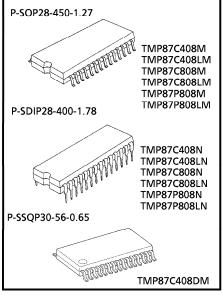
CMOS 8-Bit Microcontroller

TMP87C408M, TMP87C408N, TMP87C808M, TMP87C408LM, TMP87C408LM, TMP87C808LM, **TMP87C808N** TMP87C808LN TMP87C408DM

TMP87C408/808/408L/808L is high speed and high performance 8-bit single chip microcomputers to operate on low voltage and low power consumption. This MCU contains ROM, RAM, input/output ports, multifunction timer/counter, a serial interface, and 8-bit A/D converter.

Part No.	ROM	RAM	Package	OTP MCU	Operation Voltage Range
TMP87C408M			P-SOP28-450-1.27	TMP87P808M	2.7 V to 5.5 V at 4.2 MHz
TMP87C408N	$4K \times 8$ -bit		P-SDIP28-400-1.78	TMP87P808N	4.5 V to 5.5 V at 8 MHz
TMP87C408DM		Ľ	P-SSQP30-56-0.65		
TMP87C808M	01/0 1-14]	P-SOP28-450-1.27	TMP87P808M	
TMP87C808N	8K×8-bit	256 × 8-bit	P-SDIP28-400-1.78	TMP87P808N]
TMP87C408LM	41/ O h.: 4		P-SOP28-450-1.27	TMP87P808LM	1.8 V to 4.0 V at 4.2 MHz
TMP87C408LN	4K × 8-bit	K8-bit	P-SDIP28-400-1.78	TMP87P808LN]
TMP87C808LM	01/ 0 h.i.a]	P-SOP28-450-1.27	TMP87P808LM]
TMP87C808LN	$8K \times 8$ -bit		P-SDIP28-400-1.78	TMP87P808LN	1

Features


- 8-bit single chip microcomputer TLCS-870 series
- lacktriangle Minimum instruction execution time: 0.5 μ s (at 8 MHz)

(TMP87C408/C808/P808) $0.95 \,\mu s$ (at 4.2 MHz) (TMP87C408L/C808L/P808L)

- ▶ 129 types & 412 basic instructions
 - Multiplication (8 bits × 8 bits, 16 bits ÷ 8 bits)

: Execution time 3.5 μ s (at 8 MHz) (TMP87C408/C808/P808) 7.0 μ s (at 4 MHz) (TMP87C408L/C808L/P808L)

- Bit manipulations (Set / Clear / Complement / Load / Store / Test / Exclusive or)
- 16-bit data operations
- 1-byte jump / call (Short relative jump / Vector call)

- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance / Handling Precautions.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA

- making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

 The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments traffic signal instruments control instruments medical instruments. all types of transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

 The information contained herein is subject to change without notice.

- ◆ 10 interrupt sources (External: 4, Internal: 6)
 - All sources have independent latches each, and nested interrupt control is available.
 - Edge-selectable external interrupts with noise reject
 - High-speed task switching by register bank changeover
- ◆ Input / Output ports (22 pins)
 - Middle current output: 6 pins (Typ.7 mA)

(TMP87C408/C808/P808)

(Typ. 6 mA)

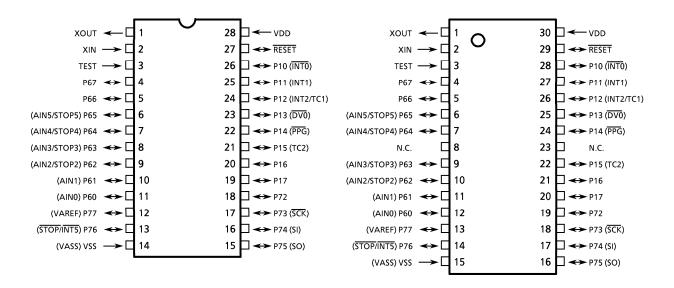
(TMP87C408L/C808L/P808L)

- ◆ Two 16-bit Timer/Counters
 - Timer, Eventcounter, Programmable pulse generator output, Pulse width measurement, External trigger timer, Window modes
- ◆ Time Base Timer
 - Interrupt frequency types: 8 types (1 to 16384 Hz)
- Divider output function (frequency: 4 types)
- ◆ Watchdog Timer
- ◆ One 8-bit Serial Interface
 - With 8 bytes transmit/receive data buffer
 - Internal / external serial clock, and 4/8-bit mode
- ◆ 8-bit Successive approximate type A/D converter with sample and hold
 - 6 analog inputs
 - Conversion time: 23 μs / 92 μs at 8 MHz programmable selectable (TMP87C408/C808/P808)
 - 46 μ s / 184 μ s at 4 MHz programmable selectable (TMP87C408L/C808L/P808L)
- ◆ Two Power saving operating modes
 - STOP mode: Oscillation stops. Battery/Capacitor back-up

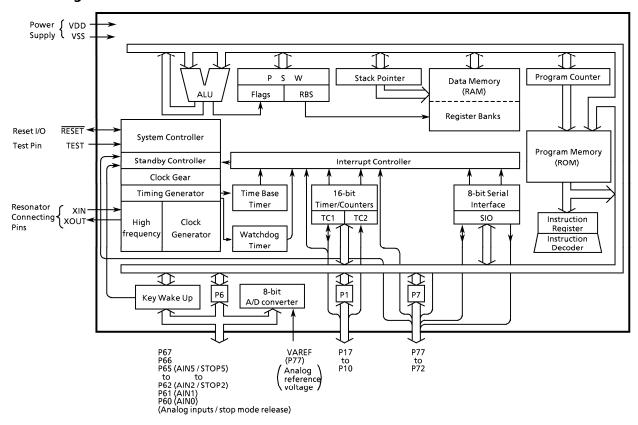
Port output hold/high-impedance

- IDLE mode : CPU stops, and Peripherals operate using high-frequency clock. Release by interrupts.
- ◆ Operating voltage: 2.7 to 5.5 V at 4.2 MHz/4.5 to 5.5 V at 8 MHz (TMP87C408/C808/P808)

1.8 to 4.0 V at 4.2 MHz (TMP87C408L/C808L/P808L)


◆ Emulation pod: BM87C408M0A

2001-01-22


Pin Assignments (Top View)

P-SOP28-450-1.27 / P-SDIP28-400-1.78

P-SOP30-56-0.65

Block Diagram

Pin Function

Pin Name	Input / Output	Funct	tion			
P17, P16	I/O	8-bit programmable input/output				
P15 (TC2)	I/O (Input)	ports (tri-states) Each bit of these ports can be individually	Timer/Counter 2 inp	ut		
P14 (PPG)		configured as an input or an output under software control. When used as an	Programmable pulse generator output			
P13 (DVO)	I/O (Output)	external interrupt input or a timer	Divider output			
P12 (INT2 / TC1)		counter input, the input mode is configured. When used as a divider	External interrupt input 2 or Timer/Counter 1 input			
P11 (INT1)	I/O (Input)	output or a PPG output, the latch must be	External interrupt input 1			
P10 (ĪNTO)		set to "1" and the output mode is configured.	External interrupt in	put 0		
P67, P66		8-bit programmable input/output port				
P65 (AIN5 / STOP5)		(tri-states). Each bit of the port can be individually configured as an input or an	A/D converter	Stop mode		
P64 (AIN4 / STOP4)		output under software control. When used as an analog input or stop mode	analog inputs	release inputs		
P63 (AIN3 / STOP3)	I/O (Input)	release input, the input mode is				
P62 (AIN2 / STOP2)		configured.				
P61 (AIN1)			A/D converter analog inputs			
P60 (AIN0)						
P77 (VAREF)	1/0/0	6-bit programmable input/output port (tri-states).	Analog reference power supply			
P76 (STOP/INT5)	I/O (Output)	Each bit of these ports can be individually	STOP mode release input/External interrupt 5 input			
P75 (SO)	I/O (Output)	configured as an input or an output under software control.	SIO serial data outpu	ıt		
P74 (SI)	I/O (Input)	When used as an external interrupt input or a serial interface input pin, the input	SIO serial data input			
P73 (SCK)	I/O (I/O)	mode is configured. When used as a serial	SIO serial clock input	t/output		
P72	I/O	to "1" and the output mode is configured.				
XIN, XOUT	Input, Output	Resonator connecting pins for clock. For inputting external clock, XIN is used and	XOUT is opened.			
RESET	I/O	Reset signal input or watchdog timer output/address-ti	rap-reset output/system-clo	ock-reset output.		
TEST	Input	Test pin for outgoing test. Be tied to low.				
VDD	Downer Committee	2.7 to 5.5 V (TMP87C408/C808/P808), 1.8 to 4	1.0 V (TMP87C408L/C8	08L/P808L)		
VSS (VASS)	Power Supply	0 V (GND)	Analog reference GI	ND		

Operational Description

1. CPU Core Functions

The CPU core consists of a CPU, a system clock controller, an interrupt controller, and a watchdog timer. This section provides a description of the CPU core, the program memory, the data memory, and the reset circuit.

1.1 Memory Address Map

The TLCS-870 Series is capable of addressing 64 Kbytes of memory. Figure 1-1 shows the memory address maps of the 87C408/808/408L/808L. In the TLCS-870 Series, the memory is organized 4 address spaces (ROM, RAM, SFR, and DBR). It uses a memory mapped I/O system, and all I/O registers are mapped in the SFR/DBR address spaces. There are 16 banks of general-purpose registers. The register banks are also assigned to the RAM address space.

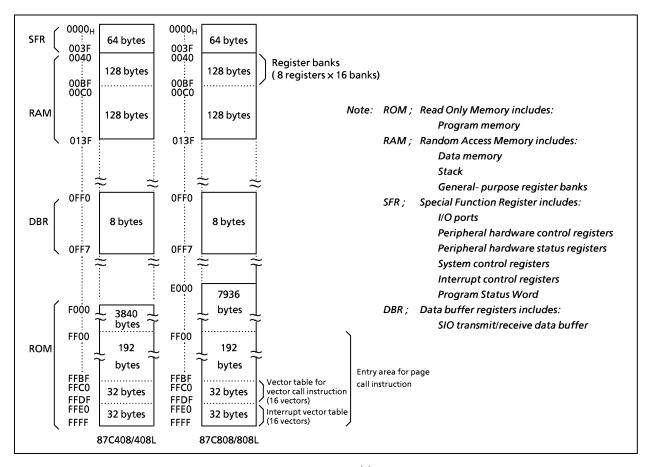


Figure 1-1. Memory Address Map

Electrical Characteristics

(1) 87C408/808

Absolute Maximum Ratings

 $(V_{SS} = 0 V)$

Parameter		Symbol	Conditions		Ratings	Unit	
Supply Voltage		V_{DD}			– 0.3 to 6.5	V	
Input Voltage		V _{IN}			– 0.3 to V _{DD} + 0.3	V	
Output Voltage		V _{OUT}			– 0.3 to V _{DD} + 0.3	٧	
		I _{OUT1}	P1, P6		3.2	mA	
Output Current (Per 1 pin)	IOL	I _{OUT2} P7 (Middle current port)		15	mA		
	ЮН	I _{OUT3}	P1, P6, P7	- 1.8	mA		
		Σ I _{OUT1}	P1, P6		50	mA	
Output Current (Total)	IOL	Σ I _{OUT2}	P7 (Middle current port)		60	mA	
	ЮН	Σ I _{OUT3}	P1, P6, P7		30	mA	
				SDIP	300		
Power Dissipation [Topr =	70°C]	PD		SOP	180	mW	
Lauret Command		I _{IN1}	P1, P6, P7		1.0		
Input Current		I _{IN2}	11,10,17		- 1.0	mA	
Soldering Temperature (time)		Tsld			260 (10 s)	°C	
Storage Temperature	·	Tstg			– 55 to 125	°C	
Operating Temperature		Topr			– 30 to 70	°C	

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

Recommended Operating Conditions

 $(V_{SS} = 0 \text{ V, Topr} = -30 \text{ to } 70^{\circ}\text{C})$

Parameter	Symbol	Pins	Conditions	Min	Max	Unit
			fc = 8 MHz NORMAL mode IDLE mode	4.5		
Supply Voltage	V _{DD}		fc = NORMAL mode 4.2 MHz IDLE mode	2.7	5.5	v
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	V _{IH1} Except hys		V >45V			
lanut High Valtaga	V_{IH2}	Hysteresis input	VDD x 0.73		.,	,,
Input High Voltage	V _{IH3}		$2.7 \text{ V} \le \text{V}_{DD} < 4.5 \text{ V}$	V _{DD} × 0.90	V _{DD}	\ \
	V_{IL1}	Except hysteresis input	> . =		$V_{DD} \times 0.30$	
land the land the land	V_{IL2}	Hysteresis input	V _{DD} ≧ 4.5 V]	$V_{DD} \times 0.25$] ,,
Input Low Voltage	V _{IL3}		$2.7 \text{ V} \le \text{V}_{DD} < 4.5 \text{ V}$	0	V _{DD} × 0.10	\ \
Clock Frequency	fc	XIN, XOUT	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$ $V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	1.0	8.0 4.2	MHz

Note 1: The recommended operating conditions for a device are operating conditions under which it can be guaranteed that the device will operate as specified. If the device is used under operating conditions other than the recommended operating conditions (supply voltage, operating temperature range, specified AC/DC values etc.), malfunction may occur. Thus, when designing products which include this device, ensure that the recommended operating conditions for the device are always adhered to.

3-08-74 2001-01-22

Note 2: Clock frequency fc: Supply voltage range is specified in NORMAL mode and IDLE mode.

Note 3: Minimum of clock frequency: 1 MHz ≤ fcgck

D.C. Characteristics

 $(V_{SS} = 0 V, Topr = -30 to 70^{\circ}C)$

Parameter	Symbol	Pins	Conditi	ons		Min	Тур.	Max	Unit
Hysteresis Voltage	V_{HS}	Hysteresis inputs				_	0.9	_	٧
	I _{IN1}	TEST							
Input Current	I _{IN2}	Tri-state ports	$V_{DD} = 5.5 \text{ V}$ $V_{IN} = 5.5 \text{ V} / 0 \text{ V}$			-2	_	2	μΑ
	I _{IN3}	RESET, STOPi	- VIN - 3.3 V / 0 V						
	R _{IN1}	TEST				30	70	150	
Input Resistance	R _{IN2}	RESET				100	220	450	kΩ
	R _{IN3}	STOPi	i = 2 to 5		30	70	150		
Output Leakl Current	I _{LO}	Tri-state ports	$V_{DD} = 5.5 \text{ V}, V_{OUT} = 5.5 \text{ V} / 0 \text{V}$		/0V	-2	-	2	μΑ
Output High Voltage	V _{OH2}	Tri-state ports	V _{DD} = 4.5 V, I _{OH} =	= - 0.7 r	nA	4.1	-	-	V
Output Low Voltage	V _{OL}	Except XOUT and P7	$V_{DD} = 4.5V$, $I_{OL} = 1.6 \text{ mA}$			_	_	0.4	V
Output Low Current	I _{OL3}	P7	V _{DD} = 4.5 V, V _{OL} = 1.0 V			-	7	_	mA
Supply Current in					fc	-	6.5	10	
				fcgck	fc/2	-	4.0	6.4	
NORMAL mode				Tagen	fc/4	-	2.6 4.7	4.7	
			$V_{DD} = 5.5 V$ fc = 8 MHz	fc	fc/8	_	1.9	3.9	
			$V_{IN} = 5.3 \text{ V} / 0.2 \text{V}$		fc	_	3.3	5.0	
Supply Current in IDLE				fcgck	fc/2	_	2.4	3.9	
mode				, regen	fc/4	_	1.9	3.5	
	I _{DD}				fc/8	-	1.6	3.3	mA
	מטי [fc	-	1.5	2.5	1
Supply Current in NORMAL mode				fcgck	fc/2	-	0.85	1.6	
NOMINALMOGC			$V_{DD} = 3.0 \text{ V}$		fc/4	-	0.6	1.2	
Supply Current in IDLE mode	1		fc = 4.19 MHz $V_{IN} = 2.8 \text{ V} / 0.2 \text{ V}$	fcgck	fc	-	0.8	1.4	
			1111 - 2.0 0 / 0.20		fc/2	_	0.55	1.1	
					fc/4	_	0.45	0.9	
Supply Current in STOP mode			$V_{DD} = 5.5 \text{ V}$ $V_{IN} = 5.3 \text{ V} / 0.2 \text{ V}$			-	0.5	10	μΑ

Note 1: Typical values show those at Topr = 25°C, VDD = 5 V.

Note 2: Input Current I_{IN1} , I_{IN3} : The current through resistor is not included, when the input resistor (pull-up or pull-down) is contained.

Note 3: I_{DD} ; Except for I_{REF}

A/D Conversion Characteristics

 $(V_{SS} = 0 \text{ V}, V_{DD} = 2.7 \text{ to } 5.5 \text{ V}, Topr = -30 \text{ to } 70^{\circ}\text{C})$

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Analog Reference Voltage	V_{AREF}		2.7	_	V_{DD}	V
Analog Reference Voltage	V_{ASS}		V _{SS}		V	
Analog Input Voltage Range	V_{AIN}		V _{ASS}	_	V _{AREF}	٧
Analog Reference Current	I _{REF}	$V_{AREF} = 5.5 \text{ V}, V_{ASS} (V_{SS}) = 0.0 \text{ V}$	-	0.8	1.0	mA
Nonlinearity Error		V _{DD} = 5.0 V V _{ARFF} = 5.000 V	-	_	± 1	
Zero Point Error		V _{ASS} (V _{SS}) = 0.000 V	-	-	± 1	LSB
Full Scale Error]	V _{DD} = 2.7 V V _{ARFF} = 2.700 V	-	-	± 1	LSB
Total Error		V _{ASS} (V _{SS}) = 0.000 V	_	_	± 2	

Note: Quantizing error is not contained in those errors.

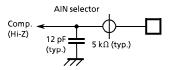
TMP87C408DM

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Nonlinearity Error			_	_	± 1	
Zero Point Error		$V_{DD} = 2.7 \text{ V}$ $V_{AREF} = 2.700 \text{ V}$	_	_	± 3	l co
Full Scale Error		$V_{AREF} = 2.700 \text{ V}$ $V_{ASS} (V_{SS}) = 0.000 \text{ V}$	_	_	± 3	LSB
Total Error		422 (422) - 0.000 v	_	_	± 4	

Note: For the TMP87C408, the guaranteed value for A/D conversion accuracy is different when $V_{DD} = 2.7 \text{ V}$.

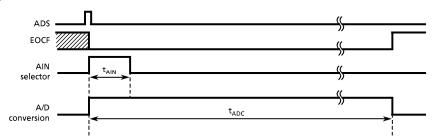
A.C. Characteristics (I)

 $(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, Topr = -30 \text{ to } 70^{\circ}\text{C})$


Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
		In NORMAL mode				
Machine Cycle Time	tcy	In IDLE mode	0.5	_	4	μs
High Level Clock Pulse Width	t _{WCH}	For external clock operation				
Low Level Clock Pulse Width	t _{WCL}	fc = 8 MHz (XIN input)	50	_	_	ns
A/D Conversion Time	t _{ADC}	ACK = 0		46	-	
A/D Conversion Time		ACK = 1	_	184		tcy
A/D Sampling Time	t _{AIN}		_	4		

A.C. Characteristics (II)

 $(V_{SS} = 0 \text{ V}, V_{DD} = 2.7 \text{ to } 5.5 \text{ V}, Topr = -30 \text{ to } 70^{\circ}\text{C})$

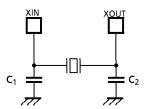

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
		In NORMAL mode				
Machine Cycle Time	tcy	In IDLE mode	0.95	_	4	μS
High Level Clock Pulse Width	t _{WCH}	For external clock operation	440			
Low Level Clock Pulse Width	t _{WCL}	fc = 4.2 MHz	110	_	_	ns
A/D Conversion Time	+	ACK = 0		46	_	
A/D Conversion Time	t _{ADC}	ACK = 1	_	184		tcy
A/D Sampling Time	t _{AIN}		_	4		

Note: A/D conversion timing: Internal circuit for AIN0 to 5

X To keep the same level of an analog input during t_{AIN} is necessary for charging the electron to the sample hold circuit.

A/D conversion timing

Recommended Oscillating Conditions (${\bf I}$)


 $(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, Topr = -30 \text{ to } 70^{\circ}\text{C})$

Parameter	Oscillator	Oscillation Frequency	Recommended Oscillator		Recommende C ₁	ed Conditions C ₂
		requerity	KYOCERA	KBR8.0M	30 pF	30 pF
Ceramic		8 MHz	MURATA	CSAC8.00MT	30 pF	30 pF
	Ceramic Resonator	(VDD = 4.5 to 5.5 V)	MURATA	CSA8.00MTZ CST8.00MTW CSTS8.00MT	_	_
High-frequency		4.19 MHz (VDD = 2.7 to 5.5 V)	MURATA	CSA4.19MG	30 pF	30 pF
Oscillation			MURATA	CST4.19MGW	_	_
		4 MHz (VDD = 2.7 to 5.5 V)	KYOCERA	KBR4.0MS	30 pF	30 pF
		8 MHz (VDD = 4.5 to 5.5 V)	точосом	210B 8.0000		
	Crystal Oscillator	4 MHz (VDD = 2.7 to 5.5 V)	тоуосом	204B 4.000	20 pF	20 pF

Recommended Oscillating Conditions (II)

 $(V_{SS} = 0 \text{ V}, V_{DD} = 2.7 \text{ to } 5.5 \text{ V}, Topr = -30 \text{ to } 70^{\circ}\text{C})$

Parameter	Oscillator	Oscillation Frequency	Recommended Oscillator		Recommende C ₁	ed Conditions C ₂
	4.19 MHz	MURATA	CSA4.19MG	30 pF	30 pF	
	(VDD = 2.7 to 5.5 V)	MURATA	CST4.19MGW	_	_	
High-frequency			MURATA	CSA4.00MG	30 pF	30 pF
	Ceramic Resonator			CSA4.00MGC	-	_
Oscillation		4 MHz	MURATA	CST4.00MGW		
	(VDD = 2.7 to 5.5 V)		CSTC4.00MG	_	_	
			MURATA	CSTCS4.00MG	_	-

(1) High-frequency Oscillation

Note: When used in high electric field such as a picture tube, the package is recommended to be electrically shielded to maintain a regular operation.

Electrical Characteristics

(1) 87C408L/808L

Absolute Maximum Ratings

 $(V_{SS} = 0 V)$

Parameter		Symbol	Conditions		Ratings	Unit	
Supply Voltage		V_{DD}			– 0.3 to 5.5	٧	
Input Voltage		V _{IN}			– 0.3 to V _{DD} + 0.3	٧	
Output Voltage		V _{OUT}			– 0.3 to V _{DD} + 0.3	>	
		I _{OUT1}	P1, P6		3.2	mA	
Output Current (Per 1 pin)	IOL	I _{OUT2}	P7 (Middle current port)		15	mA	
	ЮН	I _{OUT3}	P1, P6, P7	- 1.8	mA		
		Σ I _{OUT1}	P1, P6		50	mA	
Output Current (Total)	IOL	Σ I _{OUT2}	P7 (Middle current port)		60	mA	
	ЮН	Σ I _{OUT3}	P1, P6, P7		30	mA	
D 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	70061			SDIP	300		
Power Dissipation [Topr =	/0°C]	PD		SOP	180	mW	
Invest Comment		I _{IN1}	P1, P6, P7		1.0		
Input Current		I _{IN2}	11,10,17		- 1.0	mA	
Soldering Temperature (time)		Tsld			260 (10 s)	°C	
Storage Temperature		Tstg			– 55 to 125	ů	
Operating Temperature		Topr			– 30 to 70	ů	

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

Recommended Operating Conditions

 $(V_{SS} = 0 \text{ V, Topr} = -30 \text{ to } 70^{\circ}\text{C})$

Parameter	Symbol	Pins	Conditions		Min	Max	Unit
			f- 4.2 NALL-	NORMAL mode		4.0	
Supply Voltage	V_{DD}		fc = 4.2 MHz	IDLE mode	1.8		V
		S		TOP mode]		
Input High Voltage	V _{IH}				V _{DD} × 0.90	V _{DD}	٧
Input Low Voltage	V _{IL}				0	V _{DD} × 0.10	٧
Clock Frequency	fc	XIN, XOUT	V _{DD} = 1.8 to 4.0 V		1.0	4.2	MHz

Note 1: The recommended operating conditions for a device are operating conditions under which it can be guaranteed that the device will operate as specified. If the device is used under operating conditions other than the recommended operating conditions (supply voltage, operating temperature range, specified AC/DC values etc.), malfunction may occur. Thus, when designing products which include this device, ensure that the recommended operating conditions for the device are always adhered to.

Note 2: Clock frequency fc: Supply voltage range is specified in NORMAL mode and IDLE mode.

Note 3: Minimum of clock frequency: 1 MHz \leq fcgck

3-08-79 2001-01-22

D.C. Characteristics

 $(V_{SS} = 0 V, Topr = -30 to 70^{\circ}C)$

Parameter	Symbol	Pins	Conditions		Min	Тур.	Max	Unit	
Hysteresis Voltage	V _{HS}	Hysteresis inputs			-	0.9	-	٧	
	I _{IN1}	TEST	V _{DD} = 4.0 V V _{IN} = 4.0 V / 0 V		-2	_	2	μΑ	
Input Current	I _{IN2}	Tri-state ports							
	I _{IN3}	RESET, STOP	1 VIN = 4.0 V / 0 V						
	R _{IN1}	TEST				30	70	150	
Input Resistance	R _{IN2}	RESET			100	220	450	kΩ	
	R _{IN3}	STOPi	i = 2 to 5			30	130		150
Output Leakl Current	I _{LO}	Tri-state ports	V _{DD} = 4.0 V, V _{OU1}	r = 4.0 V	/0V	-2	-	2	μΑ
Output High Voltage	V _{OH2}	Tri-state ports	V _{DD} = 4.0 V, I _{OH} =	= - 0.5 r	nΑ	3.6	-	-	٧
Output Low Voltage	V _{OL}	Except XOUT and P7	V _{DD} = 4.0V, I _{OL} =	1.3 mA		_	-	0.4	٧
Output Low Current	I _{OL3}	P7	V _{DD} = 4.0 V, V _{OL} =	= 1.0 V		_	6	-	mΑ
					fc	-	2.25	3.6	
Supply Current in NORMAL mode				fcgck	fc/2	_	1.35	2.5	
11011111111000				fcgck	fc/4	_	0.9	1.9	
					fc	_	1.2	1.9	
Supply Current in IDLE mode					fc/2	_	0.9	1.7	
					fc/4	-	0.7	1.5	
					fc	_	1.5	2.5	
Supply Current in NORMAL mode				fcgck	fc/2	-	0.85	1.6	mA
					fc/4	-	0.6	1.2	
	I _{DD}				fc	_	8.0	1.4	
Supply Current in IDLE mode	1 .00			fcgck	fc/2	_	0.55	1.1	
					fc/4	_	0.45	0.9	
	1				fc	-	0.9	1.3	-
Supply Current in NORMAL mode				fcgck	fc/2	-	0.5	0.8	
NORWALIIIOGE					fc/4	-	0.3	0.45	
Supply Current in IDLE mode]				fc	_	0.35	0.5	
			fcgck	fc/2	_	0.23	0.35		
The state of the s					fc/4	_	0.17	0.26	
Supply Current in STOP mode			$V_{DD} = 5.5 \text{ V}$ $V_{IN} = 5.3 \text{ V} / 0.2 \text{ V}$			-	0.5		μΑ

Note 1: Typical values show those at Topr = 25°C, VDD = 4 V.

Note 2: Input Current I_{IN1} , I_{IN3} : The current through resistor is not included, when the input resistor (pull-up or pull-down) is contained.

Note3: I_{DD} ; Except for I_{REF}

A/D Conversion Characteristics (I)

 $(V_{SS} = 0V, V_{DD} = 1.8 \text{ to } 4.0 \text{ V}, \text{Topr} = -30 \text{ to } 70^{\circ}\text{C})$

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Analog Reference Voltage	V_{AREF}		1.8	-	V_{DD}	V
Analog Reference Voltage	V_{ASS}		V _{SS}]
Analog Input Voltage Range	V_{AIN}		V _{ASS}	_	V _{AREF}	V
Nonlinearity Error			_	_	± 2	
Zero Point Error		$1.8 \text{ V} \leq \text{V}_{AREF} < 2.7 \text{ V}$ $\text{V}_{AREF} \leq \text{V}_{DD} \leq 4.0$	_	_	± 2	l cp
Full Scale Error		$V_{ASS}(V_{SS}) = 0.000 V$ ACK = 1 (Note2)	-	_	± 2	LSB
Total Error			-	_	± 4	

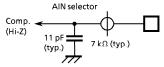
Note1: Quantizing error is not contained in those errors.

Note2: ACK; bit5 of ADCCR (#000 E_H). conversion time = 184 tcy (175.6 μ s / at fcgck = 4.19 MHz)

A/D Conversion Characteristics (II)

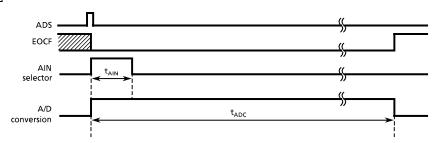
 $(V_{SS} = 0V, V_{DD} = 2.7 \text{ to } 4.0 \text{ V}, Topr = -30 \text{ to } 70^{\circ}\text{C})$

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Analog Reference Voltage	V_{AREF}		2.7	_	V_{DD}	V
Analog Reference Voltage	V _{ASS}		V _{SS}	V _{SS}		
Analog Input Voltage Range	V_{AIN}		V _{ASS}	_	V _{AREF}	V
Analog Reference Current	I _{REF}	$V_{AREF} = 4.0V, V_{ASS} (V_{SS}) = 0.0V$	_	0.5	1.0	mA
Nonlinearity Error		V _{DD} = 4.0 V	_	_	± 1	
Zero Point Error		$V_{AREF} = 4.000 \text{ V}$ $V_{ASS} (V_{SS}) = 0.000 \text{ V}$	-	-	± 1	
Full Scale Error		or V _{DD} = 2.7 V V _{ARFF} = 2.700 V	_	_	± 1	LSB
Total Error		$V_{ASS}(V_{SS}) = 0.000 \text{ V}$	_	_	± 2	


Note: Quantizing error is not contained in those errors.

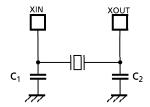
A.C. Characteristics

($V_{SS} = 0 \text{ V}, \ V_{DD} = 1.8 \text{ to } 4.0 \text{ V}, \ \text{Topr} = -30 \text{ to } 70^{\circ}\text{C}$)


Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
	In NORMAL mode					
Machine Cycle Time	tcy	In IDLE mode	0.95	_	4	μS
High Level Clock Pulse Width	t _{WCH}	For external clock operation	440			
Low Level Clock Pulse Width	t _{WCL}	fc = 4.2 MHz	110	_	-	ns
A/D Conversion Time	t _{ADC}	ACK = 0		46	_	
A/D Conversion Time		ACK = 1	_	184		tcy
A/D Sampling Time	t _{AIN}		_	4		

Note: A/D conversion timing: Internal circuit for AIN0 to 5

X To keep the same level of an analog input during t_{AIN} is necessary for charging the electron to the sample hold circuit.


A/D conversion timing

Recommended Oscillating Conditions

 $(V_{SS} = 0 \text{ V}, \text{ Topr} = -30 \text{ to } 70^{\circ}\text{C})$

	6 W.	Oscillation			Recommended Conditions		
Parameter Oscillator		Frequency	Recommended Oscillator		C ₁	C ₂	
High-frequency		4.19 MHz	MURATA	CSA4.19MG	30 pF	30 pF	
		(VDD = 2.7 to 5.5 V)	MURATA	CST4.19MGW	_	1	
		4 MHz (VDD = 2.7 to 5.5 V)	MURATA	CSA4.00MG	30 pF	30 pF	
	Oscillation Ceramic Resonator			CSA4.00MGC	_	_	
Oscillation			MURATA	CST4.00MGW CSTC4.00MG	_	_	
			MURATA	CSTCS4.00MG	_	_	

(1) High-frequency Oscillation

Note: When used in high electric field such as a picture tube, the package is recommended to be electrically shielded to maintain a regular operation.