

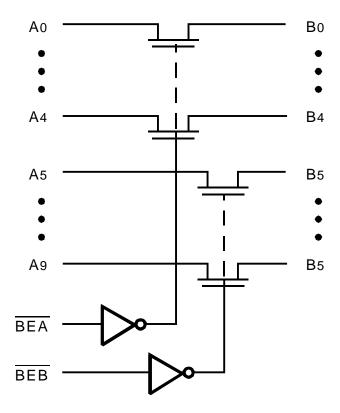
QUICKSWITCH® PRODUCTS **HIGH-SPEED LOW POWER CMOS 10-BIT BUS EXCHANGE SWITCH**

IDTQS3L384

FEATURES:

- Enhanced N channel FET with no inherent diode to Vcc
- 5Ω bidirectional switches connect inputs to outputs
- Zero propagation delay, zero ground bounce
- Ultra low power with 0.2µA typical Icc
- Undershoot clamp diodes on all switch and control pins
- Two enables control five bits each
- Available in SOIC, QSOP, and TSSOP Packages

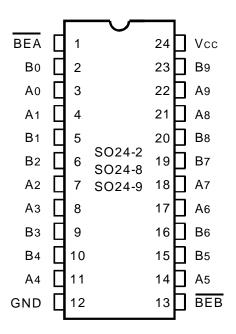
APPLICATIONS


- Hot-swapping, hot-docking
- Voltage translation (5V to 3.3V)
- **Power Conservation**
- Capacitance reduction and isolation
- Bus isolation
- Clock gating

DESCRIPTION:

The QS3L384 provides a set of ten high-speed CMOS TTL-compatible bus switches. The low ON resistance of the QS3L384 allows inputs to be connected to outputs without adding propagation delay and without generating additional ground bounce noise. The Bus Enable (BE) signals turn the switches on. Two bus enable signals are provided, one for each of the upper and lower five bits of the two 10-bit buses.

The QS3L384 is characterized for operation at -40°C to +85°C.


FUNCTIONAL BLOCK DIAGRAM

INDUSTRIAL TEMPERATURE RANGE

OCTOBER 2000

PIN CONFIGURATION

SOIC/ QSOP/ TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VTERM ⁽²⁾	Supply Voltage to Ground	- 0.5 to +7	V
VTERM ⁽³⁾	DC Switch Voltage Vs	- 0.5 to +7	V
VTERM ⁽³⁾	DC Input Voltage VIN	- 0.5 to +7	V
VAC	AC Input Voltage (pulse width ≤20ns)	-3	V
Іоит	DC Output Current	120	mA
Рмах	Maximum Power Dissipation (TA = 85°C)	0.5	W
Tstg	Storage Temperature	- 65 to +150	°C

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc Terminals.
- 3. All terminals except Vcc.

CAPACITANCE

 $(TA = +25^{\circ}C, f = 1.0MHz, VIN = 0V, VOUT = 0V)$

Pins	Тур.	Max. ⁽¹⁾	Unit
Control Inputs	3	5	pF
Quickswitch Channels (Switch OFF)	5	7	pF

NOTE:

1. This parameter is guaranteed but not production tested.

PIN DESCRIPTION

Pin Names	1/0	Description
A0-A9	I/O	Bus A
B0-B9	I/O	Bus B
BEA, BEB	I	Bus Switch Enable

FUNCTION TABLE(1)

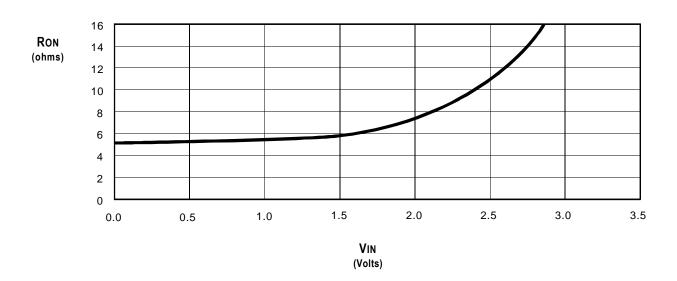
BEA	BEB	B0 - B4	B5 - B6	Function
Н	Н	Hi-Z	Hi-Z	Disconnect
L	Н	A0 - A4	Hi-Z	Connect
Н	L	Hi-Z	A 5 - A 9	Connect
L	L	A0 - A4	A5 - A9	Connect

NOTE:

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - Z = High-Impedence

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:


Industrial: $T_A = -40$ °C to +85°C, $V_{CC} = 5.0V \pm 5\%$

Symbol	Parameter	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage	Guaranteed Logic HIGH for Control Pins	2	_		٧
VIL	Input LOW Voltage	Guaranteed Logic LOW for Control Pins	_	_	8.0	V
lin	Input Leakage Current (Control Inputs)	0V ≤ Vin ≤ Vcc	_	_	±1	μΑ
loz	Off-State Current (Hi-Z)	0V ≤ Vout ≤ Vcc	_	±0.01	±1	μΑ
Ron	Switch ON Resistance	Vcc = Min., VIN = 0V, ION = 30mA	_	5	7	Ω
Ron	Switch ON Resistance	Vcc = Min., VIN = 2.4V, ION = 15mA	_	10	15	Ω
VP	Pass Voltage (2)	VIN = Vcc = 5V, Ιουτ = -5μΑ	3.7	4	4.2	V
loff	Input/Output Power Off Leakage	$Vcc = 0V.$, $Vin or Vo \le 4.5V$	_	_	±1	μΑ

NOTES:

- 1. Typical values are at $V_{CC} = 5.0V$, $T_A = 25$ °C.
- 2. Pass voltage is guaranteed but not production tested.

TYPICAL ON RESISTANCE vs Vin AT Vcc = 5V

POWER SUPPLY CHARACTERISTICS

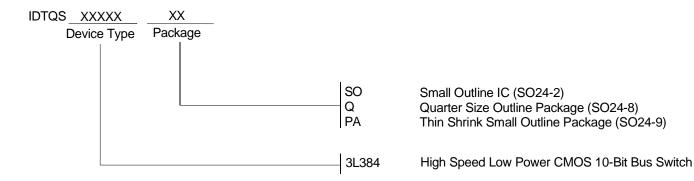
Symbol	Parameter	Test Conditions ⁽¹⁾	Тур.	Max.	Unit
Iccq	Quiescent Power Supply Current	Vcc = Max., Vin = GND or Vcc, f = 0	0.2	3	μΑ
Δlcc	Power Supply Current per Control Input HIGH (2)	Vcc = Max., ViN = 3.4V, f = 0	_	1.5	mA
ICCD	Dynamic Power Supply Current per MHz ⁽³⁾	Vcc = Max., A and B pins open	_	0.25	mA/MHz
		Control Input Toggling at 50% Duty Cycle			

NOTES:

- 1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.
- 2. Typical values are at Vcc = 5.0V, T_A = 25°C
- 3. Per TLL driven input (V_{IN} = 3.4V, control inputs only). A and B pins do not contribute to Δlcc.
- 4. This current applies to the control inputs only and represents the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter is guaranteed but not production tested.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Industrial: $T_A = -40$ °C to +85°C. $V_{CC} = 5.0V \pm 5\%$


CLOAD = 50pF, RLOAD = 500W

Symbol	Parameter	Min. ⁽¹⁾	Тур.	Max.	Unit
tPLH	Data Propagation Delay (2,4)			0.25 (3)	ns
tPHL	Ax to Bx, Bx to Ax	_		0.25	115
t PZL	Switch Turn-on Delay	4.5		C E	
tpzh	BEA, BEB to Ax, Bx	1.5	_	6.5	ns
t PLZ	Switch Turn-off Delay (2)	4.5		F	
tPHZ	BEA, BEB to Ax, Bx	1.5	_	5.5	ns

NOTES:

- 1. Minimums are guaranteed but not production tested.
- 2. This parameter is guaranteed but not production tested.
- 3. The time constant for the switch alone is of the order of 0.25ns for $C_L = 50pF$.
- 4. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054

for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*