D control regio		
				-			
TASP (Trai	nsfer data to Accumulator from Stack Pointer)	l					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	0 0 0 1 0 1 0 0 0 0 0 0 0 0 16	words	cycles				
		1	1	-	-		
Operation:	$(A_2-A_0) \leftarrow (SP_2-SP_0)$	Grouping:	Register to	register tr	ansfer		
	(A3) ← 0	Description			ts of stack pointer (SP)		
		Note:			s (A2–A0) of register A. n is executed, "0" is		
		NOICE.			a) of register A.		
-	sfer data to Accumulator from register V1)						
Instruction code		Number of words	Number of cycles	Flag CY	Skip condition		
Coue	0 0 0 1 0 1 0 1 0 0 0 1 0 1 1 0 0 1 0 0 1 0	1	1	-	-		
Operation:	$(A) \leftarrow (V1)$	Grouping:	Interrupt o	peration			
-		Description: Transfers the contents of interrupt control					
		register V1 to register A.					
· · · · · · · · · · · · · · · · · · ·	sfer data to Accumulator from register V2)	1	1	1			
Instruction		Number of words	Number of cycles	Flag CY	Skip condition		
code	0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0	1	1	_	_		
Operation:	$(A) \leftarrow (V2)$	Grouping: Description	Interrupt of Transfers		nts of interrupt control		
		Description	register V2		•		
			5	0			

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

TAW1 (Trai	nsfer data to Accumulator from register W1)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 0 1 0 0 1 0 1 1 ₂ 2 4 B ₁₆	words	cycles			
		1	1	-	-	
Operation:	$(A) \leftarrow (W1)$	Grouping:	Timer oper	ation		
					ts of timer control reg-	
			ister W1 to	register A		
TAW2 (Tra	nsfer data to Accumulator from register W2)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 0 1 0 0 1 1 0 0 ₂ 2 4 C ₁₆	words	cycles			
		1	1	-	-	
Operation:	$(A) \leftarrow (W2)$	Grouping:	Timer oper	ration		
					ts of timer control reg-	
			ister W2 to	o register A	۱.	
TAW6 (Trai	nsfer data to Accumulator from register W6)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 0 1 0 1 0 0 0 0 ₂ 2 5 0 ₁₆	words	cycles			
		1	1	-	-	
Operation:	$(A) \leftarrow (W6)$	Grouping:	Timer oper	ation		
		Description: Transfers the contents of timer control reg-				
		ister W6 to register A.				
TAX (Trans	fer data to Accumulator from register X)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	0 0 0 1 0 1 0 1 0 1 0 2 0 5 2 16	words	cycles			
		1	1	-	_	
Operation:	$(A) \leftarrow (X)$	Grouping:	Register to	register tr	ransfer	
-		Description		the conten	ts of register X to reg-	
			ister A.			

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

TAY (Trans	sfer data to Accumulator from register Y)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	0 0 0 0 0 1 1 1 1 1 ₂ 0 1 F	words	cycles			
		1	1	-	-	
Operation:	$(A) \leftarrow (Y)$	Grouping:	Register to	o register tr	ansfer	
		Description		he content	s of register Y to regis-	
			ter A.			
TAZ (Trans	sfer data to Accumulator from register Z)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	$0 0 0 1 0 1 0 1 0 1 0 1 1 _2 0 5 _3 _{16}$	words	cycles			
		1	1	-	-	
Operation:	(A1, A0) ← (Z1, Z0)	Grouping:	Register to	p register ti	ransfer	
	(A3, A2) ← 0	Description			nts of register Z to the	
					Ao) of register A.	
		Note:			n is executed, "0" is rder 2 bits (A3, A2) of	
			register A.			
			Ū			
TBA (Tran	sfer data to register B from Accumulator)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	0 0 0 0 0 0 1 1 1 0 2 0 0 E 16	words	cycles			
		1	1	_	-	
Operation:	$(B) \gets (A)$	Grouping:	Register to	o register ti	ransfer	
		Description: Transfers the contents of register A to regis-				
			ter B.			
TDA (Tran	sfer data to register D from Accumulator)					
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
code	0 0 0 0 1 0 1 0 1 2 0 2 9 16	1	1			
		I			_	
Operation:	$(DR2-DR0) \leftarrow (A2-A0)$	Grouping:	Register to			
		Description			nts of the low-order 3	
			bits (A2–A	 of regist 	er A to register D.	

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

TEAB (Tra	nsfer data to register E from Accumulator and regist	er B)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	0 0 0 0 0 1 1 0 1 0 2 0 1 A ₁₆	words	cycles			
	10	1	1	-	-	
Operation:	(E7–E4) ← (B)	Grouping:	Register to	register tr	ansfer	
-	$(E_3-E_0) \leftarrow (A)$	Description	: Transfers	the conter	ts of register B to the	
			high-order	4 bits (E3-	-Eo) of register E, and	
				-	er A to the low-order 4	
			bits (E3–E	o) of registe	er E.	
TI1A (Tran	sfer data to register I1 from Accumulator)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 0 0 0 1 0 1 1 1 ₂ 2 1 7 ₁₆	words	cycles			
		1	1	-	-	
Operation:	$(I1) \leftarrow (A)$	Grouping:	Interrupt o	peration		
-		Description			ts of register A to inter-	
			rupt contro	l register l	1.	
TK0A (Trai	nsfer data to register K0 from Accumulator)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 0 0 0 1 1 0 1 1 ₂ 2 1 B ₁₆	words	cycles			
		1	1	-	-	
Operation:	$(K0) \leftarrow (A)$	Grouping:	Input/Outp	ut operatio	n	
•		Description: Transfers the contents of register A to key-				
		on wakeup control register K0.				
TK1A (Trai	nsfer data to register K1 from Accumulator)	•				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code		words	cycles	Ū		
		1	1	-	-	
Operation:	$(K1) \leftarrow (A)$	Grouping:	Input/Outp			
		Description			ts of register A to key-	
			on wakeup	control re	gister K1.	
		1				

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

TK2A (Tran	nsfer data to register K2 from Accumulator)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 0 0 0 1 0 1 0 1 ₂ 2 1 5 ₁₆	words 1	cycles 1			
Operation:	$(K2) \leftarrow (A)$	Grouping: Description	Input/Outp		ts of register A to key-	
		Description	on wakeup			
TMA i (Tra	nsfer data to Memory from Accumulator)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 1 0 1 1 j j j j ₂ 2 B j ₁₆	words	cycles			
		1	1	-	-	
Operation:	$(M(DP)) \gets (A)$	Grouping:	RAM to reg			
	$(X) \leftarrow (X) EXOR(j)$ j = 0 to 15	Description		-	contents of register A	
] = 0 10 15				ve OR operation is per- ister X and the value j	
			in the imm	ediate fiel	d, and stores the result	
			in register	Х.		
TMRA (Tra	nsfer data to register MR from Accumulator)	1				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
code	<u>1 0 0 0 0 1 0 1 1 0</u> <u>2 2 1 6</u> ₁₆	1	1	_	_	
Operation:	$(MR) \leftarrow (A)$	Grouping:	Other oper	ation		
oporation		Description: Transfers the contents of register A to clock				
		control register MR.				
TPU0A (Tra	ansfer data to register PU0 from Accumulator)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 0 0 1 0 1 1 0 1 ₂ 2 2 D ₁₆	words 1	cycles 1	_		
			I			
Operation:	$(PU0) \gets (A)$	Grouping:	Input/Outp			
		Description	: Transfers t up control		ts of register A to pull- J0.	
				5		

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

TPU1A (Tra	ansfer data to register PU1 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 0 1 1 1 0 2 2 2 E 16	words	cycles		
		1	1	-	-
Operation:	$(PU1) \leftarrow (A)$	Grouping:	Input/Outp	ut operatio	n
		Description			ts of register A to pull-
			up control	register Pl	J1.
TPU2A (Tr	ansfer data to register PU2 from Accumulator)				
Instruction		Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 1 0 1 1 1 1 2 2 2 F 16	1	1	_	
		1	I	_	_
Operation:	$(PU2) \leftarrow (A)$	Grouping:	Input/Outp		
		Description	 Transfers up control 		ts of register A to pull-
				register i t	52.
TO44 (Ta					
IQ1A (Iran Instruction	nsfer data to register Q1 from Accumulator)	Number of	Number of	Flog CV	Skip condition
code	D9 D0 1 0 0 0 0 0 1 0 0 2 0 4 (a)	words	cycles	Flag CY	Skip condition
		1	1	-	_
		0	1 D		
Operation:	$(Q1) \leftarrow (A)$	Grouping: Description	A-D conve		ts of register A to A-D
		Decemption	control reg		
TR1AB (Tra	ansfer data to register R1 from Accumulator and reg	ister B)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 1 1 1 1 1 2 2 3 F ₁₆	words	cycles		
		1	1	-	-
Operation:	(R17–R14) ← (B)	Grouping:	Timer oper	ation	
-	$(R13-R10) \leftarrow (A)$: Transfers	the conter	its of register B to the
			•	•	7-R14) of reload regis-
					ents of register A to the –R10) of reload regis-
			ter R1.	+ DILS (R 13	-ivity of reload regis-

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

TV1A (Trai	nsfer data to register V1 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 1 1 1 1 1 2 0 3 F ₁₆	words	cycles		
		1	1	-	-
Operation:	$(V1) \leftarrow (A)$	Grouping:	Interrupt o	peration	
•		Description	: Transfers t	he content	ts of register A to inter-
			rupt contro	I register \	/1.
	nsfer data to register V2 from Accumulator)				
Instruction code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	$(V2) \leftarrow (A)$	Grouping:	Interrupt o	peration	
		Description	1: Transfers	the conten	ts of register A to inter-
			rupt contro	l register \	/2.
TW1A (Tra	nsfer data to register W1 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 0 0 1 1 1 0 2 2 0 E 16	words	cycles		
		1	1	-	-
Operation:	$(W1) \leftarrow (A)$	Grouping:	Timer oper	ation	
		Description			ts of register A to timer
			control reg	ister W1.	
TW2A (Tra	nsfer data to register W2 from Accumulator)				
Instruction		Number of words	Number of	Flag CY	Skip condition
code	1 0 0 0 0 0 1 1 1 1 2 2 0 F 16	1	cycles 1	_	
			I	_	
Operation:	$(W2) \leftarrow (A)$	Grouping:	Timer oper		
		Description			ts of register A to timer
			control reg	ister W2.	

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

TW6A (Tra	Insfer data to register W6 from Accumulator)								
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition				
code	1 0 0 0 0 1 0 0 1 1 ₂ 2 1 3 ₁₆	words	cycles	_					
		1	1	_	_				
Operation:	$(W6) \leftarrow (A)$	Grouping:	Timer oper	ration					
		Description: Transfers the contents of register A to time							
			control reg	ister W6.					
TYA (Trans	sfer data to register Y from Accumulator)								
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition				
code	0 0 0 0 0 0 1 1 0 0 0 C 16	words	cycles						
		1	1	-	-				
Operation:	$(Y) \leftarrow (A)$	Grouping:	Register to	register ti	ansfer				
-		Description			ts of register A to regis-				
			ter Y.						
	atchdog timer ReSeT)								
Instruction		Number of	Number of	Flag CY	Skip condition				
code	1 0 1 0 1 0 0 0 0 0 2 A 0 16	words	cycles	l'iug o'i	omp contaition				
		1	1	-	(WDF1) = 1				
Operation:	(WDF1) = 1 ?	Grouping:	Other oper	ration					
•••••	After skipping, (WDF1) $\leftarrow 0$	Description			uction when watchdog				
		-	timer flag \	NDF1 is "1	." After skipping, clears				
				-	. When the WDF1 flag				
					next instruction. Also,				
				-	imer function when ex-				
					nstruction immediately				
			after the D	vol instr					
XAM j (eX)	change Accumulator and Memory data)	Number of	Number of	Eloc CV	Skip condition				
code		words	cycles	Flag CY	Skip condition				
coue	1 0 1 1 0 1 j j j j ₂ 2 D j ₁₆	1	1	_	_				
Operation:	$(A) \leftarrow \rightarrow (M(DP))$	Grouping:	RAM to re						
	$(X) \leftarrow (X) EXOR(j)$	Description			ne contents of M(DP)				
	j = 0 to 15	with the contents of register A, an exclusive							
		OR operation is performed between regis-							
		ter X and the value j in the immediate field, and stores the result in register X.							
			and stores	the result	in register A.				

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

XAMD j (e)	Kchange Accumula	itor and	d Mer	nory	dat	a a	nd D	ecr	en	nent registe	er Y and sk	ip)					
Instruction code	D9	1 i	ii	D	0 	2	F	i		Number of words	Number of cycles	Flag CY	Skip condition				
			1 1	1	2	2	.	<u>/</u> 1	6	1	1	-	(Y) = 15				
Operation:	$(A) \leftarrow \rightarrow (M(DP))$									Grouping:	RAM to reg						
operation.	$(X) \leftarrow (X)EXOR(j)$									Description			e contents of M(DP)				
													egister A, an exclusive				
	j = 0 to 15												ormed between regis- in the immediate field,				
	$(Y) \gets (Y) - 1$												in register X.				
													contents of register Y.				
											As a resul	t of subtra	action, when the con-				
													15, the next instruction				
													contents of register Y				
													struction is executed.				
XAMI j (eX	change Accumulat	or and	Mem	ory o	data	an	id Ind	cren	ne	nt register	Y and skip)					
Instruction	D9			D	0					Number of	Number of	Flag CY	Skip condition				
code	1 0 1 1 1	0 i	ii	i		2	E	i		words	cycles						
		_ _]	1 1		2	-		J1	6	1	1	-	(Y) = 0				
Operation:										Grouping:	RAM to reg	gister trans	sfer				
Operation.	$(A) \leftarrow \rightarrow (M(DP))$									Description			ne contents of M(DP)				
	$(X) \leftarrow (X) EXOR(j)$												egister A, an exclusive				
	j = 0 to 15												ormed between regis-				
	$(Y) \leftarrow (Y) + 1$												in the immediate field, in register X.				
													s of register Y. As a re-				
													hen the contents of				
													e next instruction is				
											skipped. when the contents of register Y						
											not 0, the r	next instru	ction is executed.				

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Parameter			Instruction code												r of s	r of s	w
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	Do	Hexa	ade otati		Number o words	Number o cycles	Function
	ТАВ	0	0	0	0	0	1	1	1	1	0	0	1	Е	1	1	$(A) \gets (B)$
	тва	0	0	0	0	0	0	1	1	1	0	0	0	Е	1	1	$(B) \leftarrow (A)$
	TAY	0	0	0	0	0	1	1	1	1	1	0	1	F	1	1	$(A) \gets (Y)$
	ΤΥΑ	0	0	0	0	0	0	1	1	0	0	0	0	С	1	1	$(Y) \leftarrow (A)$
transfei	ТЕАВ	0	0	0	0	0	1	1	0	1	0	0	1	A	1	1	(E7–E4) ← (B) (E3–E0) ← (A)
egister	TABE	0	0	0	0	1	0	1	0	1	0	0	2	A	1	1	$\begin{array}{l} (B) \leftarrow (E7\text{-}E4) \\ (A) \leftarrow (E3\text{-}E0) \end{array}$
r to r	TDA	0	0	0	0	1	0	1	0	0	1	0	2	9	1	1	$(DR_2-DR_0) \leftarrow (A_2-A_0)$
Register to register transfer	TAD	0	0	0	1	0	1	0	0	0	1	0	5	1	1	1	$(A2-A0) \leftarrow (DR2-DR0)$ $(A3) \leftarrow 0$
	TAZ	0	0	0	1	0	1	0	0	1	1	0	5	3	1	1	$\begin{array}{l} (A1,A0) \leftarrow (Z1,Z0) \\ (A3,A2) \leftarrow 0 \end{array}$
	ТАХ	0	0	0	1	0	1	0	0	1	0	0	5	2	1	1	$(A) \leftarrow (X)$
	TASP	0	0	0	1	0	1	0	0	0	0	0	5	0	1	1	$(A2-A0) \leftarrow (SP2-SP0)$ $(A3) \leftarrow 0$
	LXY x, y	1	1	Х3	X2	X 1	X 0	уз	у2	у1	у0	3	x	у	1	1	$ \begin{array}{l} (X) \leftarrow x \ x = 0 \ \text{to} \ 15 \\ (Y) \leftarrow y \ y = 0 \ \text{to} \ 15 \end{array} $
resses	LZ z	0	0	0	1	0	0	1	0	Z 1	Z0	0	4	8 +z	1	1	$(Z) \leftarrow z \ z = 0 \text{ to } 3$
RAM addresses	INY	0	0	0	0	0	1	0	0	1	1	0	1	3	1	1	$(Y) \leftarrow (Y) + 1$
~	DEY	0	0	0	0	0	1	0	1	1	1	0	1	7	1	1	$(Y) \leftarrow (Y) - 1$
	ТАМ ј	1	0	1	1	0	0	j	j	j	j	2	С	j	1	1	$\begin{array}{l} (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array}$
transfer	XAM j	1	0	1	1	0	1	j	j	j	j	2	D	j	1	1	$\begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array}$
RAM to register transfer	XAMD j	1	0	1	1	1	1	j	j	j	j	2	F	j	1	1	$\begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) - 1 \end{array}$
RAI	XAMI j	1	0	1	1	1	0	j	j	j	j	2	E	j	1	1	$\begin{array}{l} (A) \leftarrow \to (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) + 1 \end{array}$
	ТМА ј	1	0	1	0	1	1	j	j	j	j	2	В	j	1	1	$(M(DP)) \leftarrow (A)$ $(X) \leftarrow (X)EXOR(j)$ j = 0 to 15

MACHINE INSTRUCTIONS (INDEX BY TYPES)

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Skip condition	Carry flag CY	Datailed description
-	-	Transfers the contents of register B to register A.
-	-	Transfers the contents of register A to register B.
-	-	Transfers the contents of register Y to register A.
-	-	Transfers the contents of register A to register Y.
_	-	Transfers the contents of register B to the high-order 4 bits (E3–E0) of register E, and the contents of register A to the low-order 4 bits (E3–E0) of register E.
-	-	Transfers the high-order 4 bits (E7–E4) of register E to register B, and low-order 4 bits of register E to register A.
-	-	Transfers the contents of the low-order 3 bits (A2-A0) of register A to register D.
_	-	Transfers the contents of register D to the low-order 3 bits (A2-A0) of register A.
-	-	Transfers the contents of register Z to the low-order 2 bits (A1, A0) of register A.
-	-	Transfers the contents of register X to register A.
-	-	Transfers the contents of stack pointer (SP) to the low-order 3 bits (A2–A0) of register A.
Continuous description	-	Loads the value x in the immediate field to register X, and the value y in the immediate field to register Y. When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped.
-	-	Loads the value z in the immediate field to register Z.
(Y) = 0	-	Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next in- struction is skipped. When the contents of register Y is not 0, the next instruction is executed.
(Y) = 15	-	Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
_	-	After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between reg- ister X and the value j in the immediate field, and stores the result in register X.
-	-	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is per- formed between register X and the value j in the immediate field, and stores the result in register X.
(Y) = 15	-	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is per- formed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
(Y) = 0	-	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is per- formed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next in- struction is skipped. when the contents of register Y is not 0, the next instruction is executed.
_	-	After transferring the contents of register A to M(DP), an exclusive OR operation is performed between reg- ister X and the value j in the immediate field, and stores the result in register X.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Parameter			Instruction code												er of ds	er of es	Function
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	Do			ecimal tion	Number o words	Number o cycles	Function
	LA n	0	0	0	1	1	1	n	n	n	n	0	7	n	1	1	$(A) \leftarrow n$ n = 0 to 15
	TABP p	0	0	1	0	0	р4	рз	p2	p1	ро	0	8 +	p p	1	3	$\begin{array}{l} (\text{SP}) \leftarrow (\text{SP}) + 1 \\ (\text{SK}(\text{SP})) \leftarrow (\text{PC}) \\ (\text{PCH}) \leftarrow p (\text{Note}) \\ (\text{PCL}) \leftarrow (\text{DR2-DR0}, \text{A3-A0}) \\ (\text{B}) \leftarrow (\text{ROM}(\text{PC}))7-4 \\ (\text{A}) \leftarrow (\text{ROM}(\text{PC}))3-0 \\ (\text{PC}) \leftarrow (\text{SK}(\text{SP})) \\ (\text{SP}) \leftarrow (\text{SP}) - 1 \end{array}$
	AM	0	0	0	0	0	0	1	0	1	0	0	0	А	1	1	$(A) \leftarrow (A) + (M(DP))$
eration	AMC	0	0	0	0	0	0	1	0	1	1	0	0	В	1	1	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$
Arithmetic operation	A n	0	0	0	1	1	0	n	n	n	n	0	6	n	1	1	$(A) \leftarrow (A) + n$ n = 0 to 15
Ari	AND	0	0	0	0	0	1	1	0	0	0	0	1	8	1	1	$(A) \leftarrow (A) AND (M(DP))$
	OR	0	0	0	0	0	1	1	0	0	1	0	1	9	1	1	$(A) \leftarrow (A) \; OR \; (M(DP))$
	sc	0	0	0	0	0	0	0	1	1	1	0	0	7	1	1	(CY) ← 1
	RC	0	0	0	0	0	0	0	1	1	0	0	0	6	1	1	$(CY) \leftarrow 0$
	SZC	0	0	0	0	1	0	1	1	1	1	0	2	F	1	1	(CY) = 0 ?
	СМА	0	0	0	0	0	1	1	1	0	0	0	1	С	1	1	$(A) \leftarrow (\overline{A})$
	RAR	0	0	0	0	0	1	1	1	0	1	0	1	D	1	1	CY A3A2A1A0
	SB j	0	0	0	1	0	1	1	1	j	j	0	5	C +j	1	1	$(Mj(DP)) \leftarrow 1$ j = 0 to 3
Bit operation	RB j	0	0	0	1	0	0	1	1	j	j	0	4	C +j	1	1	$(Mj(DP)) \leftarrow 0$ j = 0 to 3
Bit of	SZB j	0	0	0	0	1	0	0	0	j	j	0	2	j	1	1	(Mj(DP)) = 0 ? j = 0 to 3
	SEAM	0	0	0	0	1	0	0	1	1	0	0	2	6	1	1	(A) = (M(DP)) ?
Comparison operation	SEA n	0 0	0 0	0 0	0 1	1 1	0 1	0 n	1 n	0 n	1 n			5 n	2	2	(A) = n ? n = 0 to 15
					to 31												

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Note : p is 0 to 15 for M34506M2, p is 0 to 31 for M34506M4/E4.

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Skip condition	Carry flag CY	Datailed description
Continuous description	-	Loads the value n in the immediate field to register A. When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped.
-	-	Transfers bits 7 to 4 to register B and bits 3 to 0 to register A. These bits 7 to 0 are the ROM pattern in address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers A and D in page p. When this instruction is executed, be careful not to over the stack because 1 stage of stack register is used.
_	-	Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY re- mains unchanged.
-	0/1	Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.
Overflow = 0	_	Adds the value n in the immediate field to register A, and stores a result in register A. The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation. Executes the next instruction when there is overflow as the result of operation.
-	-	Takes the AND operation between the contents of register A and the contents of M(DP), and stores the re- sult in register A.
-	-	Takes the OR operation between the contents of register A and the contents of M(DP), and stores the result in register A.
-	1	Sets (1) to carry flag CY.
-	0	Clears (0) to carry flag CY.
(CY) = 0	-	Skips the next instruction when the contents of carry flag CY is "0."
-	-	Stores the one's complement for register A's contents in register A.
_	0/1	Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.
_	-	Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
_	-	Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
(Mj(DP)) = 0 j = 0 to 3	-	Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of M(DP) is "0." Executes the next instruction when the contents of bit j of M(DP) is "1."
(A) = (M(DP))	-	Skips the next instruction when the contents of register A is equal to the contents of M(DP). Executes the next instruction when the contents of register A is not equal to the contents of M(DP).
(A) = n	_	Skips the next instruction when the contents of register A is equal to the value n in the immediate field. Executes the next instruction when the contents of register A is not equal to the value n in the immediate field. field.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Parameter	r		Instruction code															
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Hex n	kadi lota	ecimal tion	Number (words	Number o cycles	Function	
	Ва	0	1	1	a 6	a5	a4	a3	a2	aı	a 0	1	8 +;	a a	1	1	(PCL) ← a6–a0	
ation	BL p, a	0	0	1	1	1	p4	рз	p2	p1	p0	0	E +	р р	2	2	(PCH) ← p (Note) (PCL) ← a6–a0	
Branch operation		1	0	0	a 6	a 5	a 4	a3	a2	aı	a 0	2	а	а				
Bran	BLA p	0	0	0	0	0	1	0	0	0	0	0	1	0	2	2	(PCH) ← p (Note) (PCL) ← (DR2–DR0, A3–A0)	
		1	0	0	р4	0	0	рз	p2	p1	p0	2	р	р				
	BM a	0	1	0	a 6	a 5	a4	a 3	a2	a 1	a 0	1	а	а	1	1	$\begin{array}{l} (\text{SP}) \leftarrow (\text{SP}) + 1 \\ (\text{SK}(\text{SP})) \leftarrow (\text{PC}) \\ (\text{PCH}) \leftarrow 2 \\ (\text{PCL}) \leftarrow a6\text{-}a0 \end{array}$	
Subroutine operation	BML p, a	0	0	1	1	0	p4	рз	p2	рı	p0	0	C +	р р	2	2	(SP) ← (SP) + 1 (SK(SP)) ← (PC) (PCH) ← p (Note)	
outine (1	0	0	a 6	a 5	a 4	аз	a2	a 1	a 0	2	а	а			$(PCL) \leftarrow a6-a0$	
Subr	BMLA p	0	0	0	0	1	1	0	0	0	0	0	3	0	2	2	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$	
		1	0	0	р4	0	0	рз	p2	p1	p0	2	р	р			$(PCH) \leftarrow p$ (Note) $(PCL) \leftarrow (DR_2-DR_0,A_3-A_0)$	
	RTI	0	0	0	1	0	0	0	1	1	0	0	4	6	1	1	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	
Return operation	RT	0	0	0	1	0	0	0	1	0	0	0	4	4	1	2	(PC) ← (SK(SP)) (SP) ← (SP) − 1	
Retur	RTS	0	0	0	1	0	0	0	1	0	1	0	4	5	1	2	(PC) ← (SK(SP)) (SP) ← (SP) − 1	

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Note : p is 0 to 15 for M34506M2, p is 0 to 31 for M34506M4/E4.

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Skip condition	Carry flag CY	Datailed description
-	-	Branch within a page : Branches to address a in the identical page.
-	_	Branch out of a page : Branches to address a in page p.
_	_	Branch out of a page : Branches to address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
_	-	Call the subroutine in page 2 : Calls the subroutine at address a in page 2.
_	-	Call the subroutine : Calls the subroutine at address a in page p.
-		Call the subroutine : Calls the subroutine at address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
-	-	Returns from interrupt service routine to main routine. Returns each value of data pointer (X, Y, Z), carry flag, skip status, NOP mode status by the continuous de- scription of the LA/LXY instruction, register A and register B to the states just before interrupt.
-	-	Returns from subroutine to the routine called the subroutine.
Skip at uncondition	_	Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Parameter		Instruction code													of	f	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	Do		ade otati	cimal on	Number of words	Number o cycles	Function
	DI	0	0	0	0	0	0	0	1	0	0	0	0	4	1	1	(INTE) ← 0
	EI	0	0	0	0	0	0	0	1	0	1	0	0	5	1	1	(INTE) ← 1
	SNZ0	0	0	0	0	1	1	1	0	0	0	0	3	8	1	1	V10 = 0: (EXF0) = 1 ? After skipping, (EXF0) ← 0 V10 = 1: SNZ0 = NOP
ation	SNZI0	0	0	0	0	1	1	1	0	1	0	0	3	A	1	1	l12 = 0 : (INT) = "L" ?
Interrupt operation																	I12 = 1 : (INT) = "H" ?
nterru	TAV1	0	0	0	1	0	1	0	1	0	0	0	5	4	1	1	$(A) \leftarrow (V1)$
	TV1A	0	0	0	0	1	1	1	1	1	1	0	3	F	1	1	$(V1) \leftarrow (A)$
	TAV2	0	0	0	1	0	1	0	1	0	1	0	5	5	1	1	$(A) \leftarrow (V2)$
	TV2A	0	0	0	0	1	1	1	1	1	0	0	3	Е	1	1	$(V2) \leftarrow (A)$
	TAI1	1	0	0	1	0	1	0	0	1	1	2	5	3	1	1	$(A) \leftarrow (I1)$
	TI1A	1	0	0	0	0	1	0	1	1	1	2	1	7	1	1	$(I1) \leftarrow (A)$
	TAW1	1	0	0	1	0	0	1	0	1	1	2	4	В	1	1	$(A) \leftarrow (W1)$
	TW1A	1	0	0	0	0	0	1	1	1	0	2	0	Е	1	1	$(W1) \leftarrow (A)$
	TAW2	1	0	0	1	0	0	1	1	0	0	2	4	С	1	1	$(A) \leftarrow (W2)$
	TW2A	1	0	0	0	0	0	1	1	1	1	2	0	F	1	1	$(W2) \leftarrow (A)$
	TAW6	1	0	0	1	0	1	0	0	0	0	2	5	0	1	1	(A) ← (W6)
	TW6A	1	0	0	0	0	1	0	0	1	1	2	1	3	1	1	(W6) ← (A)
	TAB1	1	0	0	1	1	1	0	0	0	0	2	7	0	1	1	(B) ← (T17–T14) (A) ← (T13–T10)
Timer operation	T1AB	1	0	0	0	1	1	0	0	0	0	2	3	0	1	1	$(T17-T14) \leftarrow (B)$ $(R17-R14) \leftarrow (B)$ $(T13-T10) \leftarrow (A)$ $(R13-R10) \leftarrow (A)$
Timer	TAB2	1	0	0	1	1	1	0	0	0	1	2	7	1	1	1	
	T2AB	1	0	0	0	1	1	0	0	0	1	2	3	1	1	1	$(T27-T24) \leftarrow (B)$ $(R27-R24) \leftarrow (B)$ $(T23-T20) \leftarrow (A)$ $(R23-R20) \leftarrow (A)$
	TR1AB	1	0	0	0	1	1	1	1	1	1	2	3	F	1	1	(R17–R14) ← (B) (R13–R10) ← (A)
	SNZT1	1	0	1	0	0	0	0	0	0	0	2	8	0	1	1	V12 = 0: (T1F) = 1 ? After skipping, (T1F) ← 0 V12 = 1: SNZT1 = NOP
	SNZT2	1	0	1	0	0	0	0	0	0	1	2	8	1	1	1	V13 = 0: (T2F) = 1 ? After skipping, (T2F) ← 0 V13 = 1: SNZT2 = NOP

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

r		
Skip condition	Carry flag CY	Datailed description
-	-	Clears (0) to interrupt enable flag INTE, and disables the interrupt.
_	-	Sets (1) to interrupt enable flag INTE, and enables the interrupt.
V10 = 0: (EXF0) = 1	-	When $V10 = 0$: Skips the next instruction when external 0 interrupt request flag EXF0 is "1." After skipping, clears (0) to the EXF0 flag. When the EXF0 flag is "0," executes the next instruction. When $V10 = 1$: This instruction is equivalent to the NOP instruction. (V10: bit 0 of interrupt control register V1)
(INT) = "L" However, I12 = 0	-	When I12 = 0 : Skips the next instruction when the level of INT pin is "L." Executes the next instruction when the level of INT pin is "H."
(INT) = "H" However, I12 = 1		When I12 = 1 : Skips the next instruction when the level of INT pin is "H." Executes the next instruction when the level of INT pin is "L." (I12: bit 2 of interrupt control register I1)
-	-	Transfers the contents of interrupt control register V1 to register A.
-	-	Transfers the contents of register A to interrupt control register V1.
_	-	Transfers the contents of interrupt control register V2 to register A.
_	-	Transfers the contents of register A to interrupt control register V2.
_	-	Transfers the contents of interrupt control register I1 to register A.
_	-	Transfers the contents of register A to interrupt control register I1.
_	-	Transfers the contents of timer control register W1 to register A.
_	-	Transfers the contents of register A to timer control register W1.
_	-	Transfers the contents of timer control register W2 to register A.
-	-	Transfers the contents of register A to timer control register W2.
-	-	Transfers the contents of timer control register W6 to register A.
-	-	Transfers the contents of register A to timer control register W6.
-	-	Transfers the high-order 4 bits (T17–T14) of timer 1 to register B. Transfers the low-order 4 bits (T13–T10) of timer 1 to register A.
-	-	Transfers the contents of register B to the high-order 4 bits of timer 1 and timer 1 reload register R1. Transfers the contents of register A to the low-order 4 bits of timer 1 and timer 1 reload register R1.
-	-	Transfers the high-order 4 bits (T27–T24) of timer 2 to register B. Transfers the low-order 4 bits (T23–T20) of timer 2 to register A.
_	-	Transfers the contents of register B to the high-order 4 bits of timer 2 and timer 2 reload register R2. Transfers the contents of register A to the low-order 4 bits of timer 2 and timer 2 reload register R2.
-	_	Transfers the contents of register B to the high-order 4 bits (R17–R14) of reload register R1, and the contents of register A to the low-order 4 bits (R13–R10) of reload register R1.
V12 = 0: (T1F) = 1	_	When $V12 = 0$: Skips the next instruction when timer 1 interrupt request flag T1F is "1." After skipping, clears (0) to the T1F flag. When the T1F flag is "0," executes the next instruction. When $V12 = 1$: This instruction is equivalent to the NOP instruction. (V12: bit 2 of interrupt control register V1)
V13 = 0: (T2F) =1	_	When $V13 = 0$: Skips the next instruction when timer 1 interrupt request flag T2F is "1." After skipping, clears (0) to the T2F flag. When the T2F flag is "0," executes the next instruction. When $V13 = 1$: This instruction is equivalent to the NOP instruction. (V13: bit 3 of interrupt control register V1)

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Parameter						In	stru	ction	l cod	е					er of ds	er of es	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	Do		ade otat	cimal ion	Number (words	Number o cycles	Function
	IAP0	1	0	0	1	1	0	0	0	0	0	2	6	0	1	1	(A) ← (P0)
	OP0A	1	0	0	0	1	0	0	0	0	0	2	2	0	1	1	$(P0) \leftarrow (A)$
	IAP1	1	0	0	1	1	0	0	0	0	1	2	6	1	1	1	$(A) \leftarrow (P1)$
	OP1A	1	0	0	0	1	0	0	0	0	1	2	2	1	1	1	(P1) ← (A)
	IAP2	1	0	0	1	1	0	0	0	1	0	2	6	2	1	1	$(A1, A0) \leftarrow (P21, P20)$ $(A3, A2) \leftarrow 0$
	OP2A	1	0	0	0	1	0	0	0	1	0	2	2	2	1	1	(P21, P20) ← (A1, A0)
	CLD	0	0	0	0	0	1	0	0	0	1	0	1	1	1	1	(D) ← 1
	RD	0	0	0	0	0	1	0	1	0	0	0	1	4	1	1	$\begin{array}{l} (D(Y)) \leftarrow 0 \\ (Y) = 0 \text{ to } 3 \end{array}$
	SD	0	0	0	0	0	1	0	1	0	1	0	1	5	1	1	$\begin{array}{l} (D(Y)) \leftarrow 1\\ (Y) = 0 \text{ to } 3 \end{array}$
	SZD	0 0	0 0	0 0	0 0	1 1	0 0	0 1	1 0	0 1	0 1	0	2 2		2	2	(D(Y)) = 0 ? (Y) = 0 to 3
ation	SCP	1	0	1	0	0	0	1	1	0	1	2	8	D	1	1	$(C) \leftarrow 1$
oper	RCP	1	0	1	0	0	0	1	1	0	0	2	8	С	1	1	$(C) \leftarrow 0$
utput	SNZCP	1	0	1	0	0	0	1	0	0	1	2	8	9	1	1	(C) = 1?
Input/Output operation	IAK	1	0	0	1	1	0	1	1	1	1	2	6	F	1	1	(A0) ← (K) (A3–A1) ← 0
	ОКА	1	0	0	0	0	1	1	1	1	1	2	1	F	1	1	(K) ← (A₀)
	TK0A	1	0	0	0	0	1	1	0	1	1	2	1	В	1	1	(K0) ← (A)
	TAK0	1	0	0	1	0	1	0	1	1	0	2	5	6	1	1	(A) ← (K0)
	TK1A	1	0	0	0	0	1	0	1	0	0	2	1	4	1	1	$(K1) \leftarrow (A)$
	TAK1	1	0	0	1	0	1	1	0	0	1	2	5	9	1	1	$(A) \leftarrow (K1)$
	TK2A	1	0	0	0	0	1	0	1	0	1	2	1	5	1	1	$(K2) \leftarrow (A)$
	TAK2	1	0	0	1	0	1	1	0	1	0	2	5	А	1	1	$(A) \leftarrow (K2)$
	TPU0A	1	0	0	0	1	0	1	1	0	1	2	2	D	1	1	$(PU0) \leftarrow (A)$
	TPU1A	A 1 0 0		0	0	1	0	1	1	1	0	2	2	Е	1	1	$(PU1) \leftarrow (A)$
	TPU2A	1	0	0	0	1	0	1	1	1	1	2	2	F	1	1	$(PU2) \leftarrow (A)$

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Skip condition	Carry flag CY	Datailed description
-	-	Transfers the input of port P0 to register A.
-	-	Outputs the contents of register A to port P0.
-	-	Transfers the input of port P1 to register A.
-	-	Outputs the contents of register A to port P1.
-	-	Transfers the input of port P2 to the low-order 2 bits (A1, A0) of register A.
-	-	Outputs the contents of the low-order 2 bits (A1, A0) of register A to port P2.
-	-	Sets (1) to port D.
-	-	Clears (0) to a bit of port D specified by register Y.
_	-	Sets (1) to a bit of port D specified by register Y.
(D(Y)) = 0 ? (Y) = 0 to 3	-	Skips the next instruction when a bit of port D specified by register Y is "0." Executes the next instruction when a bit of port D specified by register Y is "1."
-	-	Sets (1) to port C.
-	-	Clears (0) to port C.
(C) = 1	-	Skips the next instruction when the contents of port C is "1." Executes the next instruction when the contents of port C is "0."
-	-	Transfers the contents of port K to the bit 0 (Ao) of register A.
_	-	Outputs the contents of bit 0 (Ao) of register A to port K.
-	-	Transfers the contents of register A to key-on wakeup control register K0.
-	-	Transfers the contents of key-on wakeup control register K0 to register A.
-	-	Transfers the contents of register A to key-on wakeup control register K1.
-	-	Transfers the contents of key-on wakeup control register K1 to register A.
-	-	Transfers the contents of register A to key-on wakeup control register K2.
-	-	Transfers the contents of key-on wakeup control register K2 to register A.
-	-	Transfers the contents of register A to pull-up control register PU0.
-	-	Transfers the contents of register A to pull-up control register PU1.
-	-	Transfers the contents of register A to pull-up control register PU2.
L		1

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Parameter						Ir	nstru	ctior	o cod	le					ir of Is	ir of is	
Type of structions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0		ade otati	cimal on	Number o words	Number o cycles	Function
	TABAD	1	0	0	1	1	1	1	0	0	1	2	7	9	1	1	In A-D conversion mode (Q13 = 0), (B) \leftarrow (AD9-AD6) (A) \leftarrow (AD5-AD2) In comparator mode (Q13 = 1), (B) \leftarrow (AD7-AD4) (A) \leftarrow (AD3-AD0)
ion	TALA	1	0	0	1	0	0	1	0	0	1	2	4	9	1	1	$(A3, A2) \leftarrow (AD1, AD0) (A1, A0) \leftarrow 0$
A-D conversion operation	TADAB	1	0	0	0	1	1	1	0	0	1	2	3	9	1	1	(AD7–AD4) ← (B) (AD3–AD0) ← (A)
conver	TAQ1	1	0	0	1	0	0	0	1	0	0	2	4	4	1	1	$(A) \leftarrow (Q1)$
A-D	TQ1A	1	0	0	0	0	0	0	1	0	0	2	0	4	1	1	$(Q1) \leftarrow (A)$
	ADST	1	0	1	0	0	1	1	1	1	1	2	9	F	1	1	$(ADF) \leftarrow 0$ Q13 = 0: A-D conversion starting Q13 = 1: Comparator operation starting
	SNZAD	1	0	1	0	0	0	0	1	1	1	2	8	7	1	1	V22 = 0: (ADF) = 1 ? After skipping, (ADF) ← 0 V22 = 1: SNZAD = NOP
	NOP	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	(PC) ← (PC) + 1
	POF2	0	0	0	0	0	0	1	0	0	0	0	0	8	1	1	RAM back-up
	EPOF	0	0	0	1	0	1	1	0	1	1	0	5	в	1	1	POF2 instruction valid
	SNZP	0	0	0	0	0	0	0	0	1	1	0	0	3	1	1	(P) = 1 ?
tion	DWDT	1	0	1	0	0	1	1	1	0	0	2	9	С	1	1	Stop of watchdog timer function enabled
Other operation	WRST	1	0	1	0	1	0	0	0	0	0	2	A	0	1	1	(WDF1) = 1 ?, after skipping, $(WDF1) \leftarrow 0$
0	СМСК	1	0	1	0	0	1	1	0	1	0	2	9	А	1	1	Ceramic resonator selected
	CRCK	1	0	1	0	0	1	1	0	1	1	2	9	В	1	1	RC oscillation selected
	TAMR	1	0	0	1	0	1	0	0	1	0	2	5	2	1	1	$(A) \leftarrow (MR)$
	TMRA	1	0	0	0	0	1	0	1	1	0	2	1	6	1	1	(MR) ← (A)

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

r		
Skip condition	Carry flag CY	Datailed description
	Car	
_	-	In the A-D conversion mode (Q13 = 0), transfers the high-order 4 bits (AD9–AD6) of register AD to register B, and the middle-order 4 bits (AD5–AD2) of register AD to register A. In the comparator mode (Q13 = 1), transfers the middle-order 4 bits (AD7–AD4) of register AD to register B, and the low-order 4 bits (AD3–AD0) of register AD to register A. (Q13: bit 3 of A-D control register Q1)
-	-	Transfers the low-order 2 bits (AD1, AD0) of register AD to the high-order 2 bits (AD3, AD2) of register A.
-	-	In the A-D conversion mode (Q13 = 0), this instruction is equivalent to the NOP instruction. In the comparator mode (Q13 = 1), transfers the contents of register B to the high-order 4 bits (AD7–AD4) of comparator register, and the contents of register A to the low-order 4 bits (AD3–AD0) of comparator register. (Q13 = bit 3 of A-D control register Q1)
_	-	Transfers the contents of A-D control register Q1 to register A.
-	_	Transfers the contents of register A to A-D control register Q1.
-	_	Clears (0) to A-D conversion completion flag ADF, and the A-D conversion at the A-D conversion mode (Q13 = 0) or the comparator operation at the comparator mode (Q13 = 1) is started. (Q13 = bit 3 of A-D control register Q1)
V22 = 0: (ADF) = 1	_	When V22 = 0 : Skips the next instruction when A-D conversion completion flag ADF is "1." After skipping, clears (0) to the ADF flag. When the ADF flag is "0," executes the next instruction. When V22 = 1 : This instruction is equivalent to the NOP instruction. (V22: bit 2 of interrupt control register V2)
-	-	No operation; Adds 1 to program counter value, and others remain unchanged.
-	-	Puts the system in RAM back-up state by executing the POF2 instruction after executing the EPOF instruction. Operations of all functions are stopped.
_	_	Makes the immediate after POF2 instruction valid by executing the EPOF instruction.
(P) = 1	_	Skips the next instruction when the P flag is "1". After skipping, the P flag remains unchanged. Executes the next instruction when the P flag is "0."
-	-	Stops the watchdog timer function by the WRST instruction after executing the DWDT instruction.
(WDF1) = 1	-	Skips the next instruction when watchdog timer flag WDF1 is "1." After skipping, clears (0) to the WDF1 flag. When the WDF1 flag is "0," executes the next instruction. Also, stops the watchdog timer function when executing the WRST instruction immediately after the DWDT instruction.
-	-	Selects the ceramic oscillation circuit and stops the ring oscillator.
-	_	Selects the RC oscillation circuit and stops the ring oscillator.
-	_	Transfers the contents of clock control register MR to register A.
-	_	Transfers the contents of register A to clock control register MR.

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

191	RUC	TION	COL		RLF														
Ĺ	D9-D4	000000	000001	000010	000011	000100	000101	000110	000111	001000	001001	001010	001011	001100	001101	001110	001111	010000 010111	
D3–D0	Hex. notation	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10–17	18–1F
0000	0	NOP	BLA	SZB 0	BMLA	_	TASP	A 0	LA 0	TABP 0	TABP 16*	-	-	BML	BML*	BL	BL*	BM	в
0001	1	_	CLD	SZB 1	-	_	TAD	A 1	LA 1	TABP 1	TABP 17*	_	-	BML	BML*	BL	BL*	вм	в
0010	2	_	-	SZB 2	-	_	ТАХ	A 2	LA 2	TABP 2	TABP 18*	_	_	BML	BML*	BL	BL*	вм	в
0011	3	SNZP	INY	SZB 3	-	_	TAZ	А 3	LA 3	TABP 3	TABP 19*	_	_	BML	BML*	BL	BL*	ВМ	в
0100	4	DI	RD	SZD	_	RT	TAV1	A 4	LA 4	TABP 4	TABP 20*	_	_	BML	BML*	BL	BL*	вм	в
0101	5	EI	SD	SEAn	_	RTS	TAV2	A 5	LA 5	TABP 5	TABP 21*	_	_	BML	BML*	BL	BL*	вм	в
0110	6	RC	_	SEAM	-	RTI	_	A 6	LA 6	TABP 6	TABP 22*	-	-	BML	BML*	BL	BL*	вм	в
0111	7	SC	DEY	-	-	_	-	A 7	LA 7	TABP 7	TABP 23*	_	_	BML	BML*	BL	BL*	BM	в
1000	8	POF2	AND	-	SNZ0	LZ 0	_	A 8	LA 8	TABP 8	TABP 24*	_	_	BML	BML*	BL	BL*	вм	в
1001	9	-	OR	TDA	-	LZ 1	-	A 9	LA 9	TABP 9	TABP 25*	_	_	BML	BML*	BL	BL*	вм	В
1010	А	AM	ТЕАВ	TABE	SNZI0	LZ 2	_	A 10	LA 10	TABP 10	TABP 26*	_	_	BML	BML*	BL	BL*	BM	в
1011	В	AMC	_	-	-	LZ 3	EPOF	A 11	LA 11	TABP 11	TABP 27*	_	-	BML	BML*	BL	BL*	ВМ	в
1100	С	TYA	СМА	-	-	RB 0	SB 0	A 12	LA 12	TABP 12	TABP 28*	_	-	BML	BML*	BL	BL*	BM	в
1101	D	_	RAR	-	-	RB 1	SB 1	A 13	LA 13	TABP 13	TABP 29*	_	_	BML	BML*	BL	BL*	вм	в
1110	Е	ТВА	ТАВ	-	TV2A	RB 2	SB 2	A 14	LA 14	TABP 14	TABP 30*	_	_	BML	BML*	BL	BL*	вм	в
1111	F	_	TAY	szc	TV1A	RB 3	SB 3	A 15	LA 15	TABP 15	TABP 31*	-	-	BML	BML*	BL	BL*	вм	в

INSTRUCTION CODE TABLE

The above table shows the relationship between machine language codes and machine language instructions. D3–D0 show the low-order 4 bits of the machine language code, and D9–D4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–."

The codes for the second word of a two-word instruction are described below.

	The	secon	d word
BL	10	0aaa	aaaa
BML	10	0aaa	aaaa
BLA	10	0p00	рррр
BMLA	10	0p00	рррр
SEA	00	0111	nnnn
SZD	00	0010	1011

• * cannot be used in the M34506M2-XXXFP.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

						•												
[[D9–D4	100000	100001	100010	100011	100100	100101	100110	100111	101000	101001	101010	101011	101100	101101	101110	101111	110000 111111
D3–D0	Hex. notation	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F	30–3F
0000	0	_	_	OP0A	T1AB	_	TAW6	IAP0	TAB1	SNZT1	_	WRST	TMA 0	TAM 0	XAM 0	XAMI 0	XAMD 0	LXY
0001	1	_	_	OP1A	T2AB	_	_	IAP1	TAB2	SNZT2	-	-	TMA 1	TAM 1	XAM 1	XAMI 1	XAMD 1	LXY
0010	2	_	-	OP2A	-	-	TAMR	IAP2	_	-	_	-	TMA 2	TAM 2	XAM 2	XAMI 2	XAMD 2	LXY
0011	3	_	TW6A	_	_	_	TAI1	-	_	_	_	-	TMA 3	TAM 3	XAM 3	XAMI 3	XAMD 3	LXY
0100	4	TQ1A	TK1A	_	_	TAQ1	-	-	_	-	_	-	TMA 4	TAM 4	XAM 4	XAMI 4	XAMD 4	LXY
0101	5	-	TK2A	-	Ι	Ι	-	Ι	-	-	-	-	TMA 5	TAM 5	XAM 5	XAMI 5	XAMD 5	LXY
0110	6	-	TMRA	-	Ι	-	TAK0	-	-	-	-	-	TMA 6	TAM 6	XAM 6	XAMI 6	XAMD 6	LXY
0111	7	Ι	TI1A	-	Ι	Ι	-	Ι	-	SNZAD	_	-	TMA 7	TAM 7	XAM 7	XAMI 7	XAMD 7	LXY
1000	8	-	-	_	-	-	-	-	_	-	_	-	TMA 8	TAM 8	XAM 8	XAMI 8	XAMD 8	LXY
1001	9	-	Ι	_	TADAB	TALA	TAK1	Ι	TABAD	SNZCP	_	_	TMA 9	TAM 9	XAM 9	XAMI 9	XAMD 9	LXY
1010	А	-	I	_	Ι	Ι	TAK2	I	_	-	смск	_	TMA 10	TAM 10	XAM 10	XAMI 10	XAMD 10	LXY
1011	В	-	TK0A	-	Ι	TAW1	_	Ι	-	-	CRCK	_	TMA 11	TAM 11	XAM 11	XAMI 11	XAMD 11	LXY
1100	С	-	-	_	-	TAW2	_	_	_	RCP	DWDT		TMA 12	TAM 12	XAM 12	XAMI 12	XAMD 12	LXY
1101	D	-	-	TPU0A			-	_	_	SCP	-	-	TMA 13	TAM 13	XAM 13	XAMI 13	XAMD 13	LXY
1110	Е	TW1A	-	TPU1A	-	-	-	_	-	-	-	-	TMA 14	TAM 14	XAM 14	XAMI 14	XAMD 14	LXY
1111	F	TW2A	ΟΚΑ	TPU2A	TR1AB	-	-	IAK	_	-	ADST	-	TMA 15	TAM 15	XAM 15	XAMI 15	XAMD 15	LXY

INSTRUCTION CODE TABLE (continued)

The above table shows the relationship between machine language codes and machine language instructions. D₃–D₀ show the loworder 4 bits of the machine language code, and D₉–D₄ show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–."

The codes for the second word of a two-word instruction are described below.

	The	secon	d word
BL	10	0aaa	aaaa
BML	10	0aaa	aaaa
BLA	10	0p00	pppp
BMLA	10	0p00	pppp
SEA	00	0111	nnnn
SZD	00	0010	1011

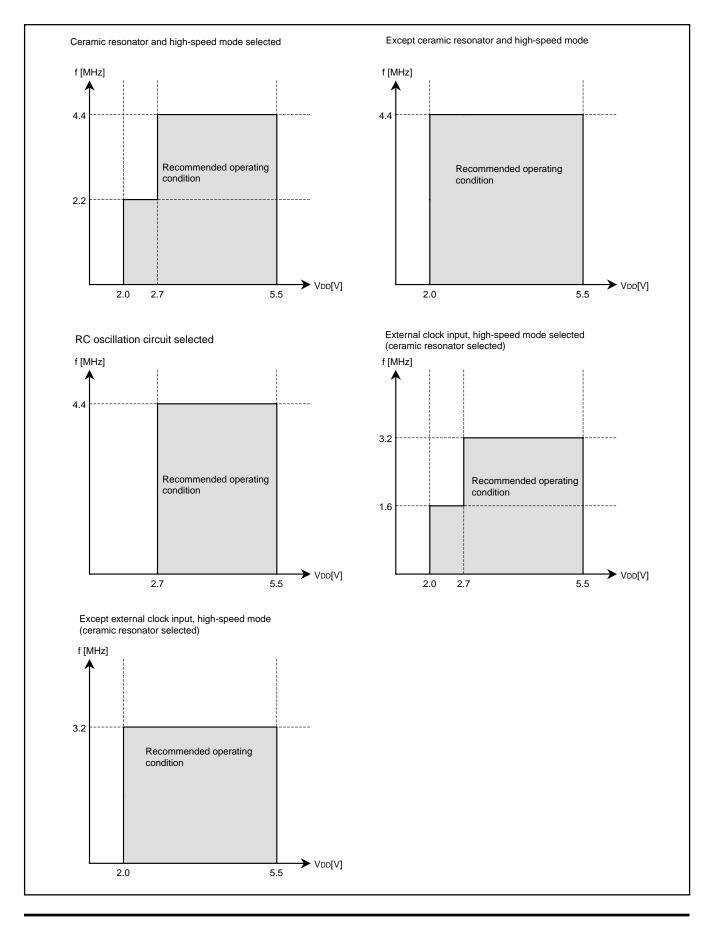
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

ABSOLUTE MAXIMUM RAINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vdd	Supply voltage		-0.3 to 6.5	V
VI	Input voltage P0, P1, P2, D0, D1, D2/C, D3/K,		-0.3 to VDD+0.3	V
	RESET, XIN			
VI	Input voltage AIN0–AIN1		-0.3 to VDD+0.3	V
Vo	Output voltage P0, P1, P2, D0, D1, D2/C, D3/K,		-0.3 to VDD+0.3	V
	RESET	Output transistors in cut-off state		
Vo	Output voltage Xout		-0.3 to VDD+0.3	V
Pd	Power dissipation	Ta = 25 °C	300	mW
Topr	Operating temperature range		-20 to 85	°C
Tstg	Storage temperature range		-40 to 125	°C

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

RECOM	MENDED OPERATING CONE	DITIONS 1 (Ta = -20 °C to 85 °C, VDD =	2.0 V to 5.5	V, unless of	therwise no	ted)
Cumhal	Devenueter	Conditions		Limits		Linit
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit


<u> </u>	D (0 111			Linnis		1
Symbol	Parameter	Conditi	ons	Min.	Тур.	Max.	Unit
Vdd	Supply voltage	High-speed mode	$f(XIN) \le 4.4 \text{ MHz}$	2.7		5.5	V
	(with a ceramic resonator)	Middle-speed mode	$f(XIN) \le 4.4 \text{ MHz}$	2.0		5.5	1
		Low-speed mode					
		Default mode					
Vdd	Supply voltage	High-speed mode	$f(XIN) \le 4.4 \text{ MHz}$	2.7		5.5	V
	(with RC oscillation)	Middle-speed mode					
		Low-speed mode					
		Default mode					
Vram	RAM back-up voltage	(at RAM back-up)		1.8			V
Vss	Supply voltage				0		V
Vih	"H" level input voltage	P0, P1, P2, D0–D3, XIN		0.8Vdd		Vdd	V
Viн	"H" level input voltage	RESET		0.85Vdd		Vdd	V
Viн	"H" level input voltage	С, К	VDD = 4.0 to 5.5 V	0.5Vdd		Vdd	V
			VDD = 2.0 to 5.5 V	0.7Vdd		Vdd	1
Viн	"H" level input voltage	CNTR, INT		0.85Vdd		Vdd	V
Vil	"L" level input voltage	P0, P1, P2, D0–D3, XIN	l	0		0.2Vdd	V
Vil	"L" level input voltage	С, К		0		0.16Vdd	V
Vil	"L" level input voltage	RESET		0		0.3Vdd	V
VIL	"L" level input voltage	CNTR, INT		0		0.15Vdd	V
loL(peak)	"L" level peak output current	P2, RESET	Vdd = 5.0 V			10	mA
			VDD = 3.0 V			4.0	
loL(peak)	"L" level peak output current	D0, D1	Vdd = 5.0 V			40	mA
			VDD = 3.0 V			30	
loL(peak)	"L" level peak output current	D2/C, D3/K	Vdd = 5.0 V			24	mA
			VDD = 3.0 V			12	
IOL(peak)	"L" level peak output current	P0, P1	Vdd = 5.0 V			24	mA
			VDD = 3.0 V			12	
loL(avg)	"L" level average output current	P2, RESET (Note)	Vdd = 5.0 V			5.0	mA
			Vdd = 3.0 V			2.0	
IOL(avg)	"L" level average output current	D0, D1 (Note)	Vdd = 5.0 V			30	mA
			VDD = 3.0 V			15	
loL(avg)	"L" level average output current	D2/C, D3/K (Note)	VDD = 5.0 V			15	mA
			VDD = 3.0 V			7.0	
loL(avg)	"L" level average output current	P0, P1 (Note)	VDD = 5.0 V			12	mA
			VDD = 3.0 V			6.0	
ΣloL(avg)	"L" level total average current	P2, D, RESET				80	mA
		P0, P1				80	1

Note : The average output current (IOH, IOL) is the average value during 100 ms.

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Symbol	Parameter	Con	litiona		Limits		Uni
Symbol	Parameter	Conc	ditions	Min.	Тур.	Max.	
f(XIN)	Oscillation frequency	High-speed mode	VDD = 2.7 V to 5.5 V			4.4	MH
	(with a ceramic resonator)		VDD = 2.0 V to 5.5 V			2.2	
		Middle-speed mode	VDD = 2.0 V to 5.5 V			4.4	
		Low-speed mode					
		Default mode					
f(XIN)	Oscillation frequency	High-speed mode	VDD = 2.7 V to 5.5 V			4.4	MH
	(with RC oscillation) (Note)	Middle-speed mode					
		Low-speed mode					
		Default mode					
f(XIN)	Oscillation frequency	High-speed mode	VDD = 2.7 V to 5.5 V			3.2	MH:
((with a ceramic resonator selected,		VDD = 2.0 V to 5.5 V			1.6	1
	external clock input)	Middle-speed mode	VDD = 2.0 V to 5.5 V			3.2	
		Low-speed mode					
		Default mode					
$\Delta f(XIN)$	Oscillation frequency	VDD = 5.0 V ±10 %, Ta =	25 °C, –20 to 85 °C			±17	%
	(at RC oscillation, error value of						
	exteranal R, C not included)	VDD = 3.0 V ±10 %, Ta =	25 °C, -20 to 85 °C			±17	
	Note: use 30 pF capacitor and vary external R						
f(CNTR)	Timer external input frequency	High-speed mode				f(XIN)/6	Hz
		Middle-speed mode				f(XIN)/12	
		Low-speed mode				f(XIN)/24	
		Default mode				f(XIN)/48	
tw(CNTR)	Timer external input period	High-speed mode	3/f(XIN)			s	
	("H" and "L" pulse width)	Middle-speed mode	6/f(XIN)				
		Low-speed mode	12/f(XIN)				
		Default mode		24/f(XIN)			

RECOMMENDED OPERATING CONDITIONS 2 (Ta = -20 °C to 85 °C, VDD = 2.0 V to 5.5 V, unless otherwise noted)

Note: The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Symbol	Parameter		Test conditions			Limits			
					Min.	Тур.	Max.	Unit	
Vol	"L" level output voltage		VDD = 5.0 V	IOL = 12 mA			2.0	V	
	P0, P1			IOL = 4.0 mA			0.9		
			VDD = 3.0 V	IOL = 6.0 mA			0.9		
				IOL = 2.0 mA			0.6		
Vol	"L" level output voltage		VDD = 5.0 V	IOL = 5.0 mA			2.0	V	
	P2, RESET			IOL = 1.0 mA			0.6	_	
			VDD = 3.0 V	IOL = 2.0 mA			0.9		
Vol	"L" level output	voltage	VDD = 5.0 V	IOL = 30 mA			2.0	V	
	D0, D1			IOL = 10 mA			0.9		
			VDD = 3.0 V	IOL = 15 mA			2.0		
				IOL = 5.0 mA			0.9		
Vol	"L" level output v	voltage	VDD = 5.0 V	IOL = 15 mA			2.0	V	
	D2/C, D3/K			IOL = 5.0 mA			0.9	_	
			VDD = 3.0 V	IOL = 9.0 mA			2.0		
				IOL = 3.0 mA			0.9		
Іін	"H" level input cu	urrent	VI = VDD				1.0	μA	
	P0, P1, P2, RESET								
Іін	"H" level input current		VI = VDD				1.0	μA	
	Do, D1, D2/C, D3/K								
lil	"L" level input cu		VI = 0 V P0, P1, P2 No pull-up		-1.0			μA	
	P0, P1, P2								
lil	"L" level input current D0, D1, D2/C, D3/K		VI = 0 V, D2/C, D3/K, No pull-up		-1.0			μA	
Idd	Supply current at active mode		VDD = 5.0 V	High-speed mode		1.7	5.0	mA	
		(Note 1)	f(XIN) = 4.0 MHz	Middle-speed mode		1.3	3.9	-	
				Low-speed mode		1.1	3.3	-	
				Default mode		1.0	3.0	-	
			VDD = 3.0 V	High-speed mode		0.5	1.5	-	
			f(XIN) = 2.0 MHz	Middle-speed mode		0.4	1.2	-	
				Low-speed mode		0.35	1.1	1	
				Default mode		0.3	0.9	-	
		at RAM back-up mode	Ta = 25 °C			0.1	1.0	μA	
		(POF2 instruction execution)	VDD = 5.0 V			0.1	10	-	
			VDD = 3.0 V				6.0	1	
Rpu	Pull-up resistor	 	VI = 0 V	VDD = 5.0 V	30	60	150	kΩ	
	P0, P1, P2, D2/0			VDD = 3.0 V	50	120	300	-	
VT+ – VT– Hysteresis INT, CI			VDD = 5.0 V			0.25	000	V	
• · · · • · -			VDD = 3.0 V			0.25		-	
VT+ – VT–			VDD = 5.0 V			1.2		V	
v i + - v i -	Hysteresis RESET		VDD = 3.0 V VDD = 3.0 V			0.5		v	
		look froguonos (Noto 2)	VDD = 5.0 V			0.5 2.0	3.0	MHz	
I(RING)	f(RING) Ring oscillator clock frequency (Note 2)		VDD = 3.0 V						
			0.0 V = 0.0 V			1.0	1.8		

ELECTRICAL CHARACTERISTICS (Ta = -20 °C to 85 °C, VDD = 2.0 V to 5.5 V, unless otherwise noted)

Notes 1: When the A-D converter is used, the A-D operation current (IADD) is included.

2: When system operates by the ring oscillator, the system clock frequency is the ring oscillator clock divided by the dividing ratio selected with register MR.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

A-D CONVERTER RECOMMENDED OPERATING CONDITIONS

(Comparator mode included, Ta = -20 °C to 85 °C, unless otherwise noted)

Symbol	Parameter	Co		Unit			
Symbol	Falameter		Min.	Тур.	Max.	Onit	
Vdd	Supply voltage	Ta = 25 °C	2.7		5.5	V	
		Ta = -20 °C to 85 °C	3.0		5.5		
VIA	Analog input voltage			0		VDD+2LSB	V
f(XIN)	Oscillation frequency	VDD = 2.7 V to 5.5 V	High-speed mode	0.1			MHz
			Middle-speed mode	0.2			
			Low-speed mode	0.4			
			Default mode	0.8			

A-D CONVERTER CHARACTERISTICS (Ta = -20 °C to 85 °C, unless otherwise noted)

Cumbal	Parameter	Те		Limits			
Symbol	Parameter	le	Min.	Тур.	Max.	– Uni	
-	Resolution				10	bits	
-	Linearity error	Ta = 25 °C, VDD =	2.7 V to 5.5 V			±2.0	LSE
		Ta = -25 °C to 85	°C, VDD = 3.0 V to 5.5 V				
_	Differential non-linearity error	Ta = 25 °C, VDD =	2.7 V to 5.5 V			±0.9	LSB
		Ta = -25 °C to 85	°C, VDD = 3.0 V to 5.5 V				
Vот	Zero transition voltage	Vdd = 5.12 V	10	20	30	mV	
		VDD = 3.072 V	3	9	15	7	
VFST	Full-scale transition voltage	VDD = 5.12 V	5115	5125	5135	mV	
		VDD = 3.072 V	3063	3069	3075	1	
IAdd	A-D operating current (Note 1)	VDD = 5.0 V			0.3	0.9	mA
		VDD = 3.0 V		0.1	0.3	1	
TCONV	A-D conversion time	f(XIN) = 4.0 MHz	High-speed mode			46.5	μs
			Middle-speed mode			93.0	
			Low-speed mode			186	
			Default mode			372	7
-	Comparator resolution					8	bits
-	Comparator error (Note 2)	VDD = 5.12 V			±20	mV	
		VDD = 3.072 V			±15	7	
-	Comparator comparison time	f(XIN) = 4.0 MHz	High-speed mode			6.0	μs
			Middle-speed mode			12]
			Low-speed mode			24	
			Default mode			48	1

Notes 1: When the A-D converter is used, the IADD is included to IDD.

2: As for the error from the logic value in the comparator mode, when the contents of the comparator register is n, the logic value of the comparison voltage Vref which is generated by the built-in DA converter can be obtained by the following formula.

Logic value of comparison voltage Vref

$$V_{ref} = \frac{V_{DD}}{256} \times n$$

n = Value of register AD (n = 0 to 255)

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Machine cycle			Mi	Mi+1		
Clock	XIN : high-speed mode					
	(System clock = f(XIN)) XIN : middle-speed mode					
	(System clock = $f(X_{IN})/2$)					
	XIN : low-speed mode (System clock = $f(XIN)/4$)					חחחן
	XIN : default mode (System clock = f(XIN)/8)					היייייייייייייייייייייייייייייייייייייי
Port D output	D0, D1, D2/C, D3/K		X			×
Port D input	D0, D1, D2/C, D3/K					
Port P0, P1, P2 output	P00–P03 P10–P13 P20, P21		X			X
Port P0, P1, P2 input	P00–P03 P10–P13 P20, P21			X		X
Timer output	CNTR				X	
Timer input	CNTR					
Interrupt input	INT					X

BASIC TIMING DIAGRAM

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

BUILT-IN PROM VERSION

In addition to the mask ROM versions, the 4506 Group has the One Time PROM versions whose PROMs can only be written to and not be erased.

The built-in PROM version has functions similar to those of the mask ROM versions, but it has PROM mode that enables writing to built-in PROM.

Table 24 shows the product of built-in PROM version. Figure 51 shows the pin configurations of built-in PROM versions.

The One Time PROM version has pin-compatibility with the mask ROM version.

Table 24 Product of built-in PROM version

Product	PROM size (X 10 bits)	RAM size (X 4 bits)	Package	ROM type
M34506E4FP	4096 words	256 words	20P2N-A	One Time PROM [shipped in blank]

(1) PROM mode

The 4506 Group has a PROM mode in addition to a normal operation mode. It has a function to serially input/output the command codes, addresses, and data required for operation (e.g., read and program) on the built-in PROM using only a few pins. This mode can be selected by setting pins SDA (serial data input/output), SCLK (serial clock input), PGM to "H" after connecting wires as shown in Figure 52 and powering on the VDD pin, and then applying 12 V to the VPP pin.

In the PROM mode, three types of software commands (read, program, and program verify) can be used. Clock-synchronous serial I/O is used, beginning from the LSB (LSB first).

Use the special-perpose serial programmer when performing serial read/program.

As for the serial programmer for the Mitsubishi single-chip microcomputer (serial programmer and control software), refer to the "Mitsubishi Microcomputer Development Support Tools" Hompage (http://www.tool-spt.mesc.co.jp/index_e.htm).

(2) Notes on handling

- ①A high-voltage is used for writing. Take care that overvoltage is not applied. Take care especially at turning on the power.
- ③For the One Time PROM version shipped in blank, Mitsubishi Electric corp. does not perform PROM writing test and screening in the assembly process and following processes. In order to improve reliability after writing, performing writing and test according to the flow shown in Figure 51 before using is recommended (Products shipped in blank: PROM contents is not written in factory when shipped).

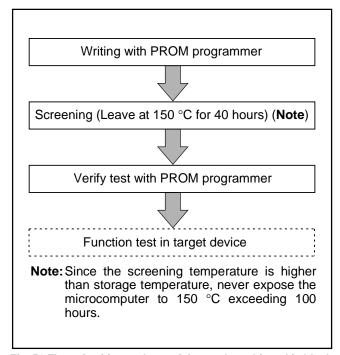


Fig. 51 Flow of writing and test of the product shipped in blank

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

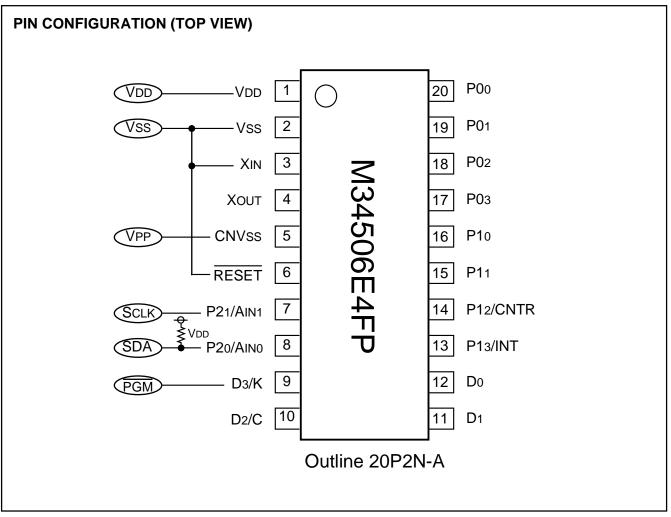
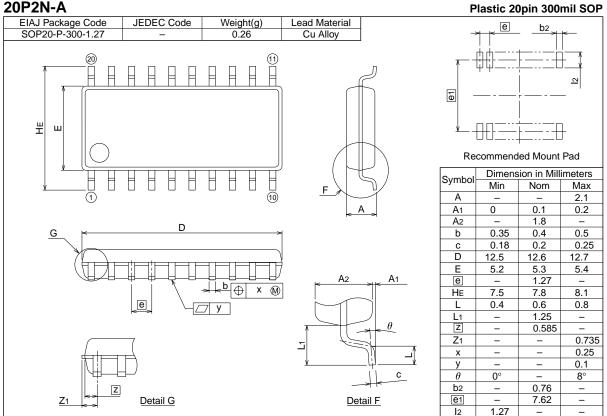


Fig. 52 Pin configuration of built-in PROM version



4506 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

PACKAGE OUTLINE

20P2N-A

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

RenesasTechnologyCorp.

Nippon Bldg.,6-2,Otemachi 2-chome,Chiyoda-ku,Tokyo,100-0004 Japan

Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party. Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples

- Misubishi Electric Corporation assumes no responsibility for any damage, or intringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Misubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Misubishi Electric Corporation or an authorized Misubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Misubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Misubishi Electric Corporation sames no, including the Mitsubishi Zendric Corporation as a que (http://www.misubishichips.com). When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information approducts. Missubishi Electric Corporation assumes no responsibility for any damage, liability or any damage, liability or due information distributor for the compact, listing assumes no responsibility for any damage, liability or any damage, liability oroducts, as a total system before making a final de
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved
- In these products on technicologies are solver, to the superiese exponer control restrictions, they must be exported united a technical one and the superiese government and cannot be impo destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. Please contact Misubishi Electric Corporation or an authorized Misubishi Semiconductor product distributor for further details on these materials or the products contained therein.

© 2001 MITSUBISHI ELECTRIC CORP. Printed in Japan (ROD) II New publication, effective June. 2001. Specifications subject to change without notice.

REVISION DESCRIPTION LIST

4506 GROUP DATA SHEET

Rev. No.		Revision Description	Rev. date			
1.0	First Editio	n	000808			
1.1	Pages 3, 4, 22, 38 : Character fonts errors revised					
2.0	The 4506/4507 Group data sheet is separated.					
	Page 10: F	Page 10: Port block diagram (3); Block diagram of P12/CNTR pin revised.				
	Page 26: F	Fig. 22 Timers structure; Block diagram of P12/CNTR pin revised.				
	-	(<u>9</u>) Precautions \rightarrow (<u>8</u>) Precautions				
	0	(8) Timer input/output pin (P12/CNTR pin) added.				
		Fig. 23 added.				
	Page 30:	WATCHDOG TIMER revised all.				
	Page 31:	Fig. 2 <u>4</u> \rightarrow Fig. 2 <u>5</u> , Fig. 2 <u>5</u> \rightarrow Fig. 2 <u>6</u>				
		Fig. 26 NOP instruction added. POF \rightarrow POF <u>2</u>				
	Page 49:	Fig. 46 POF \rightarrow POF <u>2</u>				
	Page 61:	BL p, a, BLA p instructions revised.				
	Page 62:	BML p, a, BMLA p instructions revised.				
	-	TABP p instruction revised.				
	-	TABP p instruction revised.				
	-	BL p, a, BLA p, BML p, a, BMLA p instructions revised.				
	-	BL, BML, BLA, BMLA instructions; The second word revised.				
	-	BL, BML, BLA, BMLA instructions; The second word revised.				
	-	ABSOLUTE MAXIMUM RATINGS; VDD –0.3 to $6.0 \rightarrow -0.3$ to 6.5				
	Page 104:	RECOMMENDED OPERATING CONDITIONS 1;				
		Operating condition map added.				