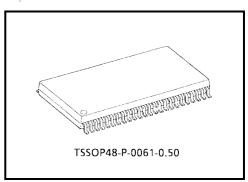
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74LCX16373FT

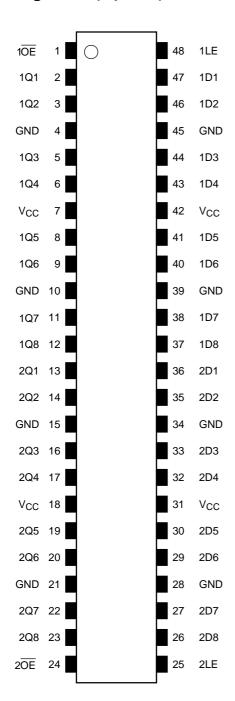

Low-Voltage 16-Bit D-Type Latch with 5-V Tolerant Inputs and Outputs

The TC74LCX16373FT is a high-performance CMOS 16-bit D-type latch. Designed for use in 2.5-V or 3.3-V systems, it achieves high-speed operation while maintaining the CMOS low power dissipation.

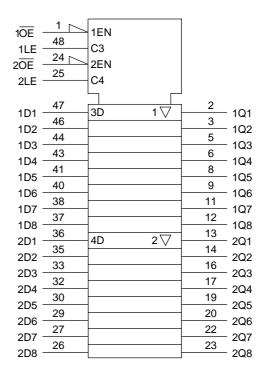
The device is designed for low-voltage (2.5-V or 3.3-V) VCC applications, but it could be used to interface to 5-V supply environment for both inputs and outputs.

This 16-bit D-type latch is controlled by a latch enable input (LE) and an output enable input (\overline{OE}) which are common to each byte. It can be used as two 8-bit latches or one 16-bit latch. When the \overline{OE} input is high, the outputs are in a high-impedance state.

All inputs are equipped with protection circuits against static discharge.


Weight: 0.25 g (typ.)

Features


- Low-voltage operation: VCC = 2.0 to 3.6 V
- High-speed operation: $t_{pd} = 5.4 \text{ ns (max) (VCC} = 3.0 \text{ to } 3.6 \text{ V)}$
- Ouput current: $|I_{OH}|/I_{OL} = 24 \text{ mA (min)} (V_{CC} = 3.0 \text{ V})$
- Latch-up performance: ±500 mA
- Package: TSSOP (thin shrink small outline package)
- · Power-down protection provided on all inputs and outputs

1

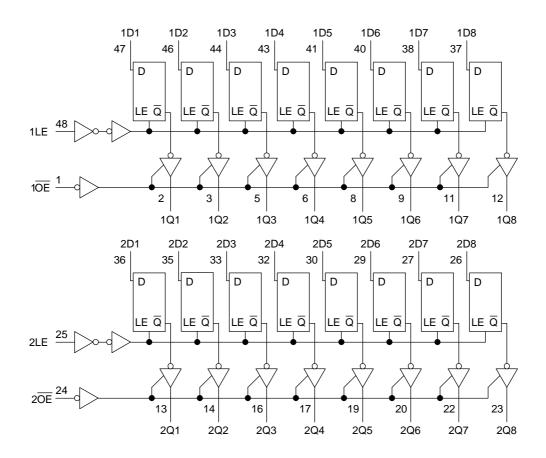
Pin Assignment (top view)

IEC Logic Symbol

2 2002-10-1

Truth Table

	Outputs		
1OE	1LE	1D1-1D8	1Q1-1Q8
Н	Х	Х	Z
L	L	Х	Qn
L	Н	L	L
L	Н	Н	Н


	Outputs		
2 OE	2LE	2D1-2D8	2Q1-2Q8
Н	Х	Х	Z
L	L	Х	Qn
L	Н	L	L
L	Н	Н	Н

X: Don't care

Z: High impedance

Qn: Q outputs are latched at the time when the LE input is taken to a low logic level

System Diagram

Maximum Ratings

Characteristics	Symbol	Rating	Unit
Power supply voltage	V _{CC}	-0.5 to 6.0	V
Input voltage	V _{IN}	-0.5 to 7.0	V
Output voltage	V	-0.5 to 7.0 (Note 1)	V
Output voltage	V _{OUT}	-0.5 to V _{CC} + 0.5 (Note 2)	V
Input diode current	I _{IK}	-50	mA
Output diode current	I _{OK}	±50 (Note 3)	mA
DC output current	lout	±50	mA
Power dissipation	P _D	400	mW
DC V _{CC} /ground current per supply pin	I _{CC} /I _{GND}	±100	mA
Storage temperature	T _{stg}	-65 to 150	°C

Note 1: Output in OFF state

Note 2: High or low state. $I_{\mbox{OUT}}$ absolute maximum rating must be observed.

Note 3: $V_{OUT} < GND, V_{OUT} > V_{CC}$

Recommended Operating Conditions

Characteristics	Symbol	Rating	Unit	
Power supply voltage	Vaa	2.0 to 3.6	V	
Fower supply voltage	V _{CC}	1.5 to 3.6 (Note 4)	V	
Input voltage	V _{IN}	0 to 5.5	V	
Output voltage	V	0 to 5.5 (Note 5)	V	
Output voltage	Vout	0 to V _{CC} (Note 6)		
		±24 (Note 7)		
Output current	I _{OH} /I _{OL}	±12 (Note 8)	mA	
		±8 (Note 9)		
Operating temperature	T _{opr}	-40 to 85	°C	
Input rise and fall time	dt/dv	0 to 10 (Note 10)		

Note 4: Data retention only

Note 5: Output in OFF state

Note 6: High or low state

Note 7: $V_{CC} = 3.0 \text{ to } 3.6 \text{ V}$

Note 8: $V_{CC} = 2.7 \text{ to } 3.0 \text{ V}$

Note 9: $V_{CC} = 2.3 \text{ to } 2.7 \text{ V}$

Note 10: $V_{IN} = 0.8$ to 2.0 V, $V_{CC} = 3.0$ V

Electrical Characteristics

DC Characteristics ($Ta = -40 \text{ to } 85^{\circ}\text{C}$)

Characteristics		Symbol	Test Condition			Min	Max	Unit				
Onaracionol		Cymbol			V _{CC} (V)		Max	Orme				
H-level		V _{IH}			2.3 to 2.7	1.7	_					
Input voltage	i i-level	VIН	_	_	2.7 to 3.6	2.0	_	V				
Input voltage	L-level	Mar			2.3 to 2.7	_	0.7	V				
	L-ievei	V_{IL}	_		2.7 to 3.6	_	0.8					
				I _{OH} = -100 μA	2.3 to 3.6	V _{CC} - 0.2	_					
				$I_{OH} = -8 \text{ mA}$	2.3	1.8	_					
	H-level	V _{OH}	$V_{IN} = V_{IH}$ or V_{IL}	I _{OH} = -12 mA	2.7	2.2		V				
Output voltage				I _{OH} = -18 mA	3.0	2.4	_					
				I _{OH} = -24 mA	3.0	2.2	_					
			. V _{IN} = V _{IH} or V _{IL}	I _{OL} = 100 μA	2.3 to 3.6	_	0.2					
				$I_{OL} = 8 \text{ mA}$	2.3	_	0.6					
	L-level	V_{OL}		$I_{OL} = 12 \text{ mA}$	2.7	_	0.4					
					$I_{OL} = 16 \text{ mA}$	3.0	_	0.4				
				I _{OL} = 24 mA	3.0	_	0.55					
Input leakage current		I _{IN}	V _{IN} = 0 to 5.5 V		2.3 to 3.6	_	±5.0	μА				
0 -1-11-1 055 -1-1-		1	$V_{IN} = V_{IH}$ or V_{IL}		2.3 to 3.6		±5.0	_				
3-state output OFF state current		l _{OZ}	V _{OUT} = 0 to 5.5 V		2.3 10 3.0	_	±3.0	μА				
Power-off leakage curr	ent	l _{OFF}	$V_{IN}/V_{OUT} = 5.5 V$		V _{IN} /V _{OUT} = 5.5 V		V _{IN} /V _{OUT} = 5.5 V		0	_	10.0	μΑ
Quiescent supply curre	ant	loo	$V_{IN} = V_{CC}$ or GND		2.3 to 3.6	_	20.0					
Quiescent supply cure	71 IL	Icc	V _{IN} /V _{OUT} = 3.6 to 5.5 V		2.3 to 3.6	_	±20.0	μΑ				
Increase in Icc per input	ut	Δlcc	$V_{IH} = V_{CC} - 0.6 V$		2.3 to 3.6	_	500					

AC Characteristics ($Ta = -40 \text{ to } 85^{\circ}\text{C}$)

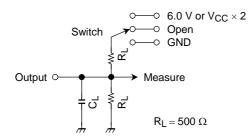
Characteristics	Symbol	Test Condition				Min	Max	Unit
S. a.			V _{CC} (V)	CL(pF)	IVIIII	IVIAX	0	
Propagation delay time	t			2.5 ± 0.2	30	1.5	6.5	
(D-Q)	t _{pLH}	Figure 1, Figure 2		2.7	50	1.5	5.9	ns
(D-Q)	t _{pHL}			3.3 ± 0.3	50	1.5	5.4	
Drangation delay time	4			2.5 ± 0.2	30	1.5	6.6	
Propagation delay time (LE-Q)	t _{pLH}	Figure 1, Figure 2		2.7	50	1.5	6.4	ns
(LE-Q)	tpHL			3.3 ± 0.3	50	1.5	5.5	
				2.5 ± 0.2	30	1.5	7.9	
3-state output enable time	t _{pZL}	Figure 1, Figure 3		2.7	50	1.5	6.5	ns
	t _{pZH}			3.3 ± 0.3	50	1.5	6.1	
		Figure 1, Figure 3		2.5 ± 0.2	30	1.5	7.2	ns
3-state output disable time	t _{pLZ}			2.7	50	1.5	6.3	
	t _{pHZ}			3.3 ± 0.3	50	1.5	6.0	
		Figure 1, Figure 2		2.5 ± 0.2	30	3.5	_	
Minimum pulse width	t _w (H)			2.7	50	3.0	_	ns
(LE)				3.3 ± 0.3	50	3.0	_	
				2.5 ± 0.2	30	3.0	_	
Minimum setup time	ts	Figure 1, Figure 2		2.7	50	2.5	_	ns
				3.3 ± 0.3	50	2.5	_	
				2.5 ± 0.2	30	2.0	_	
Minimum hold time	t _h	Figure 1, Figure 2		2.7	50	1.5	_	ns
				3.3 ± 0.3	50	1.5	_	
				2.5 ± 0.2	30	_	_	
Output to output skew	t _{osLH}	(Note 11)	2.7	50	_	_	ns
	tosHL			3.3 ± 0.3	50	_	1.0	

Note 11: Parameter guaranteed by design. $(t_{OSLH} = |t_{DLHm} - t_{DLHn}|, \, t_{OSHL} = |t_{DHLm} - t_{DHLn}|)$

Dynamic Switching Characteristics (Ta = 25°C, input: $t_r = t_f = 2.5$ ns, $R_L = 500~\Omega$)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
Quiet output maximum	V _{OLP}	$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}, C_L = 30 \text{pF}$	2.5	0.6	V
dynamic V _{OL}	VOLP	$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}, C_L = 50 \text{pF}$	3.3	0.8	V
Quiet output minimum	V _{OLV}	$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}, C_L = 30 \text{pF}$	2.5	0.6	V
dynamic V _{OL}	IVOLVI	$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}, C_L = 50 \text{pF}$	3.3	0.8	V

Capacitive Characteristics (Ta = 25°C)


Characteristics	Symbol	Test Condition		V _{CC} (V)	Тур.	Unit
Input capacitance	C _{IN}	_		3.3	7	pF
Output capacitance	C _{OUT}	_		3.3	8	pF
Power dissipation capacitance	C _{PD}	f _{IN} = 10 MHz	(Note 12)	3.3	25	pF

Note 12: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/16 \text{ (per bit)}$

AC Test Circuit

Parameter	Switch		
t _{pLH} , t _{pHL}	Open		
t_{pLZ}, t_{pZL}	6.0 V V _{CC} × 2	$@V_{CC} = 3.3 \pm 0.3 \text{ V} \\ @V_{CC} = 2.5 \pm 0.2 \text{ V}$	
t _{pHZ} , t _{pZH}	GND		

Figure 1

AC Waveform

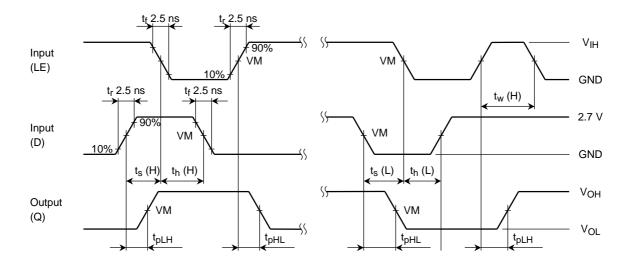
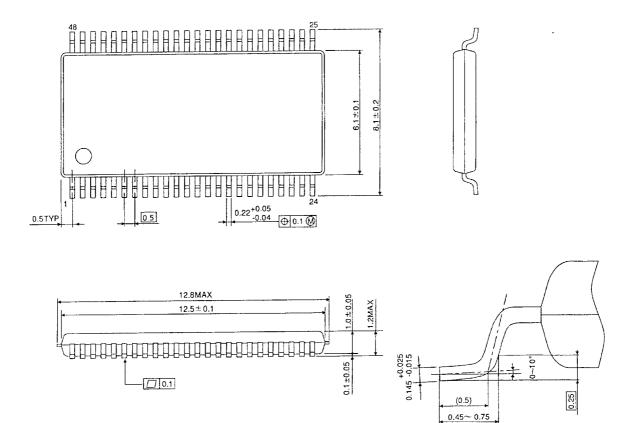


Figure 2 t_{pLH} , t_{pHL} , t_w , t_s , t_h

Figure 3 t_{pLZ} , t_{pHZ} , t_{pZL} , t_{pZH}


Symbol	V _{CC}					
Symbol	$3.3\pm0.3~\textrm{V}$	2.7 V	$2.5\pm0.2~\textrm{V}$			
V_{IH}	2.7 V	2.7 V	Vcc			
V_{M}	1.5 V	1.5 V	V _{CC} /2			
V _X	$V_{OL} + 0.3 V$	V _{OL} + 0.3 V	V _{OL} + 0.15 V			
VY	V _{OH} – 0.3 V	V _{OH} – 0.3 V	V _{OH} – 0.15 V			

8 2002-10-1

Unit: mm

Package Dimensions

TSSOP48-P-0061-0.50

9

Weight: 0.25 g (typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.