TOSHIBA Photocoupler GaAs IRed & Photo-Triac

TLP561J

Triac Driver
Programmable Controllers
AC-Output Module
Solid State Relay

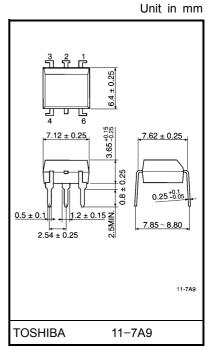
The TOSHIBA TLP561J consists of a zero voltage crossing turn–on photo–triac optically coupled to a gallium arsenide infrared emitting diode in a six lead plastic DIP package.

• Peak off-state voltage: 600V(min.)

• On-state current: 100mA(max.)

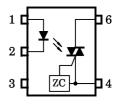
• Isolation voltage: 2500V_{rms}(min.)

• UL recognized: UL1577, file no. E67349


• Trigger LED current

Classi– Fication*	Trigger LED	Current (mA)	Marking Of		
	V _T =6V, Ta=25°C		Classification		
	Min.	Max.			
(IFT7)	ı	7	T7		
Standard	_	10	T7, blank		

*Ex. (IFT7); TLP561J(IFT7)


(Note): Application type name for certification test, please use standard product type name, i.e. TLP561J(IFT7): TLP561J

*1: According to VDE0110, table 4.

Weight: 0.39g

Pin Configuration (top view)

1 : ANODE 2 : CATHODE

3 : N.C.

4: TERMINAL 1 6: TERMINAL 2

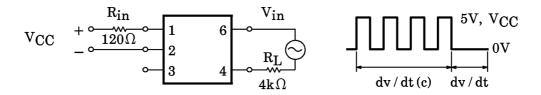
Maximum Ratings (Ta = 25°C)

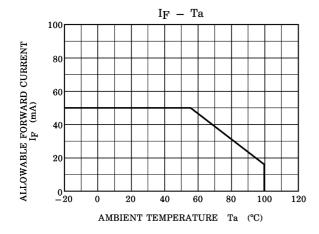
Characteristic		Symbol	Rating	Unit		
	Forward current	I _F	50	mA		
LED	Forward current derating (Ta ≥	ΔI _F / °C	-0.7	mA / °C		
	Peak forward current (100µs pu	lse, 100pps)	I _{FP}	1	Α	
	Reverse voltage		V _R	5	V	
	Junction temperature	Tj	125	°C		
	Off-state output terminal voltag	V_{DRM}	600	V		
	On-state RMS current	Ta = 25°C	I	100	mA	
_		Ta = 70°C	I _{T(RMS)}	50		
Detector	On–state current derating (Ta ≥	ΔI _T / °C	-1.1	mA / °C		
	Peak on-state current (100µs p	I _{TP}	2	Α		
	Peak nonrepetitive surge currer (Pw = 10ms, DC = 10%)	I _{TSM}	1.2	А		
	Junction temperature	Tj	115	°C		
Storag	Storage temperature range			-55~125	°C	
Operating temperature range		T _{opr}	-40~100	°C		
Lead soldering temperature (10s)			T _{sol}	260	°C	
Isolation voltage (AC, 1min., R.H. ≤ 60%)			BVS	2500	V _{rms}	

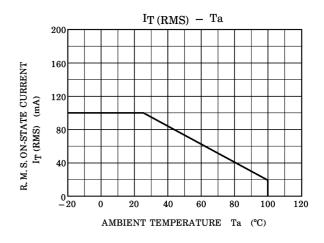
Recommended Operating Conditions

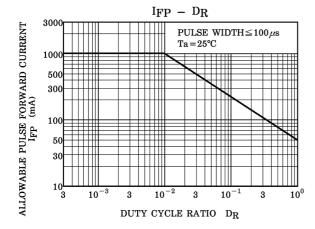
Characteristic	Symbol	Min.	Тур.	Max.	Unit
Supply voltage	V _{AC}	_	_	240	V _{ac}
Forward current	l _F	15	20	25	mA
Peak on-state current	I _{TP}	_	_	_	Α
Operating temperature	T _{opr}	-25	_	85	°C

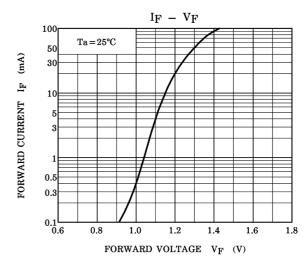
2

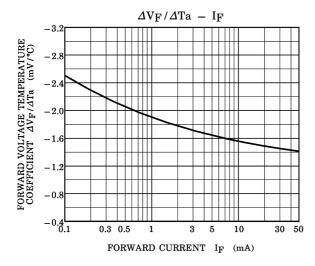

Individual Electrical Characteristics (Ta = 25°C)

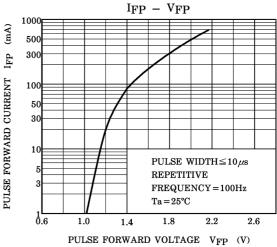

Characteristic		Symbol	Test Condition		Min.	Тур.	Max.	Unit
LED	Forward voltage	V _F	I _F = 10mA		1.0	1.15	1.3	V
	Reverse current	I _R	V _R = 5 V		_	_	10	μA
	Capacitance	C _T	V = 0, f = 1MHz		_	30		pF
Detector	Peak off-state current	I _{DRM}	V _{DRM} = 600V		_	10	1000	nA
	Peak on-state voltage	V_{TM}	I _{TM} = 100mA		_	1.7	3.0	V
	Holding current	lΗ	_		_	0.6		mA
	Critical rate of rise of off–state voltage	dv / dt	V _{in} = 240V _{rms} , Ta = 85°C	(Fig.1)	200	500	ı	V / µs
	Critical rate of rise of commutating voltage	dv / dt(c)	$V_{in} = 60V_{rms}$, $I_T = 15mA$	(Fig.1)	_	0.2		V / µs

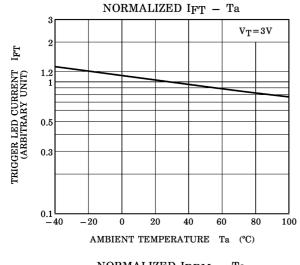

Coupled Electrical Characteristics (Ta = 25°C)

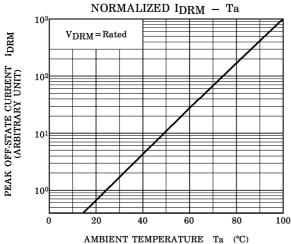

Characteristics	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Trigger LED current	I _{FT}	$V_T = 6V, R_L = 100\Omega$	_	5	10	mA
Inhibit voltage	V _{IH}	I _F = Rated I _{FT}	_	_	50	V
Leakage in inhibited state	lн	I _F = Rated I _{FT} V _T = Rated V _{DRM}	_	200	600	μΑ
Capacitance (input to output)	CS	V _S = 0, f = 1MHz	_	0.8	_	pF
Isolation resistance	R _S	V _S = 500V	5×10 ¹⁰	10 ¹⁴	_	Ω
	BVS	AC, 1 minute	2500	_	_	V _{rms}
Isolation voltage		AC, 1 second, in oil	_	5000	_	
		DC, 1 minute, in oil	_	5000	_	V _{dc}

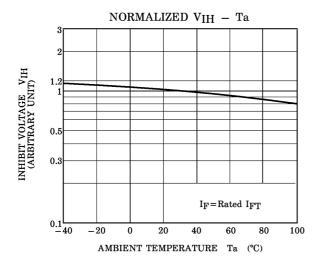

Fig.1: dv / dt test circuit

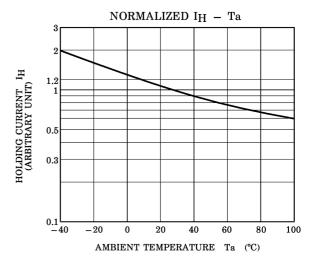


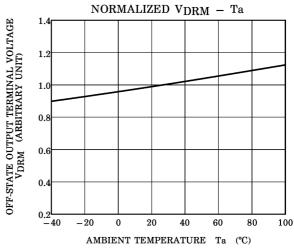


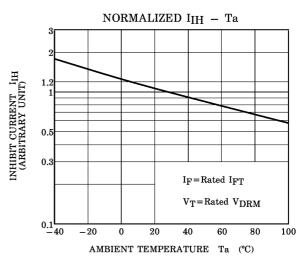









4



RESTRICTIONS ON PRODUCT USE

000707EBC

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes
 are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the
 products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with
 domestic garbage.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.