CMOS 4-Bit Microcontroller

TMP47C101P, TMP47C201P TMP47C101M, TMP47C201M

The TMP47C101/201 are high speed and high performance 4-bit single chip microcomputers, integrating ROM, RAM, input / output ports and timer/counters on a chip. The TMP47C101/201 are the standard LSI in the TLCS-47E series. In addition, they have the output port with LED direct drive capability.

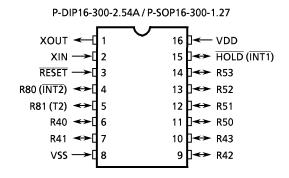
Part No.	ROM	RAM	Package	OTP
TMP47C101P	10240 64	CALLAN	P-DIP16-300-2.54A	TMP47P201VP
TMP47C101M	1024 x 8-bit	64 × 4-bit	P-SOP16-300-1.27	-
TMP47C201P	20499 hit	128 4 hit	P-DIP16-300-2.54A	TMP47P201VP
TMP47C201M	2048 x 8-bit	128 × 4-bit	P-SOP16-300-1.27	-

Features 4-bit single chip microcomputer P-DIP16-300-2.54A •Instruction execution time: 1.3 μ s (at 6 MHz) Low voltage operation: 2.2 V (at 2 MHz RC) 89 basic instructions ROM table look-up instructions Subroutine nesting: 15 levels max ◆5 interrupt sources (External: 2, Internal: 3) All sources have independent latches each, and multiple TMP47C101P TMP47C201P interrupt control is available. TMP47P201VP I/O port (11 pins) 12-bit Timer / Counters (TC2) P-SOP16-300-1.27 Timer, event counter, and pulse width measurement mode 12-bit programmable Timer (TC1) Interval Timer BURRHAR BURN High current outputs LED direct drive capability: typ. 20 mA x 4 bits (Port R4) Hold function TMP47C101M Battery / Capacitor back-up TMP47C201M Real Time Emulator: BM4721A + BM1160 (for DIP)

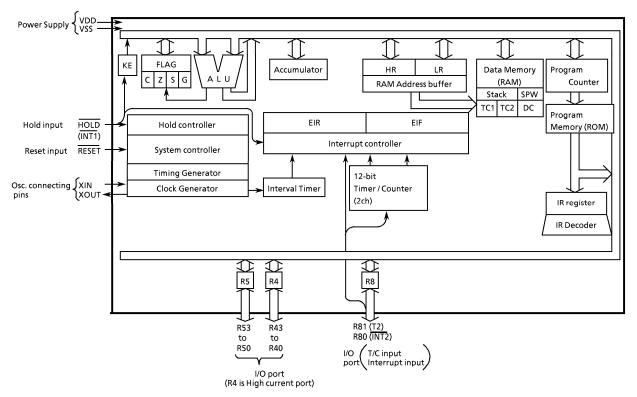
For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance / Handling Precautions.

• TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA

The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer,


personal equipment, office equipment, measuring equipment, industrial robotics, domestic applications (computer, TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.

The products described in this document are subject to the foreign exchange and foreign trade laws.


The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. The information contained herein is subject to change without notice.

000707EBA1

Pin Assignment (Top View)

Block Diagram

Pin Function

Pin Name	Input / Output	Functions				
R43 to R40	I/O	4-bit I/O port with latch. When used as input port, the latch must be set to "1". Every bit data is possible to be set, cleared and tested by the bit manipulation				
R53 to R50		instruction of the L-register indirect address				
R81 (T2)	l/O(Input)	2-bit I/O port with latch. When used as input port, external inter-	Timer / Counter 2 external input			
R80 (INT2)	i/O(input)	rupt input pin, or timer / counter external input pin, the latch must be set to "1".	External interrupt 2 input			
XIN	Input	Resonator connecting pins. For inputting external clock, XIN is used and XOUT is opened.				
XOUT	Output					
RESET	Input	Reset signal input				
HOLD (INT1)	l/O (Input)	Hold request / release signal input	External interrupt 1 input and R82 I/O			
VDD	Power Supply	+ 5 V				
vss	· ette: Supply	0 V (GND)				

Operational Description

Concerning the TMP47C101/201, the configuration and functions of hardwares are described. The basic instructions of configuration in the TMP47C101/201 is the same as those of TLCS-47 series.

1. System Configuration

- Internal CPU Function
 - 2.1 Program Counter (PC)
 - 2.2 Program Memory (ROM)
 - 2.3 H Register, L Register
 - 2.4 Data Memory (RAM)
 - Stack
 - Stack Pointer Word (SPW)
 - Data Counter (DC)
 - 2.5 ALU, Accumulator
 - 2.6 Flags
 - 2.7 System Controller
 - 2.8 Interrupt Controller
 - 2.9 Reset Circuit
- Peripheral Hardware Function
 - 3.1 I/O Ports
 - 3.2 Interval Timer
 - 3.3 Timer / Counters (TC1, TC2)

2. Internal CPU Function

2.1 **Program Counter (PC)**

The program counter is a 11-bit binary counter which indicates the address of the program memory storing the next instruction to be executed. Normally, the PC is incremented by the number of bytes of the instruction every time it is fetched. When a branch instruction or a subroutine instruction has been executed or an interrupt has been accepted, the specified values listed in Table 2-1 are set to the PC. The PC is initialized to "0" during reset.

_	MSB										LSB	
	PC _H			PC _M				PCL				
	PC ₁₀	PC ₉	PC ₈	PC ₇	PC ₆	PC ₅	PC ₄	PC ₃	PC ₂	PC ₁	PC ₀	
•	<u> </u>											

Page assignment

Address assignment in page

Figure 2-1. Configuration of Program Counter

The PC can directly address a 2048-byte address space. However, with the short branch, the following points must be considered:

• Short branch instruction [BSS a]

In [BSS a] instruction execution, when the branch condition is satisfied, the value specified in the instruction is set to the lower 6 bits of the PC. That is, [BSS a] becomes the in-page branch instruction. When [BSS a] is stored at the last address of the page, the upper 5 bits of the PC point the next page, so that branch is made to the next page.

	struction or peration		Condition			Condition $PC_{10} + PC_{8} + PC_{7} + PC_{6} + PC_{5} + PC_{4} + PC_{3} + PC_{2} + PC_{1}$						PC ₀		
и 0	BS a	SF = 1 (Branc	SF = 1 (Branch condition is satisfied)			Immediate data specified by the instruction								
t t		SF = 0	(Branch condition is not satisfied)						+ 2					
r L	ב ב	SF = 1	Lower 6-bit address ≠ 111111		н	lold		Imr	nediate	e data sj	pecifie	d by th	e instru	ction
l n s t	BSS a	5F = 1	= 1 Lower 6-bit address = 111111 (last address in page)			+ 1		Immediate data specified by the		the instruction				
_		SF = 0		+ 1										
°	CALL a			Immediate data specified by the instruction										
с	CALLS a			0	0	0	The data data spe		ated by th y the inst		liate	1	1	0
r t	RET					Tł	ne returi	n addr	ess rest	ored fro	om stac	:k		
e x	RETI					TI	he returi	n addr	ess rest	ored fro	om stad	:k		
ŵ	Others				Inc	remen	ted by th	ne nun	nber of	bytes ir	n the in	structio	on	
	errupt eptance			0	0	0	0	0	0	0	Inte	rrupt ve	ector	0
	Reset			0	0	0	0	0	0	0	0	0	0	0

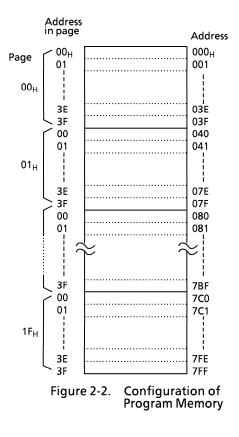
Table 2-1.	Status Change of Program Counter
------------	----------------------------------

TOSHIBA

2.2 Program Memory (ROM)

Programs and fixed data are stored in the program memory. The instruction to be executed next is read from the address indicated by the contents of the PC.

The fixed data can be read by using the table look-up instructions.

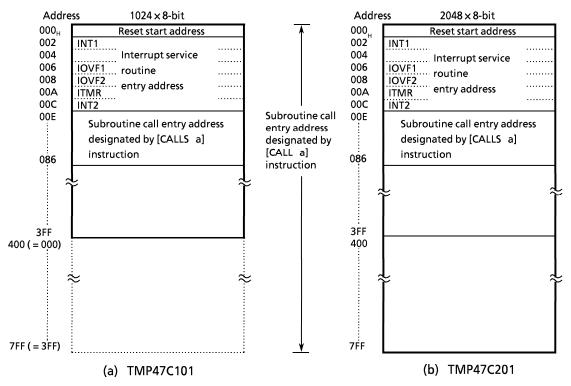

• Table look-up instructions

[LDL A, @DC], [LDH A, @DC +]

The table look-up instructions read the lower and upper 4 bits of the fixed data stored at the address specified in the data counter (DC) to place them into the accumulator. [LDL A, @DC] instruction reads the lower 4 bits of fixed data, and [LDH A, @DC+] instruction reads the upper 4 bits.

The DC is a 12-bit register, allowing it to address the entire program memory space.

In this case, the upper bit of the DC (MSB) is ignored. (not effective valid)


2.2.1 **Program Memory Capacity**

The TMP47C101 has 1024 \times 8 bits (addresses 000_H through 3FF_H) of program memory (mask ROM), the TMP47C201 has 2048 \times 8 bits (addresses 000_H through 7FF_H).

Figure 2-3 shows the program memory map. Address $000_{\rm H}$ - $086_{\rm H}$ of the program memory are also used for special purposes.

2.2.2 Program Memory Map

On the TMP47C101, no physical program memory exists in the address range $400_{\rm H}$ through 7FF_H. However, if this space is accessed by program, the most significant bit of each address is always regarded as "0" and the contents of the program memory corresponding to the address $000_{\rm H}$ through 3FF_H are read.

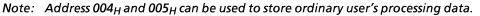


Figure 2-3. Program Memory Map

Electrical Characteristics

Absolute Maximum Ratings

Parameter	Symbol	Pins		Ratings	Unit
Supply Voltage	V _{DD}			– 0.3 to 6.5	V
Input Voltage	V _{IN}			- 0.3 to V _{DD} + 0.3	٧
Output Voltage	V _{OUT}			- 0.3 to V _{DD} + 0.3	V
Output Current (Per 1 pin)	I _{OUT1}	Port R4	30	m۸	
	I _{OUT2}	Ports R5, R8, HOLD		3.2	mA
Output Current (Total)	ΣI_{OUT}	Port R4		60	mA
Power Dissipation [Topr = 70°C]			DIP	300	
Power Dissipation [Topr = 70°C]	PD		SOP	180	mW
Soldering Temperature (time)	Tsld			260 (10 s)	°C
Storage Temperature	Tstg			– 55 to 125	°C
Operating Temperature	Topr			- 30 to 70	°C

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

Parameter	Symbol		Pins		Conditions		Max	Unit	
			Newsel	Crystar	fc = 6.0 MHz	4.5			
Supply Voltage				ceramic	fc = 4.2 MHz	2.7			
	VDD		mode	RC	fc = 2.5 MHz	2.2	5.5	V	
			HOLD mode	-	-	2.0			
Input High Voltage	V _{IH1}	Except Hysteresis Input		In the normal		$V_{DD} \times 0.7$			
	V _{IH2}	Hysteresis Input		operating area		$V_{DD} \times 0.75$	V _{DD}	V	
	V _{IH3}			In the HOLD mode		V _{DD} × 0.9			
	V _{IL1}	Except Hysteresis Input		In the normal			V _{DD} × 0.3		
Input Low Voltage	V _{IL2}	Hysteresi	s Input	operating area		0	V _{DD} × 0.25	_ v	
	V _{IL3}			In the HOLD mode			V _{DD} × 0.1		
				V _{DD} = 4.5 to 5.5 V			6.0		
Clock Frequency	fc	XIN, XOU	XIN, XOUT		V _{DD} = 2.7 to 5.5 V		4.2	MHz	
	$ \begin{array}{c} \mbox{Normal} \\ \mbox{Normal} \\ \mbox{mode} \end{array} \begin{array}{c} \mbox{Normal} \\ \mbox{mode} \end{array} \begin{array}{c} \mbox{Normal} \\ \mbox{mode} \end{array} \begin{array}{c} \mbox{Normal} \\ \mbox{ceramic} \end{array} \begin{array}{c} \mbox{Normal} \\ \mbox{fc} \end{array} \end{array} \\ \begin{array}{c} \mbox{Normal} \\ \mbox{mode} \end{array} \begin{array}{c} \mbox{Normal} \\ \mbox{mode} \end{array} \begin{array}{c} \mbox{Normal} \\ \mbox{RC} \end{array} \begin{array}{c} \mbox{fc} \end{array} \\ \mbox{RC} \end{array} \begin{array}{c} \mbox{fc} \end{array} \\ \begin{array}{c} \mbox{RC} \end{array} \begin{array}{c} \mbox{fc} \end{array} \\ \mbox{RC} \end{array} \end{array} \begin{array}{c} \mbox{fc} \end{array} \\ \mbox{RC} \end{array} \end{array} \begin{array}{c} \mbox{fc} \end{array} \\ \mbox{RC} \end{array} \begin{array}{c} \mbox{fc} \end{array} \\ \mbox{fc} \end{array} \\ \mbox{RC} \end{array} \begin{array}{c} \mbox{fc} \end{array} \\ \mbox{RC} \end{array} \begin{array}{c} \mbox{fc} \end{array} \\ \mbox{fc} \end{array} \\ \mbox{RC} \end{array} \begin{array}{c} \mbox{fc} \end{array} \\ \mbox{fc} \end{array} \\ \mbox{RC} \end{array} \end{array} \begin{array}{c} \mbox{fc} \end{array} \\ \mbox{fc} \end{array} \\ \mbox{RC} \end{array} \begin{array}{c} \mbox{fc} \end{array} \\ \mbox{fc} $	V _{DD} = 2.2 to 5.5 V (RC)			2.5]			

Recommended Operating Conditions $(V_{SS} = 0 \text{ V}, \text{ Topr} = -30 \text{ to } 70^{\circ}\text{C})$

 $(V_{SS} = 0 V)$

Note: The recommended operating conditions for a device are operating conditions under which it can be guaranteed that the device will operate as specified. If the device is used under operating conditions other than the recommended operating conditions (supply voltage, operating temperature range, specified AC/DC values etc.), malfunction may occur. Thus, when designing products which include this device, ensure that the recommended operating conditions for the device are always adhered to.

Parameter	Symbol	Pins	Conditions	Min	Тур.	Max	Unit
Hysteresis Voltage	V _{HS}	Hysteresis Input		-	0.7	-	v
Input Current	I _{IN1}	RESET, HOLD	V _{DD} = 5.5 V, V _{IN} = 5.5 V / 0 V			+ 2	μΑ
input current	I _{IN2}	Open drain output ports	VDD = 3.3 V, VIN = 3.3 V / 0 V			÷ 2	μ
Input Resistance	R _{IN}	RESET		100	220	450	kΩ
Input Low Current	IIL	Push-pull output ports	$V_{DD} = 5.5 V, V_{IN} = 0.4 V$	-	Ι	- 2	mA
Output Leakage Current	I _{LO}	Open drain output ports	$V_{DD} = 5.5 V, V_{OUT} = 5.5 V$	-	-	2	μA
Output High Voltage			$V_{DD} = 4.5 V, I_{OH} = -200 \mu A$ 2.		-	-	
	V _{OH}	Push-pull output ports	$V_{DD} = 2.2 \text{ V}, \ I_{OH} = -5 \ \mu \text{A}$	2.0	-	-	V
Output Low			$V_{DD} = 4.5 \text{ V}, \ I_{OL} = 1.6 \text{ mA}$	-	-	0.4	v
Voltage	V _{OL}	Except XOUT and port R4	$V_{DD} = 2.2 \text{ V}, \ I_{OL} = 20 \ \mu\text{A}$	-	-	0.1	
Output Low Current	I _{OL1}	Port R4	$V_{DD} = 4.5 V, V_{OL} = 1.0 V$	-	20	-	mA
			$V_{DD} = 5.5 V$, fc = 4 MHz	-	2	4	
Supply Current (in the Normal operating mode)	I _{DD}		$V_{DD} = 3.0 V$, fc = 4 MHz	-	1	2	mA
operating mode)			$V_{DD} = 3.0 V$, fc = 400 kHz	-	0.5	- 2 2 - 0.4 0.1 - 4	
Supply Current (in the HOLD operating mode)	I _{DDH}		V _{DD} = 5.5 V	-	0.5	10	μΑ

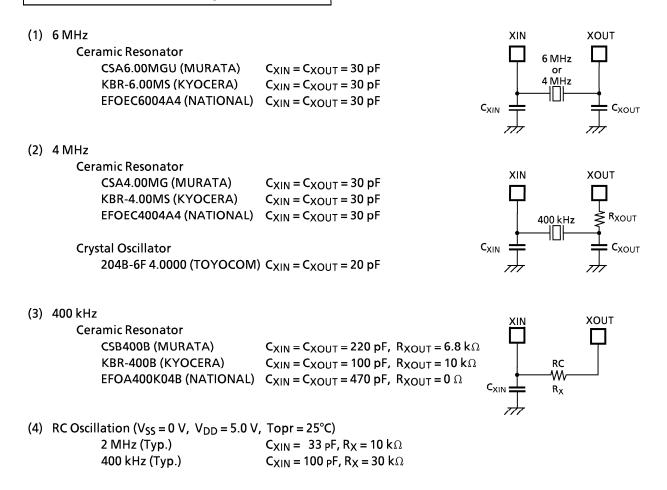
DC Characteristics

 $(V_{SS} = 0 V, Topr = -30 to 70^{\circ}C)$

Note 1: Typ. values show those at Topr = 25° C, $V_{DD} = 5 V$.

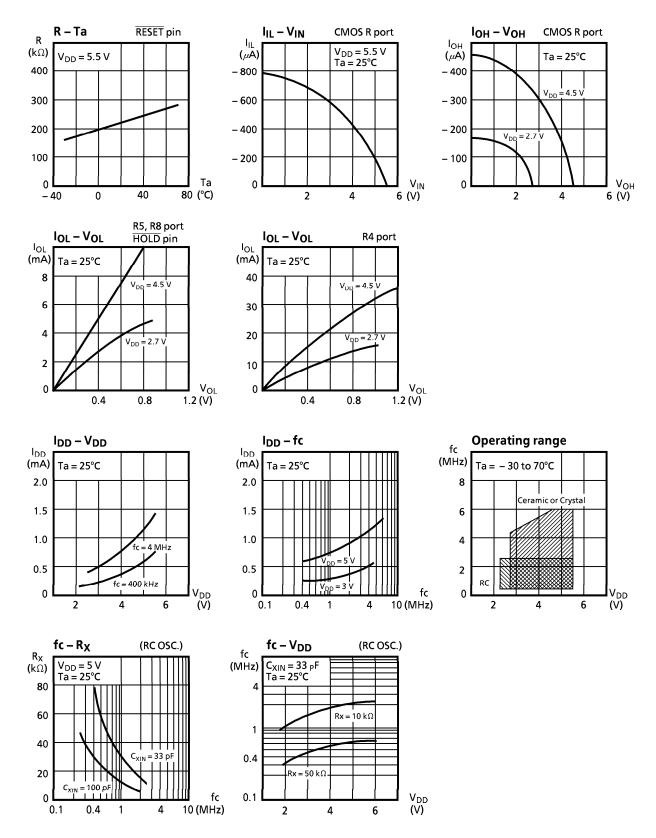
Note 2: Input Current I_{IN1} : The current through resistor is not included.

Note 3: Supply Current: $V_{IN} = 5.3 \text{ V} / 0.2 \text{ V} (V_{DD} = 5.5 \text{ V}) \text{ or } 2.8 \text{ V} / 0.2 \text{ V} (V_{DD} = 3.0 \text{ V})$


AC	Characteristics

 $(V_{SS} = 0 V, Topr = -30 to 70^{\circ}C)$

Parameter	Symbol	Co	nditions	Min	Тур.	Max	Unit
Instruction Cycle Time			V _{DD} = 4.5 to 5.5 V	1.3			
	$V_{DD} = 2.2 \text{ to } 5.5 \text{ V}$ 3.2 Width t_{WCH} $r_{DD} \ge 2.7 \text{ V}$ 80		$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	1.9	-	20	μs
Litek land Charlennika Milakk	t _{WCH}		$V_{DD} \ge 2.7 V$	80			
High level Clock pulse Width			V _{DD} <2.7 V	160		-	ns
	t _{WCL}	clock operation	V _{DD} ≧2.7 V	80			113
Low level Clock pulse Width			V _{DD} <2.7 V	160			


Recommended Oscillating Conditions

 $(V_{SS} = 0 V, V_{DD} = 2.7 \text{ to } 5.5 V, \text{ Topr} = -30 \text{ to } 70^{\circ}\text{C})$

6-01-35

Typical Characteristics

