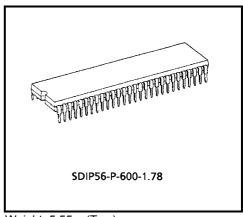


TOSHIBA BI-CMOS INTEGRATED CIRCUIT SILICON MONOLITHIC

TB1245N

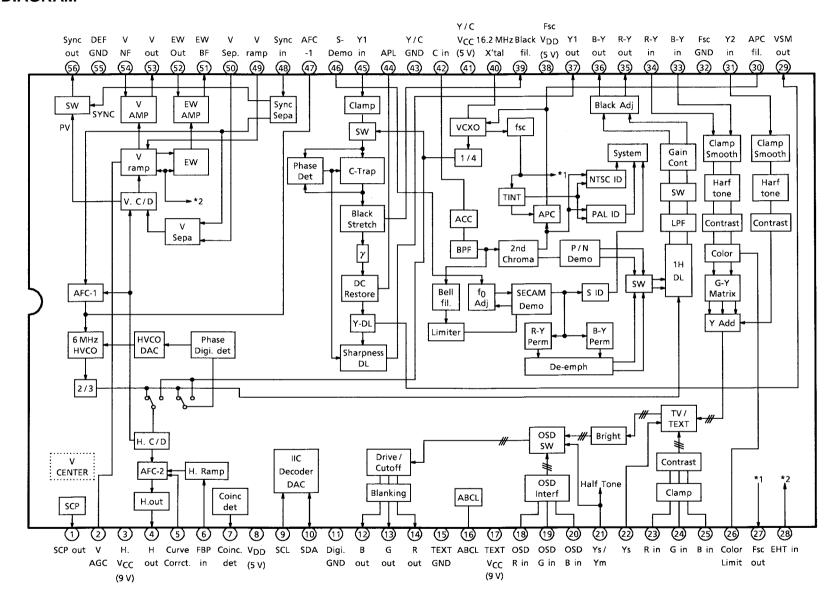

1

VIDEO, CHROMA AND SYNCHRONIZING SIGNALS PROCESSING IC FOR PAL / NTSC / SECAM SYSTEM COLOR TV

TB1245N that is a signal processing IC for the PAL / NTSC / SECAM color TV system integrates video, chroma and synchronizing signal processing circuits together in a 56pin shrink DIP plastic package.

TB1245N incorporates a high performance picture quality compensation circuit in the video section, an automatic PAL / NTSC / SECAM discrimination circuit in the chroma section, and an automatic 50 / 60 Hz discrimination circuit in the synchronizing section. Besides a crystal oscillator that internally generates 4.43 MHz, 3.58 MHz and M / N-PAL clock signals for color demodulation, there is a horizontal PLL circuit built in the IC.

The PAL / SECAM demodulation circuit which is an adjustment-free circuit incorporates a 1H DL circuit inside for operating the base band signal processing system. Also, TB1245N makes it possible to set or control various functions through the built-in $\rm I^2C$ bus line.



Weight: 5.55 g (Typ.)

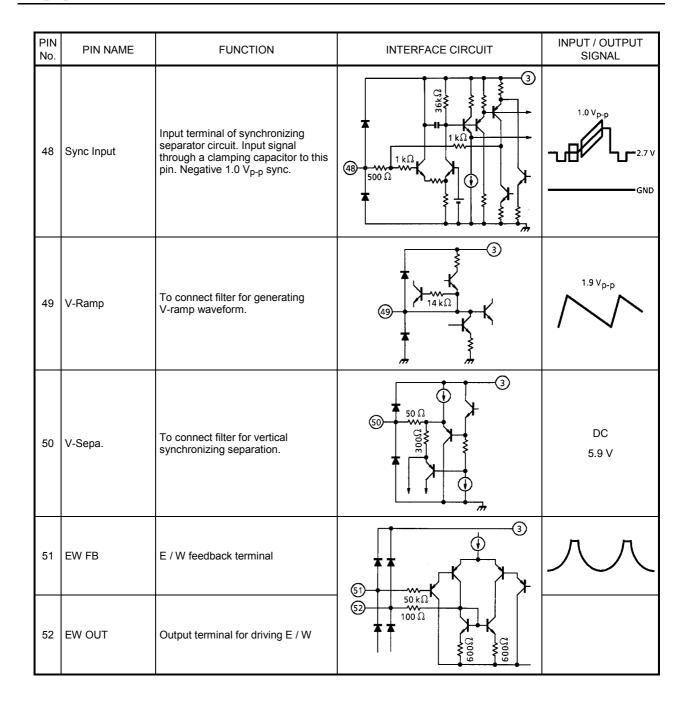
FEATURES

- Video section
 - Built-in trap filter
 - · Black expansion circuit
 - Variable DC regeneration rate
 - Y delay line
 - Sharpness control by aperture control
 - y correction
- Chroma section
 - Built-in 1 H Delay circuit
 - PAL base band demodulation
 - One crystal color demodulation circuit
 - Automatic system discrimination
 - Built-in band-pass filter
 - Color limiter circuit
- Synchronizing deflecting section
 - Built-in horizontal VCO resonator
 - Adjustment-free horizontal / vertical oscillation By count-down circuit
 - Double AFC circuit
 - Vertical frequency automatic discrimination circuit
 - Horizontal / vertical holding adjustment
 - Vertical ramp output
 - Vertical amplitude adjustment
 - Vertical linearity / S-shaped curve adjustment
 - E / W output
- Text section
 - Linear RGB input
 - OSD RGB input
 - Cut / off-drive adjustment
 - RGB primary signal output

BLOCK DIAGRAM

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
1	SCP OUTPUT	Output terminal of Sand Castle Pulse. (SCP) To connect drive resistor for SCP.	1 45kΩ 45kΩ 60kΩ 90kΩ 90kΩ 90kΩ 90kΩ 90kΩ 90kΩ 90kΩ 9	Horizontal blanking 7.3 V Clamping pulse 4.5 V 2.6 V Vertical blanking
2	V-AGC	Controls pin 52 to maintain a uniform V-ramp output. Connect a current smoothing capacitor to this pin.	3 300 Ω	_
3	H-V _{CC} (9 V)	V _{CC} for the DEF block (deflecting system). Connect 9 V (Typ.) to this pin.	_	_
4	Horizontal Output	Horizontal output terminal.	3 300 Ω	5.0 v 0.2 v
5	Picture Distortion Correction	Corrects picture distortion in high voltage variation. Input AC component of high voltage variation. For inactivating the picture distortion correction function, connect 0.01 µF capacitor between this pin and GND.	3 1 kΩ 9 kΩ 9 kΩ Θ 9 kΩ 9 kΩ Σ 22.5 kΩ Σ 3 Θ 9 kΩ 9 kΩ	4.5 V at Open
6	FBP Input	FBP input for generating horizontal AFC2 detection pulse and horizontal blanking pulse. The threshold of horizontal AFC2 detection is set $H.V_{CC}$ - $2V_f$ ($V_f \approx 0.75 \text{ V}$). Confirming the power supply voltage, determine the high level of FBP.	(a) Δ ₁ Δ ₂ Δ ₃	H-VCC

4


PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
7	Coincident Det.	To connect filter for detecting presence of H. synchronizing signal or V. synchronizing signal.	7 2000 22	
8	V _{DD} (5 V)	V _{DD} terminal of the LOGIC block. Connect 5 V (Typ.) to this pin.	_	_
9	SCL	SCL terminal of I ² C bus.	9 10 kΩ AS 7 2	I
10	SDA	SDA terminal of I ² C bus.	8 SDA SDA SDA SDA SDA SDA SOA SOA SOA SOA SOA SOA SOA SOA SOA SO	_
11	Digital GND	Grounding terminal of LOGIC block.		_
12 13 14	B Output G Output R Output	R, G, B output terminals.	12 13 14 100 Ω 100 Ω	7
15	TEXT GND	Grounding terminal of TEXT block.	_	_
16	ABCL	External unicolor brightness control terminal. Sensitivity and start point of ABL can be set through the bus.	(a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	6.4 V at Open
17	RGB-V _{CC} (9 V)	V _{CC} terminal of TEXT block. Connect 9 V (Typ.) to this pin.	-	

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
18 19 20	Digital R Input Digital G Input Digital B Input	Input terminals of digital R, G, B signals. Input DC directly to these pins. OSD or TEXT signal can be input to these pins.	18 19 20 500 Ω 19 20	OSD3.0 V TEXT2.0 VGND
21	Digital YS / YM	Selector switch of halftone / internal RGB signal / digital RGB (pins 18, 19, 20).	(1) 1 kΩ (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	OSD3.2 V TEXT2.1 V H.T0.7 V TVGND
22	Analog YS	Selector switch of internal RGB signal or analog RGB (pins 23, 24, 25).	© SCHOOL STATE OF THE STATE OF	Analog RGB ——0.5 V TV ——GND
23 24 25	Analog R Input Analog G Input Analog B Input	Analog R, G, B input terminals. Input signal through the clamping capacitor. Standard input level : 0.5 V _{p-p} (100 IRE).	23 24 25 2 kΩ 2 kΩ 2 kΩ	100 IRE = 0.5 V _{p-p} 4.6 V GND
26	Color Limiter	To connect filter for detecting color limit.	300 Ω 10 kΩ 200 Color limiter	_
27	FSC Output	Output terminal of FSC.	400 AAA AAO AAA AAAA	3.58 MHz Other 500 mVp-p

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
28	EHT Input	Input terminal of EHT.	40 kΩ 30 kΩ C V 30 kΩ	_
29	VSM Output Terminal	Power output the signal that is primary differentiated Y signal. Enable to change output amplifier and phase by the Bus.	©	_
30	APC Filter	To connect APC filter for chroma demodulation.	30 000 000 000 000 000 000 000 000 000	DC 3.2 V
31	Y ₂ Input	Input terminal of processed Y signal. Input Y signal through clamping capacitor. Standard input level : 0.7 $V_{p\text{-}p}$	31 Y2: 2V RY, B-Y : 2.5 V	0.7 V _{p-p}
32	Fsc GND	Grounding terminal of VCXO block. Insert a decoupling capacitor between this pin and pin 38 (Fsc V _{DD}) at the shortest distance from both.	_	_
33 34	B-Y Input R-Y Input	Input terminal of B-Y or R-Y signal. Input signal through a clamping capacitor.	33 34 1kΩ 1kΩ 1kΩ 1kΩ 1kΩ 1kΩ 1kΩ 1kΩ	DC 2.5 V AC B-Y: 650 mV _{p-p} R-Y: 510 mV _{p-p} (with input of PAL-75% color bar signal)

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
35 36	R-Y Output B-Y Output	Output terminal of demodulated R-Y or B-Y signal. There is an LPF for removing carrier built in this pin.	35 36 U U U U U U U U U U U U U U U U U U	DC 1.9 V AC $B-Y:650 \text{ mV}_{p-p}$ $R-Y:510 \text{ mV}_{p-p}$ (with input of PAL-75% color bar signal)
37	Y ₁ Output	Output terminal of processed Y signal. Standard output level : 0.7 V_{p-p}	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	0.7 V _{p-p} 2.3 V GND
38	Fsc V _{DD}	V _{DD} terminal of DDS block. Insert a decoupling capacitor between this pin and pin 32 (Fsc GND) at the shortest distance from both. If decouping capacitor is inserted at a distance from the pins, it may cause spurious deterioration.		_
39	Black Stretch	To connect filter for controlling black expansion gain of the black expansion circuit. Black expansion gain is determined by voltage of this pin.	(E)	DC 1.6 V
40	16.2 MHz X'tal	To connect 16.2 MHz crystal clock for generating sub-carrier.Lowest resonance frequency (f ₀) of the crystal oscillation can be varied by changing DC capacity. Adjust f ₀ of the oscillation frequency with the board pattern.	40 1,5 kΩ 1 kΩ	DC 4.1 V

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
41	Y / C V _{CC} (5 V)	V _{CC} terminal of Y / C signal processing block.	_	_
42	Chroma Input	Chroma signal input terminal. Input negative 1.0 $V_{\text{p-p}}$ sync composite video signal to this pin through a coupling capacitor.	40 T T T T T T T T T T T T T T T T T T T	DC 2.4 V AC : 300 mVp-p burst
43	Y / C GND	Grounding terminal of Y / C signal processing block.	_	_
44	APL	To connect filter for DC regeneration compensation.Y signal after black expansion can be monitored by opening this pin.	4) - 1.2 × 2.3 × 2.2 × 2	DC 2.2 V
45	Y ₁ Input	Input terminal of Y signal. Input negative 1.0 V _{p-p} sync composite video signal to this pin through a clamping capacitor.	45 200 Ω 41 41 41 41 41 41 41 41 41 41 41 41 41	1.0 V _{p-p}
46	S-Demo-Adj.	To connect f ₀ adjustment filter for SECAM demodulation.		DC 3.2 V
48	AFC1 Filter	To connect filter for horizontal AFC1 detection. Horizontal frequency is determined by voltage of this pin.	(a) 33.5 k.D. 37.5 k.D. 37	DC 5.0 V

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
53	Vertical Output	Output terminal of vertical ramp signal.	3	7
54	V-NF	Input terminal of vertical NF signal.	SS 3 K Ω 3 K Ω	5
55	DEF GND	Grounding terminal of DEF (deflection) block.	_	_
56	Sync Output	Output terminal of synchronizing signal separated by sync separator circuit. Connect a pull-up resistor to this pin because it is an open-collector output type.	3 50 Ω 	

BUS CONTROL MAP WRITE DATA

Slave address : 88 Hex (10001000)

SUB AD-	D ₇	D.	D	D	D	D.	D.	D ₀	PRE	SET
DRESS	MSB	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	LSB	MSB	LSB
00				UNI-C	OLOR				1000	0000
01				BRIG	GHT				1000	0000
02				COL	-OR				1000	0000
03	N-COMB				TINT				0100	0000
04	PN-ID	BLK SW			SHAR	PNESS			0010	0000
05	S-D-Trap	R-Moni	B-Moni		Y S	SUB CONTRA	AST		1001	0000
06				RGB-CO	NTRAST				1000	0000
07	OSD L	EVEL	0	0	0	0	0	0	0000	0000
08	Υγ	WPL	DRG SW	BLUE	BACK		Y-DL		0000	0010
09				G DF	RIVE				1000	0000
0A				B DF	RIVE				1000	0000
0B		HORIZ	ZONTAL POS	SITION		AFC I	MODE	H-CK SW	1000	0001
0C				R CU	TOFF			•	0000	0000
0D				G CU	TOFF				0000	0000
0E				B CU	TOFF				0000	0000
0F	BS SW	C-TRAP	OFST SW	C-BPF	P/NGP	CLL SW	WBLK SW	V-AGC	0000	0000
10	S-INHBIT	0	F-BW		X'tal MODE		COLOR	SYSTEM	0000	0000
11		R-Y BLACI	K OFFSET			B-Y BLAC	K OFFSET		1000	1000
12	CLL L	EVEL	PN CI	O ATT	BP	PF Q BPF f ₀		1001	1010	
13	H-STOP1	VSM PH	VSM	GAIN	C-TR	AP Q	C-TR	AP f ₀	1011	1010
14	BLAC	K STRACK P	POINT	D	C TRAN RAT	CTRAN RATE APA-CON f ₀			1000	0010
15		ABL POINT			ABL GAIN		HALF TO	ONE SW	0000	0000
16	H BL	ANKING PH	ASE	V-(CD	١	OUT PHAS	E	0000	0000
17			VERTIC	AL SIZE			SYNC / VP	ZOOM SW	1000	0000
18			HORIZON	TAL SIZE			COINCID	ENT DET	1000	0010
19		Ε/	W PARABO	LA			V-FREQ		1000	0000
1A		V-LIN COF	RECTION			V-S COR	RECTION		1000	1000
1B	E / W TRAPEZIUM					E/WC	ORNER		1000	1000
1C					OMPENSAT	ION	0100	0000		
1D	NOISE DET V-BLK START PHASE						1011	1111		
1E	H-STOP2		1	V-BI	_K STOP PH	ASE			0000	0000
1F	S-FIELD	S-CD ATT	DEMP f ₀	S GP	V-ID SW	S KIL	BEL	_L f ₀		0001

READ-IN DATA

Slave address : 89 Hex (10001001)

SUB AD- DRESS	D ₇ MSB	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀ LSB
1	PORES	COLOR SYSTEM		X'tal		V-FREQ	V-STD	N-DET
2	LOCK	RGB OUT	Y1-IN	UV-IN	Y2-IN	Н	V	V-GUARD

12

BUS CONTROL FUNCTION WRITE FUNCTION

ITEM	DESCRIPTION	NUMBER OF BITS	VARIABLE RANGE	PRESET VALUE
UNI-COLOR	_	8 bit	−18 dB~0 dB	80h CENTER VALUE
BRIGHT	_	8 bit	-40 IRE ~ 40 IRE	80h CENTER VALUE
COLOR	_	8 bit	~4 dB	80h 0 dB
N COMB	1H addition selection	1 bit	OFF / ADD	00h OFF
TINT	_	7 bit	-32°~32°	40h 0°
P / N ID	P / N IDENT sensitivity control	1 bit	Normal / Low (DIGITAL Comb FILTER use : -3 dB)	00h NORMAL
BLK SW	Blanking ON / OFF	1 bit	ON / OFF	00h ON
SHARPNESS	_	6 bit	~14 dB	20h +3 dB
S-D-Trap	SECAM double trap ON / OFF	1 bit	ON / OFF	01h OFF
R-Mon	TEXT-11 dB pre-amplification UV output	1 bit	Normal / Monitor (Pin 36)	00h Normal
B-Mon	TEXT-11 dB pre-amplification UV output	1 bit	Normal / Monitor (Pin 35)	00h Normal
Y SUB CONTRAST	_	5 bit	−3 dB~+3 dB	10h 0 dB
RGB-CONTRAST	EXT RGB UNI-COLOR control	8 bit	−18 dB~0 dB	80h CENTER VALUE
OSD LEVEL		2 bit	2.15, 2.27, 2.38, 2.50 V _{p-p}	00h 2.15 V _{p-p}
Υγ	γ ON / OFF	1 bit	OFF / ON (95 IRE)	00h ON
WPL	White peak limit level	1 bit	ON (130 IRE) / OFF	00h 130 IRE
DRG SW	Drive reference axis selection	1 bit	R/G	00h R
BLUE BACK	Luminance selector switch	2 bit	IRE; OFF, 40, 50, 60	00h OFF
Y-DL	Y-DL TIME (280, 330, 380, 430, 480)	3 bit	280~480 ns after Y IN (101H~111H : Not used)	02h 380 ns
G DRIVE GAIN	_	8 bit	−5 dB~3 dB	80h CENTER VALUE
B DRIVE GAIN	_	8 bit	−5 dB~3 dB	80h CENTER VALUE
HORIZONTAL POSITION	Horizontal position adjustment	5 bit	−3 µs~+3 µs	10h 0 μs

TB1245N

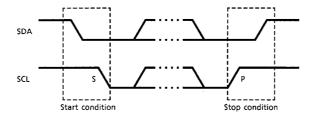
ITEM	DESCRIPTION	NUMBER OF BITS	VARIABLE RANGE	PRESET VALUE
AFC MODE	AFC1 detection sensitivity selector	2 bit	dB; AUTO, 0, −10, −10	00h AUTO
H-CK SW	HOUT generation clock selector	1 bit	384 fh-VCO, FSC-VCXO	01h FSC-VCXO
R CUT OFF	_	8 bit	−0.5~0.5 V	00h −0.5 V
G CUT OFF	_	8 bit	−0.5~0.5 V	00h -0.5 V
B CUT OFF	_	8 bit	−0.5~0.5 V	00h -0.5 V
BS OFF	Black strech ON / OFF	1 bit	ON / OFF	00h ON
C-TRAP	Chroma Trap ON / OFF SW	1 bit	ON / OFF	00h ON
OFST SW	Black offset SECAM discrimination interlocking switch	1 bit	SECAM only / All systems	00h S only
C-BPF	P / N BPF ON / OFF SW	1 bit	ON / OFF	00h ON
P / N GP	PAL GATE position	1 bit	Standard / 0.5 µs delay	00h Standard
CLL SW	COLOR LIMIT ON / OFF	1 bit	ON / OFF	00h ON
WBLK SW	WIDE V-BLK ON / OFF	1 bit	OFF / ON	00h OFF
V-AGC	V-AGC switch	1 bit	Normal / Fast	00h Normal
S-INHBT	To detect or not to detect SECAM	1 bit	Yes / No	00h Yes
F-BW	Force B / W switch	1 bit	AUTO / Forced B / W	00h AUTO
			000 ; European system AUTO, 001 ; 3N	
			010 ; 4P	
X'tal MODE	APC oscillation frequency selector switch	3 bit	011 ; 4P (N inhi bited)	00h European system AUTO
	Selector Switch		100 ; S.American system	System A010
			AUTO, 101 ; 3N	
			110 ; MP, 111 ; NP	
COLOR SYSTEM	Chroma system selection	2 bit	AUTO, PAL, NTSC, SECAM	00h AUTO
R-Y BLACK OFFSET	R-Y color difference output black offset adjustment	4 bit	-24~21 mV STEP 3 mV	08h 0 mV
B-Y BLACK OFFSET	B-Y color difference output black offset adjustment	4 bit	-24~21 mV STEP 3 mV	08h 0 mV
CLL LEVEL	Color limit level adjustment	2 bit	91, 100, 108, 116%	02h 108%

Note: 3N; 3.58-NTSC, 4P; 4.43-PAL, MP; M-PAL, NP; N-PAL

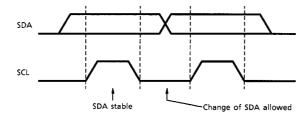
European system AUTO ; 4.43-PAL, 4.43-NTSC, 3.58-NTSC, SECAM

S.American system AUTO; 3.58-NTSC, M-PAL, N-PAL

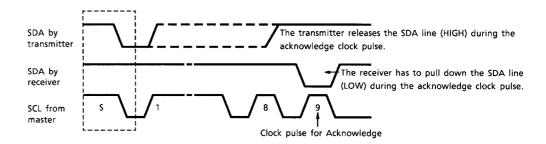
ITEM	DESCRIPTION	NUMBER OF BITS	VARIABLE RANGE	PRESET VALUE
PN CD ATT	P / N color difference amplitude adjustment	2 bit	-2~+1 dB STEP 1 dB	01h 0 dB
BPF Q	TOF Q adjustment	2 bit	1.0, 1.5, 2.0, 2.5	02h 2.0
BPF f ₀	TOF f ₀ adjustment	2 bit	kHz ; 0, 500, 600, 700	02h 600 kHz
H-STOP1	H-OUT ON / OFF SW1	1 bit	H-STOP2 = 1 and H-STOP1 = 1 → STOP	00h OUTPUT
VSM PHASE	VSM output phase	1 bit	0 ns, +20 ns	00h 0 ns
VSM GAIN	VSM output gain	2 bit	0 dB, 0 dB, -6 dB, OFF	03h OFF
C-TRAP Q	Chroma trap Q control	2 bit	1.0, 1.5, 2.0, 2.5	02h 2.0
C-TRAP F ₀	Chroma trap f ₀ control	2 bit	kHz; -100, -50, 0, +50	02h 0 kHz
BLACK STRETCH POINT	Black expansion start point setting	3 bit	27~70% IRE × 0.4	05h 51.6% IRE
DC TRAN RATE	Direct transmission compensation degree selection	3 bit	100~130% APL	00h 100% APL
APA-CON PEAK f ₀	Sharpness peak frequency selection	2 bit	MHz ; 2.5, 3.1, 4.2, OFF	02h 4.2 MHz
ABL POINT	ABL detection voltage	3 bit	ABL point ; 5.9 V~6.5 V	00h 5.9 V
ABL GAIN	ABL sensitivity	3 bit	Brightness ; 0~-2 V	00h 0 V
			Normal + Pin control,	
HALF TONE SW	Halftone gain selection	2 bit	Forced -6 dB	00h Normal
			Normal (not pin control)	
H BLK PHASE	Horizontal blanking end position	3 bit	0~3.5 μs step 0.5 μs	00h 0 μs
V-CD	Vertical count-down mode selection	2 bit	Normal / Normal / Teletext / Fast	00h Normal
V OUTPUT PHASE	Vertical position adjustment	3 bit	0~7H STEP 1H	00h 0H
VERTICAL SIZE	Vertical amplitude adjustment	6 bit	-45~+45%	20h CENTER VALUE
SYNC / VP	SYNC OUT / VP OUTOUTPUT Select, PIN 56	1 bit	SYNC OUT / VP OUT	00h SYNC OUT
ZOOM SW	Vertical ZOOM	1 bit	Normal / ZOOM	00h Normal
HORIZONTAL SIZE	Horizontal amplitude adjustment	6 bit	1.5~6.5 V	20h CENTER VALUE
			00 ; DSYNC	
COINCIDENT MODE	Discriminator output signal	2 bit	01 ; DSYNC×AFC	02h Field sounting
COINCIDENT MODE	selection	∠ DII	10 ; Field counting	02h Field counting
			11; VP is present.	
E / W PARABOLA	Parabola amplitude adjustment	5 bit	0~2.7 V	10h CENTER VALUE
			AUTO, 50 Hz, 60 Hz,	
V FREQ	Vertical frequency	3 bit	No Use, Forced 312.5H,	00h AUTO
	,,	5 5.1	Forced 313H, Forced 262.5H, Forced 263H	


ITEM	DESCRIPTION	NUMBER OF BITS	VARIABLE RANGE	PRESET VALUE
V-LINE CORRECTION	Vertical linearity correction	4 bit	-13~+13%	08h CENTER VALUE
V S-CORRECTION	Vertical S-curve correction	4 bit	-16~+13%	08h CENTER VALUE
V 3-CONNECTION		4 DIL	10 * 13 70	OON CENTER VALUE
E / W TRAPEZIUM	Parabola symmetry correction	4 bit	-10~+10%	10h CENTER VALUE
E / W CORNER	Corner correction	4 bit	−1.5~+1.5 V	10h CENTER VALUE
MUTE MODE	OFF, RGB mute, Y mute, transverse	2 bit	OFF, RGB, Y, Transverse	01h RGB
H-CONPENSATION	Horizontal EHT correction	3 bit	0~1.0 V	00h 0 V
V-CONPENSATION	Vertical EHT correction	3 bit	0~9%	00h 0%
NOISE DET	Noise detection level selection	2 bit	0.12, 0.25, 0.39, 0.55	02h 0.39
V-BLK START PHASE	Vertical pre-position selection	6 bit	-64~-1H STEP 1H	3Fh −1H
LI OTODO	LL OUT ON / OFF OWO	4.1.9	H-STOP2 = 1 and	an output
H-STOP2	H-OUT ON / OFF SW2	1 bit	H-STOP1 = 1 → OUTPUT	00h OUTPUT
V-BLK STOP PHASE	Vertical post-position selection	7 bit	0~128H STEP 1H	OOh OH
	SECAM color and Q		Weak electric field	
S-FIELD	selection in weak electric field	1 bit	control ON / OFF	00h ON
S-CD ATT	SECAM color difference amplitude adjustment	1 bit	0 / -1 dB	00h 0 dB
DEMO F ₀	SECAM deemphasis time constant selection	1 bit	85 kHz / 100 kHz	00h 85 kHz
S GP	SECAM gate position selection	1 bit	Standard / 0.5 µs delay	00h Standard
V-ID SW	SECAM V-ID ON / OFF switch	1 bit	OFF / ON	00h OFF
S KIL	SECAM KILLER sensitivity selection	1 bit	NORMAL / LOW (-3 dB)	00h NORMAL
BELL F ₀	Bell f ₀ adjustment	2 bit	-46~92 kHz STEP 46 kHz	01h 0 kHz

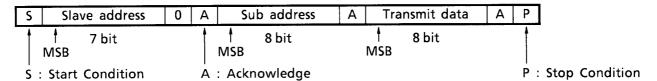
READ-IN FUNCTION


ITEM	DESCRIPTION	NUMBER OF BITS	
PONRES	0 : POR cancel, 1 : POR ON	1 bit	
COLOR SYSTEM	00 : B / W, 01 : PAL	2 bit	
COLOR STSTEM	10 : NTSC, 11 : SECAM	2 DIL	
	00 : 4.433619 MHz		
X'tal	01 : 3.579545 MHz	2 bit	
A lai	10 : 3.575611 MHz (M-PAL)	2 DIT	
	11 : 3.582056 MHz (N-PAL)		
V-FREQ	0 : 50 Hz, 1 : 60 Hz	1 bit	
V-STD	0 : NON-STD, 1 : STD	1 bit	
N-DET	0 : Low, 1 : High	1 bit	
LOCK	0 : UN-LOCK, 1 : LOCK	1 bit	
RGBOUT, Y ₁ -IN, UV-IN,	Self-diagnosis	1 bit each	
Y ₂ -IN, H, V	0 : NG, 1 : OK	i bil eacii	
V-GUARD	Detection of breaking neck	1 bit	
V-GUARD	0 : Abnormal, 1 : Normal	i Dit	

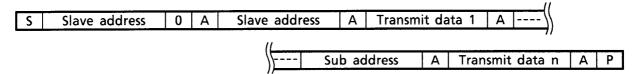
DATA TRANSFER FORMAT VIA I²C BUS


Start and stop condition

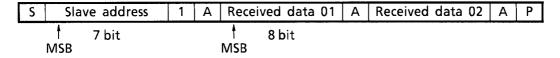
Bit transfer



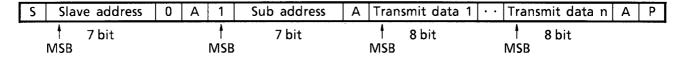
Acknowledge



TB1245N


Data transmit format 1

Data transmit format 2


Data receive format

At the moment of the first acknowledge, the master transmitter becomes a master receiver and the slave receiver becomes a slave transmitter. This acknowledge is still generated by the slave.

The STOP condition is generated by the master.

Optional data transmit format : Automatic increment mode

In this transmission method, data is set on automatically incremented sub-address from the specified sub-address.

Purchase of TOSHIBA I^2C components conveys a license under the Philips I^2C Patent Rights to use these components in an I^2C system, provided that the system conforms to the I^2C Standard Specification as defined by Philips.

DEFLECTION CORRECTION TABLE

FUNCTION	OUTPUT WAVEFORM	PICTURE CHANGE	VARIABLE RANGE
Vertical Amplitude Adjustment [VERTICAL SIZE]		Typ. Large value (Solid line at left) (Dotted line at left)	− 45~+45%
Vertical Linearity Correction [V-LINEARITY]		(Solid line at left) Lower stretching, upper compression	−13 ~+13%
Vertical S Correction [V-S CORRECTION]		(Solid line at left) Upper and lower compression	−16~+16%
Vertical EHT Correction [V-COMPENSATION]	7	Typ. Large value (Solid line at left) (Dotted line at left)	0~9%
Parabola Amplitude Adjustment [EW PARABOLA]		Typ. Small value (Solid line at left) (Dotted line at left)	0~2.7 V
Corner Correction [EW CORNER]		Typ. Large value (Solid line at left) (Dotted line at left)	−1.5~+1.5 V

FUNCTION	OUTPUT WAVEFORM	PICTURE CHANGE	VARIABLE RANGE
Horizontal EHT Correction [H-COMPENSATION]	√	Typ. Large value (Solid line at left) (Dotted line at left)	0~+1.0 V%
Horizontal Amplitude Adjustment [HORIZONTAL SIZE]		Typ. Large value (Solid line at left) (Dotted line at left)	1.5~6.5 V
Parabola Symmetry Correction [EW TRAPEZIUM]		Typ. Small value (Solid line at left) (Dotted line at left)	−10~+10%

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	V _{CCMAX}	12	V
Permissible Loss	P _{DMAX}	2190 (Note 1)	mW
Power Consumption Declining Degree	1 / Q _{ja}	17.52	mW / °C
Input Terminal Voltage	V _{in}	GND - 0.3~V _{CC} + 0.3	V
Input Signal Voltage	e _{in}	7	V _{p-p}
Operating Temperature	T _{opr}	-20~65	°C
Conserving Temperature	T _{stg}	-55~150	°C

Note 1: In the condition that IC is actually mounted. See the diagram below.

Note 2: This IC is not proof enough against a strong E-M field by CRT which may cause function errors and / or poor characteristics.

Keeping the distance from CRT to the IC longer than 20 cm, or if cannot, placing shield metal over the IC, is recommended in an application.

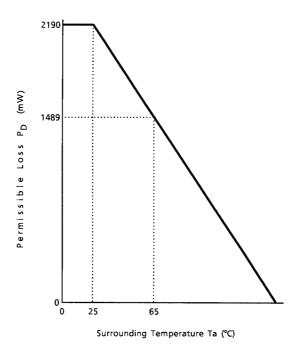


Fig. Power consumption declining curve relative to temperature change

RECOMMENDED OPERATING CONDITION

CHARACTERISTIC	DESCRIPTION		TYP.	MAX	UNIT
Supply Voltage	Pin 3, pin 17	8.50	9.0	9.50	V
Supply Voltage	Pin 8, pin 38, pin 41	4.75	5.0	5.25	v
Video Input Level		0.9	1.0	1.1	
Chroma Input Level	100% white, negative sync	0.9	1.0	1.1	V _{p-p}
Sync Input Level		0.9	1.0	2.2	
FBP Width	_	11	12	13	μs
Incoming FBP Current (Note)	_	_	_	1.5	mA
H. Output Current	_	_	1.0	2.0	IIIA
RGB Output Current	_	_	1.0	2.0	
Analog RGB Input Level	_	_	0.7	8.0	V
OSD RGB Input Level	In TEXT input	0.7	1.0	1.3	V
	In OSD input	_	4.2	5.0	
Incoming Current to Pin 56	Sync-out	_	0.5	1.0	mA

Note: The threshold of horizontal AFC2 detection is set $H.V_{CC}$ -2 V_f ($V_f \approx 0.75$ V). Confirming the power supply voltage, determine the high level of FBP.

ELECTRICAL CHARACTERISTIC (Unless otherwise specified, H, RGB V_{CC} = 0V, V_{DD} , Fsc V_{DD} , Y / C V_{CC} = 5V, Ta = 25±3°C) CURRENT CONSUMPTION

PIN No.	CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	MIN	TYP.	MAX	UNIT
3	H.V _{CC} (9V)	I _{CC1}	_	16.0	19.0	23.5	
8	V _{DD} (5V)	I _{CC2}	_	8.8	11.0	14.0	
17	RGB V _{CC} (9V)	I _{CC3}	_	25.0	31.5	39.0	mA
38	Fsc V _{CC} (5V)	I _{CC4}	_	1.0	1.5	2.0	
41	Y / C V _{CC} (9V)	I _{CC5}	_	70	90	120	

TERMINAL VOLTAGE

PIN No.	PIN NAME	SYMBOL	TEST CIR- CUIT	MIN	TYP.	MAX	UNIT
16	ABCL	V ₁₆	_	5.9	6.4	6.9	V
18	OSD R Input	V ₁₈	_	_	0	0.3	V
19	OSD G Input	V ₁₉	_	_	0	0.3	V
20	OSD B Input	V ₂₀	_	_	0	0.3	V
21	Digital Y _s	V ₂₁	_	_	0	0.3	V
22	Analog Y _s	V ₂₂	_	_	0	0.3	V
23	Analog R Input	V ₂₃	_	4.2	4.6	5.0	V
24	Analog G Input	V ₂₄	_	4.2	4.6	5.0	V
25	Analog B Input	V ₂₅	_	4.2	4.6	5.0	٧
28	ETH Input	V ₂₈	_	_	_	_	V
31	Y ₂ Input	V ₃₁	_	1.7	2.0	2.3	V
33	B-Y Input	V ₃₃	_	2.2	2.5	2.8	V
34	R-Y Input	V ₃₄	_	2.2	2.5	2.8	٧
35	R-Y Output	V ₃₅	_	1.5	1.9	2.3	٧
36	B-Y Output	V ₃₆	_	1.5	1.9	2.3	V
37	Y ₁ Output	V ₃₇	_	1.9	2.3	2.7	V
40	16.2 MHz X'tal Oscillation	V ₄₀	_	3.6	4.1	4.6	V
42	Chroma Input	V ₄₂	_	2.0	2.4	2.8	V
50	V-Sepa.	V ₅₀	_	5.4	5.9	6.4	V

AC CHARACTERISTIC Video section

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
Y Input Pedestal Clamping Voltage	VYclp	_	(Note Y ₁)	2.0	2.2	2.4	V
Chroma Tran Fraguency	ftr3	_	(Note V.)	3.429	3.58	3.679	MUZ
Chroma Trap Frequency	ftr4	_	(Note Y ₂)	4.203	4.43	4.633	MHz
Chroma Trap Attenuation	Gtr3a	_	(Note V.)	20	26	50	
(3.58 MHz)	Gtr3f	_	(Note Y ₃)	20	26	52	٦D
(4.43 MHz)	Gtr4	_	(Note Y ₄)	20	26	52	dB
(SECAM)	Gtrs	_	(Note Y ₅)	18	26	52	
Yγ Correction Point	үр	_	(Note Y ₆)	90	95	99	_
Yγ Correction Curve	γс	_	(Note Y ₇)	-2.6	-2.0	-1.3	dB
APL Terminal Output Impedance	Zo44	_	(Note) Y ₈	15	20	25	kΩ
DC Transmission	Adrmax	_	(1) () ()	0.11	0.13	0.15	
Compensation Amplifier Gain	Adrcnt	_	(Note Y ₉)	0.44	0.06	0.08	
Maximum Gain of Black			(N. (N.)	4.00	4.5	4.05	times
Expansion Amplifier	Ake	_	(Note Y ₁₀)	1.20	1.5	1.65	
	VBS9MX	_		65	77.5	80	· IRE
	VBS9CT	_		55	62.5	70	
Disab Francisco Obert Deint	VBS9MN	_		48	55.5	63	
Black Expansion Start Point	VBS2MX	_	(Note Y ₁₁)	35	42.5	50	
	VBS2CT	_		25	31.5	38	
	VBS2MN	_		19	25.5	32	
Black Peak Detection Period (Horizontal)	TbpH	_	(Note Y ₁₂)	15	16	17	μs
(Vertical)	TbpV	_	,,	33	34	35	Н
	fp25	_		1.5	2.5	3.4	
Picture Quality Control Peaking Frequency	fp31	_	(Note Y ₁₃)	1.9	3.1	4.3	MHz
· caiming · requestion	fp42	_		3.0	4.2	5.4	
	GS25MX	_		12.0	14.5	17.0	
Picture Quality Control Maximum Characteristic	GS31MX	_	(Note Y ₁₄)	12.0	14.5	17.0	
	GS42MX	_		10.6	13.5	16.4	
	GS25MN	_		-22.0	-19.5	-17.0	
Picture Quality Control Minimum Characteristic	GS31MN	_	(Note Y ₁₅)	-22.0	-19.5	-17.0	
William Grididelensie	GS42MN	_		-19.5	-16.5	-13.5	dB
	GS25CT	_		6.0	8.5	11.0	
Picture Quality Control Center Characteristic	GS31CT	_	(Note Y ₁₆)	6.0	8.5	11.0	
Contai Characteristic	GS42CT	_		4.6	7.5	10.4	
Y Signal Gain	Gy	_	(Note Y ₁₇)	-1.0	0	1.6	
Y Signal Frequency Characteristic	Gfy	_	(Note Y ₁₈)	-6.5	0	1.0	
	-	1			ļ		

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	3N _{eAT}	_		30	35	90	m\/
	3N _{F1T}	_		68	85	105	mV _{p-p}
ACC Characteristic $f_0 = 3.58$	3N _{AT}	_		0.9	1.0	1.1	
ACC Characteristic $f_0 = 3.58$	3N _{eAE}	_		18	35	_	4:
	3N _{F1E}	_		71	85	102	times
	3N _{AE}	_	(Note C.)	30 38 68 88 0.9 1.1 18 38 71 88 0.9 1.1 18 38 71 88 0.9 1.1 18 38 71 88 0.9 1.1 3.43 3.5 3.93 4.0 4.03 4.1 4.13 4.2 4.28 4.4 4.78 4.9 4.88 5.0 4.98 5.1 1.64 1.7 2.07 2.2 - 3.5 - 2.3 1.64 1.7	1.0	1.1	
	4N _{eAT}	_	(Note C ₁)	18	35	_	m\/
	4N _{F1T}	_		71	85	102	mV _{p-p}
	4N _{AT}	_		0.9	1.0	1.1	
$f_0 = 4.43$	4N _{eAE}	_		18	35	_	
	4N _{F1E}	_		71	85	102	times
	4N _{AE}	_		71 88 0.9 1. 3.43 3.5 3.93 4.0 4.13 4.2 4.28 4.4 4.78 4.9 4.88 5.0	1.0	1.1	
	3Nfo ₀	_		3.43	3.579 3.73		
Band Pass Filter Characteristic	3Nfo ₅₀₀	_			4.23		
$f_0 = 3.58$	3Nfo ₆₀₀	_		4.03	4.179	4.33	
	3Nfo ₇₀₀	_	(Nata C)	4.13	4.279	4.43	
	4Nfo ₀	_	(Note C ₂)	4.28	4.433	4.58	
5 440	4Nfo ₅₀₀	_		4.78	4.933	4.58]
f _O = 4.43	4Nfo ₆₀₀	_		4.88	5.033	5.18	
	4Nfo ₇₀₀	_		4.88 5.033	5.28		
	fo ₀	_					
Band Pass Filter, −3 dB Band	fo ₅₀₀	_		4.04	4.70	4.04	
Characteristic $f_0 = 3.58$	fo ₆₀₀	_		1.64	1.79	1.94	
	fo ₇₀₀	_	(Note 0)				
	fo ₀	_	(Note C ₃)				MHz
5 - 4.40	fo ₅₀₀	_		2.07	0.00	0.07	
$f_0 = 4.43$	fo ₆₀₀	_		2.07	2.22	2.37	
	fo ₇₀₀	_					
	Q ₁	_		_	3.58	_	
Band Pass Filter, Q	Q _{1.5}	_		_	2.39	_	
Characteristic Check $f_0 = 3.58$	Q _{2.0}	_		1.64	1.79	1.94	
	Q _{2.5}	_	(Nietz O.)	_	1.43	_	
	Q ₁	_	(Note C ₄)	_	4.43	_	
£ . 4.40	Q _{1.5}	_		_	2.95	_	
$f_0 = 4.43$	Q _{2.0}	_		2.07	2.22	2.37	·
'							

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	fo ₀	_		1.45	1.60	1.75	
1 / 2 f _c Trap Characteristic f _o = 3.58	fo ₅₀₀	_		1.70	1.85	2.00	
1721c Trap Griaracteristic 1 ₀ = 3.30	fo ₆₀₀	_		1.75	1.90	2.06	
	fo ₇₀₀	_	(Note C ₅)	1.80	1.95	2.10	MHz
	fo ₀	_	(Note C5)	1.85	2.00	2.15	IVII IZ
f = 4.42	fo ₅₀₀	_		2.00	2.15	2.30	
f _o = 4.43	fo ₆₀₀	_		2.05	2.20	2.35	
	fo ₇₀₀	_		2.10	2.25	2.40	
	3ΝΔθ1	_		35.0	45.0	55.0	
Tint Control Range	3ΝΔθ2	_	(N-4- 0)	-55.0	-45.0	-35.0	
(f _o = 600 kHz)	4ΝΔθ1	_	(Note C ₆)	25.0	45.0	FF 0	0
	4ΝΔθ2	_		35.0	45.0	55.0	
Tint Control Variable Range	3ΝΔθΤ	_	(N-4- 0)	70.0	00.0	440.0	
$(f_0 = 600 \text{ kHz})$	4ΝΔθΤ	_	(Note C ₇)	70.0	90.0	110.0	
	3TθTin	_		00	40	47	L.14
	3EθTin	_		39	40	47	bit
Tint Constant Channataristic	3N∆Tin	_		73	80	87	Step
Tint Control Characteristic	4TθTin	_	(Note C ₈)	20	40	47	h:4
	4EθTin	_		39	40	47	bit
	4N∆Tin	_		73	80	87	Step
	4.433PH	_		350	500	1500	
APC Lead-In Range	4.433PL	_		-350	-500	-1500	
(Lead-In Range)	3.579PH	_		350	500	1700	
	3.579PL	_	4 1.4.0.1	-350	-500	-1700	
	4.433HH	_	(Note C ₉)	400	500	1100	Hz
44 111 5	4.433HL	_		-400	-500	-1100	
(Variable Range)	3.579HH	_		400	500	1100	
	3.579HL	_		-400	-500	-1100	
	3.58β3	_		1.50	2.2	2.90	
ADO 0 1 10 27 7	4.43β3	_	, , , , , , , , , , , , , , , , , , ,	1.70	2.4	3.10	
APC Control Sensitivity	M-PALβM	_	(Note C ₁₀)	4 = 2		0.00	_
	N-PALβN	_		1.50	2.2	2.90	

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	3N-VTK1			1.8	2.5	3.2	
	3N-VTC1	_		2.2	3.2	4.0	
	3N-VTK2	_		2.5	3.6	4.5	
	3N-VTC2	_		3.2	4.5	5.6	
CHARACTERISTIC SYMBOL CRC CUIT TEST CONDITION MIN TYP, MAX	3.2						
	CHARACTERISTIC SYMBOL CUIT CUIT 3N-VTK1 — 3N-VTK1 — 3N-VTK2 — 3N-VTK2 — 4N-VTK1 — 4N-VTK2 — 4N-VTK2 — 4P-VTK1 — 4P-VTK1 — 4P-VTK1 — 4P-VTK1 — 4P-VTK2 — 4P-VTK2 — 4P-VTK2 — 4P-VTK2 — 4P-VTC1 — 4P-VTK2 — 4P-VTC1 — 4P-VTK2 — 4P-VTC1 — 4P-VTC1 — 4P-VTC1 — 4P-VTC2 — 4P-VTC2 — 4P-VTC2 — 4P-VTC2 — 4P-VTC2 — 4P-VTC1 — 4P-VTC2 — 4P-VTC1 — 4P-VTC2 — 4P-VTC3 — 4P-VTC3 — 4P-VTC4 — 4P-VTC4 — 4P-VTC4 — 4P-VTC4 — 4P-VTC4 — 4P-VTC4 — 4P-VTC5 — 4P-VTC5 — 4P-VTC6 — 4P						
CHARACTERISTIC SYMBOL CIR CUIT TEST CONDITION MIN TYP, MAX							
	4P-VTK1	_		1.8	2.5	3.2	
Killer On sertion legent Legel	4P-VTC1	_	(Nata O)	2.2	3.2	4.0	
Killer Operation Input Level	4P-VTK2	_	(Note C ₁₁)	2.5	3.6	4.5	
	4P-VTC2	_		3.2	4.5	5.6	
	MP-VTK1	_		1.8	2.5	3.2	
	MP-VTC1	_		2.2	3.2	4.0	\ /
	MP-VTK2	_		2.5	3.6	4.5	- mV _{p-p}
	MP-VTC2	_		3.2	4.5	5.6	
	NP-VTK1	_		1.8	2.5	3.2	
	NP-VTC1	_		2.2	3.2	4.0	
	NP-VTK2	_		2.5	3.6	4.5	
	NP-VTC2	_		3.2	4.5	5.6	
	3NeB-Y	_		320	380	460	
	3NeR-Y	_		240	290	350	
Color Difference Output	4NeB-Y	_		320	380	460	
(Rainbow Color Bar)	4NeR-Y	_		240	290	350	
	4PeB-Y	_	(Note C ₁₂)	360	430	520	
	4PeR-Y	_		200	240	290	
(7F0) O. I. D. \	4Peb-y	_		540	650	780	
(75% Color Bar)	4Per-y	_		430	510	610	
	3NG _{R / B}	_		0.69	0.77	0.86	
Demodulation Relative Amplitude	4NG _{R / B}	_	(Note C ₁₃)	0.70	0.77	0.85	times
	4PG _{R / B}	_		0.49	0.56	0.64	
		_		85	93	100	
Demodulation Relative Phase	4NθR-B	_	(Note C ₁₄)	87	93	99	٥
	4PθR-B	_		85	90	95	
		_					
Demodulation Output Residual		_			_		
Carrier	4N-SCB	_	(Note C ₁₅)	0	5	15	mV _{p-p}
	4N-SCR	_					

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	3N-HCB	_					
Demodulation Output Residual Higher	3N-HCR	_	(Note C ₁₆)	0	10	30 -0.60 -1.55 1.20 2.0 3.4 200 175 160 580 3.2	m\/
Harmonic	4N-HCB	_	(Note 0 ₁₆)	U	10	30	mV _{p-p}
	4N-HCR	_					
	B-Y - 1 dB	_		-1.20	-0.9	.9 -0.60	
Color Difference Output ATT Check	B-Y - 2 dB	_	(Note C ₁₇)	-2.30	-1.7	-1.55	dB
	B-Y + 1 dB	_		0.60			
16.2 MHz Oscillation Frequency	ΔfoF	_	(Note C ₁₈)	-2.0	0	2.0	kHz
16.2 MHz Oscillation Start Voltage	VFon1	_	(Note C ₁₉)	3.0	3.2	3.4	V
f _{sc} Free-Run Frequency (3.58 M)	3fr	_		-100	50	200	
(4.43 M)	4fr	_	(Note C ₂₀)	105	25	475	Hz
(M-PAL)	Mfr	_		-125	25	1/5	
(N-PAL)	Nfr	_		-140	10	2.0 3.4 200 175 160	
f Output Amplitude	4.43e27	_	(Note Carl)	420	500	590	m\/
f _{SC} Output Amplitude	3.58e27	_	(Note C ₂₁)	420	500	580	mV _{p-p}
f Output DC Valtage	3.58eV27	_		2.6	2.9	3.2	V
f _{sc} Output DC Voltage	0th V27	_	_	1.6	-0.9 -0.9 -0.9 -0.8 1 0 2 3.2 3 50 2 50 1 500 50	2.2	V

DEF section

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
H. Reference Frequency	FHVCO	_	(Note DH1)	5.95	6.0	6.10	MHz
H. Reference Oscillation Start Voltage	VSHVCO	_	(Note DH2)	2.3	2.6	2.9	V
H. Output Frequency 1	fH1	_	(Note DH3)	15.5	15.625	15.72	141.1=
H. Output Frequency 2	fH2	_	(Note DH4)	15.62	15.734	15.84	kHz
H. Output Duty 1	Нф1	_	(Note DH5)	39	41	43	%
H. Output Duty 2	Нф2	_	(Note DH6)	35	37	39	%
H. Output Duty Switching Voltage 1	V ₅₋₁	_	(Note DH7)	1.2	1.5	1.8	
II. Outsut Voltage	VHH	_	(Nata DUO)	4.5	5.0	5.5	.,
H. Output Voltage	VHL	_	(Note DH8)	_	_	0.5	V
H. Output Oscillation Start Voltage	VHS	_	(Note DH9)	_	5.0		
H. FBP Phase	φFBP	_	(Note DH10)	6.2	6.9	7.6	
H. Picture Position, Maximum	HSFTmax	_	(Note DH11)	17.7	18.4	19.1	
H. Picture Position, Minimum	HSFTmin	_	(Note DH12)	12.4	13.1	13.8	μs
H. Picture Position Control Range	ΔHSFT	_	(Note DH13)	4.5	5.3	6.1	
H. Distortion Correction Control Range	ΔНСС	_	(Note DH14)	0.5	1.0	1.5	μs / V
H. BLK Phase	φBLK	_	(Note DH15)	6.2	6.9	7.6	
H. BLK Width, Minimum	BLKmin	_	(Note DH16)	9.8	10.5	11.3	
H. BLK Width, Maximum	BLKmax	_	(Note DH17)	13.2	14.0	14.7	
P / N-GP Start Phase 1	SPGP1	_	(Note DH18)	3.45	3.68	3.90	
P / N-GP Start Phase 2	SPGP2	_	(Note DH19)	3.95	4.18	4.40	
P / N-GP Gate Width 1	PGPW1	_	(Note DH20)	1.65	1.75	1.85	μs
P / N-GP Gate Width 2	PGPW2	_	(Note DH21)	1.70	1.75	1.85	
SECAM-GP Start Phase 1	SSGP1	_	(Note DH22)	5.2	5.4	5.6	
SECAM-GP Start Phase 2	SSGP2	_	(Note DH23)	5.7	6.0	6.2	
SECAM-GP Gate Width 1	SGPW1	_	(Note DH24)	1.9	2.0	2.1	
SECAM-GP Gate Width 2	SGPW2	_	(Note DH25)	1.9	2.0	2.1	
Noise Detection Level 1	NL1	_	(Note DH26)	0.09	0.12	0.15	
Noise Detection Level 2	NL2	_	(Note DH27)	0.20	0.25	0.31	V
Noise Detection Level 3	NL3		(Note DH28)	0.31	0.39	0.49	V
Noise Detection Level 4	NL4	_	(Note DH29)	0.44	0.55	0.68	

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
AFC-MASK Start Phase	φAFCf	_	(Note DV1)	2.6	3.2	3.8	
AFC-MASK Stop Phase	φAFCe	_	(Note DV2)	4.4	5.0	5.6	
VNFB phase	φVNFB	_	(Note DV3)	0.45	0.75	1.05	
V. Output Maximum Phase	Vømax	_	(Note DV4)	7.3	8.0	8.7	
V. Output Minimum Phase	Vømin	_	(Note DV5)	0.5	1.0	1.5	Н
V. Output Phase Variable Range	ΔVφ	_	(Note DV6)	6.3	7.0	7.7	"
50 System VBLK Start Phase	V50BLKf	_	(Note DV7)	0.4	0.55	0.7	
50 System VBLK Stop Phase	V50BLKe	_	(Note DV8)	20	23	26	
60 System VBLK Start Phase	V60BLKf	_	(Note DV9)	0.4	0.55	0.7	
60 System VBLK Stop Phase	V60BLKe	_	(Note DV10)	15	18	21	
Pin 56 VBLK Max Voltage	V56H	_		4.7	5.0	5.3	V
Pin 56 VBLK Min Voltage	V56L	_		0	_	0.3	V
V Lead to Dance 4	VAcaL	_	(N-4- D) (44)	_	224.5	_	
V. Lead-In Range 1	VAcaH	_	(Note DV11)	_	344.5	_	1
V.I. II D. 0	V60caL	_	(1) (D) (40)	_	224.5	_	Hz
V. Lead-In Range 2	V60caH	_	(Note DV12)	_	294.5	_	
VBLK Start Phase	SWVB	_	(Note DV13)	9	_	88	
VBLK Stop Phase	STWVB	_	(Note DV14)	10	1 —	120	H

Deflection correction stage

CHARACTERISTICS	SYMBOL	TEST CIR- CUIT	TEST CONDITIONS	MIN	TYP.	MAX	UNIT
Vertical Ramp Amplitude	V_{P49}	_	(Note G1)	1.76	1.95	2.15	V _{p-p}
Vertical Amplification	G_V		(Note G2)	20	26	32	dB
Vertical Amp Maximum Output Voltage	V _{H53}		(Note G3)	2.5	3	3.5	V
Vertical Amp Minimum Output Voltage	V _{L53}	_	(Note G4)	_	0	0.3	V
Vertical Amp Maximum Output Current	I _{MAX1}		(Note G5)	32	45	58	mA
Vertical NF Sawtooth Wave Amplitude	V _{P54}	_	(Note G6)	1.62	1.8	1.98	V _{p-p}
Vertical Amplitude Range	V_{PH}	_	(Note G7)	±41	±45	±49	%
Vertical Linearity Correction Maximum Value	V _ℓ		(Note G8)	±10	±13	±16	%
Vertical S Correction Maximum Value	V _S	_	(Note G9)	±11	±16	±21	%
Vertical NF Center Voltage	V _C	_	(Note G10)	4.3	4.5	4.7	V _{p-p}
Vertical Amplitude EHT Correction	V _{EHT}	_	(Note G11)	8	9	10	%
EHT Dynamic Range	V_{L}	_	(Note G12)	1.3	1.8	2.3	V
Lift Dynamic Nange	V_{H}	_	(Note O12)	5.7	6.2	6.7	V
E-W NF Maximum DC Value (Picture Width)	V _{H51}		(Note G13)	5.5	6.5	7.5	٧
E-W NF Minimum DC Value (Picture Width)	V _{L51}		(Note G14)	0.55	1.5	2.45	V
E-W NF Parabola Maximum Value (Parabola)	V_{PB}	_	(Note G15)	2.2	2.7	3.2	V _{p-p}
E-W NF Corner Correction (Corner)	V _{CR}	_	(Note G16)	2	3	4	V _{p-p}
Parabola Symmetry Correction	V_{TR}	_	(Note G17)	8	10	12	%
E-W Parabola EHT Value	V _{EH1}		(Note G18)	2	3.3	4.5	%
E-W DC EHT Value	V _{EH2}	_	(Note G19)	0.6	1	1.4	V
E-W Amp Maximum Output Current	I _{MAX2}	_	(Note G20)	0.14	0.2	0.28	mA
AGC Operating Current 1	V _{AGC0}	_	(Note G21)	160	200	240	μA
AGC Operating Current 2	V _{AGC1}		(Note G22)	480	600	720	μA
Vertical Guard Voltage	V _{VG}	_	(Note G23)	0.8	1	1.2	V
V Centering DAC Output	I ₅₄		(Note G24)	_	10	100	nA

1H DL section

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
1HDL Dynamic Range, Direct	VNBD	_	(Note H ₁)	0.8	1.2		
Tibe Byllamic Nange, Birect	VNRD	_	(Note 11)	0.0	1.2		
1HDL Dynamic Range, Delay	VPBD	_	(Note H ₂)	0.8	1.2	_	V
Tibe byfiaille Nailge, belay	VPRD	_	(Note 112)	0.0	1.2		ľ
1HDL Dynamic Range, Direct+Delay	VSBD	_	(Note H ₃)	0.9	1.2		
Tribe byfiamic Nange, bliedt belay	VSRD	_	(Note 113)	0.9	1.2		
Frequency Characteristic, Direct	GHB1	_	(Note H₄)	-3.0	-2.0	0.5	
Frequency Characteristic, Direct	GHR1	_	(Note H ₄)	-3.0	-2.0	0.5	
Frequency Characteristic, Delay	GHB2	_	(Note H ₅)	-8.2	-6.5	-4.3	
Frequency Characteristic, Delay	GHR2	_	(Note H5)	-0.2	-0.5	-4.3	
AC Coin Direct	GBY1	_	(Note III.)	2.0	0.5	- 20	٩D
AC Gain, Direct	GRY1	_	(Note H ₆)	-2.0	-0.5	2.0	dB
AC Cain Palay	GBY2	_	(Note III.)	2.4	-0.5 1.1	1 1	
AC Gain, Delay	GRY2	_	(Note H ₇)	-2.4	-0.5	1.1	
Direct Delay AC Coin Difference	GBYD	_	(Note III)	-1.0	0.0	1.0	
Direct-Delay AC Gain Difference	GRYD	_	(Note H ₈)	-1.0	0.0	1.0	
Color Difference Output DC Stanning	VBD	_	(Note H.)	-5	0.0	5	mV
Color Difference Output DC Stepping	VRD	_	(Note H ₉)	-5	0.0	5	IIIV
411 Delevi Overskih	BDt	_	(Note II)	00.7	04.0	64.4	
1H Delay Quantity	RDt	_	(Note H ₁₀)	63.7	64.0	64.4	μs
Color Difference Output	Bomin	_		22	36	55	
DC-Offset Control	Bomax	_	(NI=4= 11 -)	-55	-36	-22	
Bus-Min Data	Romin	_	(Note H ₁₁)	22	36	55	\/
Bus-Max Data	Romax	_		-55	-36	-22	mV
Color Difference Output DC-Offset	Bo1	_	(Nigto III.)	1	4		
Control / Min. Control Quantity	Ro1	_	(Note H ₁₂)	1	4	8	
NITCO Mada Cain / NITCO COM C.	GNB	_	/NI_1_ 11 N	-0.90	0	1.20	4D
NTSC Mode Gain / NTSC-COM Gain	GNR	_	(Note H ₁₃)	0.92	0	1.58	dB

Text section

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	Vcp31	_		1.7	2.0	2.3	
Y Color Difference Clamping Voltage	Vcp33 Vcp34	_	(Note T ₁)	2.2	2.5		
	Vc12mx			2.50	3.00	3 50	-
	Vc12mn		 	0.06	0.14		
	D12c80			0.83	1.24		
	Vc13mx			2.50	3.00		V
Contrast Control Characteristic	Vc13mn		(Note T ₂)	0.06	0.14	2.8 3.50 0.21 1.86 3.50 0.21 1.86 3.50 0.21 1.86 5.2 -3.0 9.0 -4.3 0.19 1.68 4.3 0.19 1.68 32 0.85 0.38 99 248 0.63 0.38	-
	D13c80	_	(2/	0.83	1.24		-
	Vc14mx	_		2.50	3.00	3.50	-
	Vc14mn	_		0.06	0.14	0.21	
	D14c80	_		0.83	1.24	2.3 2.8 3.50 0.21 1.86 3.50 0.21 1.86 3.50 0.21 1.86 5.2 -3.0 9.0 - 4.3 0.19 1.68 4.3 0.19 1.68 32 0.85 0.38 99 248 0.63 0.38	•
	Gr	_				5.2	
AC Gain	Gg	_	(Note T ₃)	2.8	4.0		times
	Gb	_					
Frequency Characteristic	Gf	_	(Note T ₄)	_	-1.0	-3.0	dB
Y Sub-Contrast Control Characteristic	ΔVscnt	_	(Note T ₅)	3.0	6.0	9.0	
Y ₂ Input Range	Vy2d	_	(Note T ₆)	0.7	_	_	
	Vn12mx	_		1.6	2.3	4.3	V
	Vn12mn	_		0.05	0.12	0.19	
	D12n80	_		0.67	1.16	1.68	
Unicolor Control Characteristic	Vn14mx	_	(Note T ₇)	1.6	2.3	4.3	
	Vn14mn	_		0.05	0.12	0.19	
	D14n80	_		0.67	1.16	1.68	
	ΔV14un	_		22	27	3.50 0.21 1.86 3.50 0.21 1.86 3.50 0.21 1.86 3.50 0.21 1.86 5.2 -3.0 9.0 - 4.3 0.19 1.68 4.3 0.19 1.68 32 0.85 0.38 99 248 0.63 0.38	dB
Relative Amplitude (NTSC)	Mnr-b	_	(Note T ₈)	0.70	0.77	0.85	times
, ,	Mng-b	_	. 07	0.30	0.34	0.38	
Relative Phase (NTSC)	θnr-b	_	(Note T ₉)	87	93	99	٥
,	θng-b	_	, 0,	235	241.5	248	
Relative Amplitude (PAL)	Mpr-b	_	(Note T ₁₀)	0.50	0.56	0.63	times
. , ,	Mpg-b	_	. 10/	0.30	0.34		
Relative Phase (PAL)	θpr-b	_	(Note T ₁₁)	86	90		۰
, ,	θpg-b	_	, 117	232	237	242	

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	Vcmx			1.19	1.41	1.68	V _{p-p}
Color Control Characteristic	e _{col}	_	(Note T ₁₂)	80	128	160	step
	Δ_{col}	_		142	192	242	siep
	e _{cr}	_					
Color Control Characteristic, Residual Color	e _{cg}	_	(Note T ₁₃)	0	12.5	25	m\/
	e _{cb}	_					mV _{p-p}
Chroma Input Range	Vcr		(Note T ₁₄)	700	_	_	
Brightness Control Characteristic	Vbrmx	_	(Note T ₁₅)	3.05	3.45	3.85	
Brightness Control Characteristic	Vbrmn	_	(11016-115)	1.05	1.35	1.65	V
Brightness Center Voltage	Vbcnt	_	(Note T ₁₆)	2.05	2.30	2.55	
Brightness Data Sensitivity	ΔVbrt	_	(Note T ₁₇)	6.3	7.8	9.4	mV
RGB Output Voltage Axes Difference	ΔVbct	_	(Note T ₁₈)	-150	0	150	IIIV
White Peak Limit Level	Vwpl	_	(Note T ₁₉)	2.63	3.25	3.75	
Cutoff Control Characteristic	Vcomx	_	(Note T)	2.55	2.75	2.95	V
Cutoff Control Characteristic	Vcomn	_	(Note T ₂₀)	1.55	1.75	1.95	V
Cutoff Center Level	Vcoct	_	(Note T ₂₁)	2.05	2.3	2.55	
Cutoff Variable Range	ΔDcut	_	(Note T ₂₂)	2.3	3.9	5.5	mV
,	DR+	_	(Note T)	2.7	3.85	5.0	dB
Drive Variable Range	DR-	_	(Note T ₂₃)	-6.5	-5.6	-4.7	ив
DC Regeneration	TDC	_	(Note T ₂₄)	0	50	100	mV
RGB Output S / N Ratio	SNo	_	(Note T ₂₅)	_	-50	-45	dB
Planking Pulse Output Level	Vv	_	(Note T)	0.7	1.0	1.2	V
Blanking Pulse Output Level	Vh	_	(Note T ₂₆)	0.7	1.0	1.3	V
Planting Dules Delay Time	t _{don}	_	(Note T.)	0.05	0.25	0.45	
Blanking Pulse Delay Time	t _{doff}	_	(Note T ₂₇)	0.05	0.35	0.85	μs
RGB Min. Output Level	Vmn	_	(Note T ₂₈)	0.8	1.0	1.2	
RGB Max. Output Level	Vmx	_	(Note T ₂₉)	6.85	7.15	7.45	V
Halftone Ys Level	Vthtl	_	(Note T ₃₀)	0.7	0.9	1.1	
Halftone Gain	G6htl3	_	(Note T ₃₁)	- 7.5	-6.0	-4.5	dB
Text ON Ys Level	Vttxl	_	(Note T ₃₂)	1.8	2.0	2.2	
Text / OSD Output, Low Level	Vtxl13	_	(Note T ₃₃)	-0.45	-0.25	-0.05	
Text RGB Output, High Level	Vmt13	_	(Note T ₃₄)	1.15	1.4	1.85	
OSD Ys ON Level	Vtosl	_	(Note T ₃₅)	2.8	3.0	3.2	V
OSD RGB Output, High Level	Vmos13	_	(Note T ₃₆)	1.75	2.15	2.55	
Text Input Threshold Level	Vtxtg	_	(Note T ₃₇)	0.7	1.0	1.3	
OSD Input Threshold Level	Vosdg	_	(Note T ₃₈)	1.7	2.0	2.3	

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	TRosr	_					
OSD Mode Switching Rise-Up Time	T _{Rosg}	_	(Note T ₃₉)	_	40	100	ns
	T _{Rosb}	_					
	t _{PRosr}	_					
OSD Mode Switching Rise-Up Transfer Time	t _{PRosg}	_	(Note T ₄₀)	_	40	100	ns
	t _{PRosb}	_					
OSD Mode Switching Rise-Up Transfer Time, 3 Axes Difference	∆t _{PRos}	_	(Note T ₄₁)	_	15	40	ns
	T _{Fosr}	_					
OSD Mode Switching Breaking Time	T _{Fosg}	_	(Note T ₄₂)	_	30	100	ns
	T _{Fosb}	_				100	
	t _{PFosr}	_					
OSD Mode Switching Breaking Transfer Time	t _{PFosg}	_	(Note T ₄₃)	_	30	100	ns
	t _{PFosb}	_				. 30	
OSD Mode Switching Breaking Transfer Time, 3 Axes Difference	Δt_{FRos}	_	(Note T ₄₄)	_	20	40	ns
	TRoshr	_					
OSD Hi DC Switching Rise-Up Time	TRoshg	_	(Note T ₄₅)	_	20	100	ns
	TRoshb	_					
	t _{PRohr}	_					
OSD Hi DC Switching Rise-Up Transfer Time	t _{PRohg}	_	(Note T ₄₆)	_	20	100	ns
	t _{PRohb}	_					
OSD Hi DC Switching Rise-Up Transfer Time, 3 Axes Difference	Δt_{PRoh}	_	(Note T ₄₇)	_	0	40	ns
	TFoshr						
OSD Hi DC Switching Breaking Time	TFoshg	_	(Note T ₄₈)	_	20	100	ns
	TFoshb	_					
	t _{PFohr}	_					
OSD Hi DC Switching Breaking Transfer Time	t _{PFohg}	_	(Note T ₄₉)	_	20	100	ns
	t _{PFohb}	_					
OSD Hi DC Switching Breaking Transfer Time, 3 Axes Difference	Δt_{PFoh}	_	(Note T ₅₀)	_	0	40	ns

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	Vc12mx	_		2.10	2.5	2.97	
	Vc12mn	_		0.05	0.12	0.19	
	D12c80	_		0.84	1.25	1.87	
	Vc13mx	_		2.10	2.5	2.97	
RGB Contrast Control Characteristic	Vc13mn	_	(Note T ₅₁)	0.05	0.12	0.19	V
	D13c80	_		0.84	1.25	1.87	
	Vc14mx	_		2.10	2.5	2.97	
	Vc14mn	_		0.05	0.12	0.19	
	D14c80	_		0.84	1.25	1.87	
Analog RGB AC Gain	Gag	_	(Note T ₅₂)	4.0	5.1	6.3	times
Analog RGB Frequency Characteristic	Gfg	_	(Note T ₅₃)	-0.5	-1.75	-3.0	dB
Analog RGB Dynamic Range	Dr24	_	(Note T ₅₄)	0.5	_	_	
RGB Brightness Control	Vbrmxg	_	(Note T)	3.05	3.25	3.45	V
Characteristic	Vbrmng	_	(Note T ₅₅)	1.05	1.25	1.45	V
RGB Brightness Center Voltage	Vbcntg	_	(Note T ₅₆)	2.05	2.25	2.45	
RGB Brightness Data Sensitivity	ΔVbrtg	_	(Note T ₅₇)	6.3	7.8	9.4	mV
Analog RGB Mode ON Voltage	Vanath		(Note T ₅₈)	0.8	1.0	1.2	٧
	T _{Ranr}						
Analog RGB Switching Rise-Up Time	TRang	_	(Note T ₅₉)	_	50	100	
	TRanb	_					
	t _{PRanr}	_					
Analog RGB Switching Rise-Up Transfer Time	t _{PRang}	_	(Note T ₆₀)	_	20	100	
	t _{PRanb}	_				2.97 0.19 1.87 2.97 0.19 1.87 6.3 -3.0 - 3.45 1.45 2.45 9.4 1.2 100 100 40 100	
Analog RGB Switching Rise-Up Transfer Time, 3 Axes Difference	Δt _{PRas}		(Note T ₆₁)	_	0	40	ne
	TFanr			-			ns
Analog RGB Switching Breaking Time	TFang		(Note T ₆₂)	_	50	100	
	TFanb					2.97 0.19 1.87 2.97 0.19 1.87 6.3 -3.0 - 3.45 1.45 2.45 9.4 1.2 100 100 40 100	
	t _{PFanr}	_					
Analog RGB Switching Breaking Transfer Time	t _{PFang}		(Note T ₆₃)	_	30	100	
	t _{PFanb}						
Analog RGB Switching Breaking Transfer Time, 3 Axes Difference	Δt_{PFas}	_	(Note T ₆₄)	_	0	40	

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	TRanhr	_					
Analog RGB Hi Switching Rise-Up Time	TRanhg	_	(Note T ₆₅)	_	50	100	
	TRanhb						
	t _{PRahr}	_					
Analog RGB Hi Switching Rise-Up Transfer Time	t _{PRahg}	_	(Note T ₆₆)	_	20	100	
	t _{PRahb}	_					
Analog RGB Hi Switching Rise-Up Transfer Time, 3 Axes Difference	Δt _{PRah}	_	(Note T ₆₇)	_	0	40	ns
	t _{Fanhr}	_					115
Analog RGB Hi Switching Breaking Time	t _{Fanhg}	_	(Note T ₆₈)	_	50	100	
	t _{Fanhb}	_					
	t _{PFahr}	_					
Analog RGB Hi Switching Breaking Transfer Time	t _{PFahg}	_	(Note T ₆₉)	_	20	100	
	t _{PFahb}	_					
Analog RGB Hi Switching Breaking Transfer Time, 3 Axes Difference	Δt _{PFah}	_	(Note T ₇₀)	_	0	40	
TV-Analog RGB Crosstalk	Crtvag	_	(Note T ₇₁)	-80	-50	-40	dB
Analog RGB-TV Crosstalk	Crantg	_	(Note T ₇₂)	-00	-50	-40	uБ
	Vablpl	_		5.5	5.6	5.7	
ABL Point Characteristic	Vablpc	_	(Note T ₇₃)	5.7	5.8	5.9	V
	Vablph	_		5.9	6.0	6.1	
ACL Characteristic	Vcal	_	(Note T ₇₄)	-19	-16	-13	dB
	Vabll	_		-0.3	0	0.3	
ABL Gain Characteristic	Vablc	_	(Note T ₇₅)	-1.3	-1.0	-0.7	V
	Vablh	_		-2.3	-2.0	-1.7	

SECAM section

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
Bell Monitor Output Amplitude	embo	—	(Note S ₁)	200	300	400	mV _{p-p}
Bell Filter fo	foB-C	_	(Note S ₂)	-23	0	23	FF
	foB-L	_		-69	-46	-23	kHz
Bell Filter fo Variable Range	foB-H	_	(Note S ₃)	69	92	115	
Bell Filter Q	QBEL	_	(Note S ₄)	14	16	18	_
Octor Difference Octor t American	VBS	_	(N-4- 0)	0.50	_	0.91	.,
Color Difference Output Amplitude	VRS	_	(Note S ₅)	0.39	_	0.73	V _{p-p}
Color Difference Relative Amplitude	R/B-S	_	(Note S ₆)	0.70	_	0.90	_
Color Difference Attornation Quantity	SATTB	_	(Note C.)	4.50		0.50	
Color Difference Attenuation Quantity	SATTR	_	(Note S ₇)	-1.50	_	-0.50	-ID
Color Difference S / N Ratio	SNB-S	_	(Note C.)	-85		-25	dB
Color Difference 57 N Ratio	SBR-S	_	(Note S ₈)	-00	_	-25	
Linogrity	LinB	_	(Note C.)	75	_	117	. %
Linearity	LinR	_	(Note S ₉)	85	_	120	70
Rising-Fall Time	trfB	_	(Note C)		1.2	1.5	
(Standard De-Emphasis)	trfR	_	(Note S ₁₀)		1.3	1.5	
Rising-Fall Time	trfBw	_	(Note S)		1.1	1.3	μs
(Wide-Band De-Emphasis)	trfRw	_	(Note S ₁₁)		1.1	1.3	
Killer Operation Input Level	eSK	_	(Note C)				
(Standard Setting)	eSC	_	(Note S ₁₂)	0.5	_	,	
Killer Operation Input Level	eSFK	_	(Note S ₁₃)	0.5	1	2	m\/
(VID ON)	eSFC	_	(Note 5 ₁₃)				mV _{p-p}
Killer Operation Input Level	eSWK	_	(Note C.)	0.7	1.5	2	
(Low Sensitivity, VID OFF)	eSWC	_	(Note S ₁₄)	0.7	1.5	3	

TEST CONDITION VIDEO SECTION

					TEST	COND	ITION	(Unles	s othe	rwise s	pecifie	ed : H,	RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM			W MOD	E		SI	JB-AD	DRES	S & BL	JS DA	TA	MEASURING METHOD
		S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	04H	08H	0FH	10H	13H	14H	WE/TOOKING WE THOS
	Y Input Pedestal												(1) Short circuit pin 45 (Y ₁ IN) in AC coupling.
Y ₁	Clamping Voltage	Α	С	В	Α	Α	20H	04H	80H	00H	3AH	03H	(2) Input synchronizing signal to pin 48 (SYNC IN).
													(3) Measure DC voltage at pin 45, and express the measurement result as VYclp.
													(1) Set the 358 TRAP mode to AUTO by setting the bus data.
													(2) Set the bus data so that chroma trap is ON and f_0 is 0.
	Chroma Trap												(3) Input TG7 sine wave signal whose frequency is 3.58 MHz (NTSC) and video amplitude is 0.5 V to pin 45 (Y ₁ IN).
Y ₂	Frequency	1	1	Α	В	1	1	↑	1	1	1	↑	(4) While observing waveform at pin 37 (Y _{1out}), find a frequency with minimum amplitude of the waveform. The obtained frequency shall be expressed as flr3.
													(5) Change the frequency of the signal 1 to 4.43 MHz (PAL) and perform the same measurement as the preceding step4. The obtained frequency shall be expressed as flr4.
													(1) Set the bus data so that Q of chroma trap is 1.5.
													(2) Set the bus data so that f ₀ of chroma trap is 0.
													(3) Input TG7 sine wave signal whose frequency is 3.58 MHz (NTSC) and video amplitude is 0.5 V to pin 45 (Y ₁ IN).
Y ₃	Chroma Trap Attenuation	1	1	1	1	↑	1	↑	Vari- able	↑	Vari- able	↑	(4) While turning on and off the chroma trap by controlling the bus, measure chroma amplitude (VTon) at pin 37 (Y _{1out}) with the chroma trap being turned on and measure chroma amplitude (VToff) at pin 37 (Y _{1out}) with the chroma trap being turned off.
	(3.58 MHz)												Gtr = 20log (VToff / VTon)
													(5) Change f_0 of the chroma trap to -100 kHz, -50 kHz, 0 and $+50$ kHz, and perform the same measurement as the preceding steps 4 and 5 with the respective f_0 settings.
													(6) Change Q of the chroma trap to 1, 1.5, 2 and 2.5, and perform the same measurement as the preceding steps 4 through 6. The maximum Gtr shall be expressed as Gtr3a.

						COND							RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S ₃₉	S ₄₂	W MOD)E S ₄₅	S ₅₁			DRES:				MEASURING METHOD
Y ₄	Chroma Trap Attenuation (4.43 MHz)	A	C	Α	В	A		04H	Vari- able		ЗАН		 Set the S-D-Trap is ON. Set the bus data so that Q of chroma trap is 1.5. Set the bus data so that f₀ of chroma trap is 0. Input TG7 sine wave signal whose frequency is 4.43 MHz and video amplitude is 0.5 V to pin 45 (Y₁ IN). Perform the same measurement as the steps 4 through 6 of the preceding item Y₃. The measurement result shall be expressed as Gtr4.
Y ₅	Chroma Trap Attenuation (SECAM)	1	1	↑	↑	↑	1	1	1	1	1	1	 Set the Dtrap is ON. Set the bus data so that Q of chroma trap is 1.5. Set the bus data so that f₀ of chroma trap is 0. Input SECAM signal whose amplitude in video period is 0.5 V to pin 45 (Y₁ IN). Perform the same measurement as the steps 5 through 7 of the preceding item Y₃ to find the maximum attenuation (Gtrs).
Y ₆	Υγ Correction Point	1	1	1	1	1	1	Vari- able	80H	1	ЗАН	1	 (1) Connect the power supply to pin 45 (Y₁ IN). (2) Turn off Y_Y by setting the bus data. (3) While raising the supply voltage from the level measured in the preceding item Y₁, measure voltage change characteristic of Y₁ output at pin 37. (4) Set the bus data to turn on YY (5) Perform the same measurement as the above step 3. (6) Find a gamma (Y) point from the measurement results of the steps3 and 5. YP = Vr ÷ 0.7 V
Y ₇	Yγ Correction Curve	1	1	1	1	1	1	1	1	1	1	1	From the measurement in the above item Y_6 , find gain of the portion that the γ correction has an effect on.

NOTE	ITEM		0	M/ MOD		COND							RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S ₃₉	S ₄₂	W MOD S ₄₄) <u>E</u> S ₄₅	S ₅₁			DRES 0FH				MEASURING METHOD
Y ₈	APL Terminal Output Impedance	A	С	В	А	A	20H	04H	80H	00Н	зан	03H	 Short circuit pin 45 (Y₁ IN) in AC coupling. Input synchronizing signal to pin 51. Connect power supply and an ammeter to the APL of pin 44 as shown in the figure, and adjust the power supply so that the ammeter reads 0 (zero). Raise the voltage at pin 44 by 0.1 V, and measure the current (lin) at that time. Zo44 (Ω) = 0.1 V÷ lin (A)
Y ₉	DC Transmission Compensation Amplifier Gain	1	1	Ť	î	1	1	1	1	1	1	Vari- able	 Set the bus data so that DC transmission factor correction gain is maximum. In the condition of the Note Y₈, observe Y_{1out} waveform at pin 37 and measure voltage change in the video period. Set the bus data so that DC transmission factor correction gain is centered, and measure voltage in the same manner as the above step 2 Pin 19 waveform
Y ₁₀	Maximum Gain of Black Expansion Amplifier	1	1	А	В	1	1	1	00Н	1	Î	ЕЗН	 Set the bus data so that black expansion is on and black expansion point is maximum. Input TG7 sine wave signal whose frequency is 500 kHz and video amplitude is 0.1 V to pin 45 (Y₁ IN). While impressing 1.0 V to pin 39 (Black Peak Hold), measure amplitude (Va) of Y_{1out} signal at pin 37. While impressing 3.5 V to pin 39 (Black Peak Hold), measure amplitude (Vb) of Y_{1out} signal at pin 37. Akc = Va ÷ Vb

					TES1	COND	ITION	(Unles	s othe	rwise s	pecifie	ed : H,	RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM			W MOD		1 -				S & BL			MEASURING METHOD
		S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	04H	08H	0FH	10H	13H	14H	
Y ₁₁	Black Expansion Start Point	Α	С	Α	Α	Α	20H	04H	00Н	00Н	ЗАН	Vari- able	 Set the bus data so that black expansion is on and black expansion point is maximum. Supply 1.0 V to pin 39 (Black Peak Hold). Supply 2.9 V to the APL of pin 44. Connect the power supply to pin 45 (Y₁ IN). While raising the supply voltage from the level measured in the preceding item Y₁, measure voltage change at pin 37 (Y₁out). Set the bus data to center the black expansion point, and perform the same measurement as the above steps 2 through 4. Set the black expansion point to the minimum by setting the bus data, and perform the same measurement as the above steps 2 through 4. While supplying 2.2 V to the APL of pin 44, perform the same measurement as the
													above step 4 with the black expansion point set to maximum, center and minimum
Y ₁₂	Black Peak Detection Period (Horizontal) Black Peak Detection Period (Vertical)	В	†	†	↑	↑	1	1	↑	1	1	ЕЗН	In the condition of the Note Y ₁ , measure waveform at pin 39 (Black Peak Hold). TbpH

					TES1	COND	ITION	(Unles	s othe	rwise s	specifie	ed : H,	RGB	V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM			W MOD	E		SI	JB-AD	DRES	S & Bl	JS DA	TA		MEASURING METHOD
		S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	04H	H80	0FH	10H	13H	14H		ME 1001 (III 1110)
													(1)	Set the bus data so that picture quality control frequency is 2.5 MHz.
														Input TG7 sine wave (sweeper) signal whose video level is 0.1 V to pin 45 (Y $_1$ IN) and pin 51 (Sync. IN).
Y ₁₃	Picture Quality Control	Α	С	A	В	_	251	04H	0ЛЦ	001	211	Vari-	` '	Maximize the picture quality control data.
113	Peaking Frequency	A		A	В	A	эгп	0411	ООП	UUH	ЗАП	able		While observing Y_{1out} of pin 37, find an SG frequency as the waveform amplitude is maximum (fp25).
														Set the bus data so that picture quality control frequency is 3.1 MHz and 4.2 MHz, and perform the same measurement as the above steps 2 through 4 at the respective frequencies (fp31, fp42).
														Input TG7 sine wave (sweeper) signal whose video level is 0.1 V to pin 45 (Y_1 IN) and pin 48 (Sync. IN).
													(2)	Set the picture quality control data to maximum.
													(3)	Set the picture quality control frequency is 2.5 MHz by setting the bus data.
													(4)	Measure amplitude (V100k) of the output of pin 37 (Y $_1$ OUT) as the SG frequency is 100 kHz, and the amplitude (Vp25) of the same as the SG frequency is 2.5 MHz.
	Picture Quality Control													GS25MX = 20 log (Vp25 / V100k)
Y ₁₄	Maximum	↑	1	1	↑	1	1	1	↑	1	1	↑	(5)	Set the picture quality control frequency data to 3.1 MHz by setting the bus data.
	Characteristic												(6)	Measure amplitude (V100k) of the output of pin 37 (Y $_1$ OUT) as the SG frequency is 100 kHz, and the amplitude (Vp31) of the same as the SG frequency is 3.1 MHz.
														GS31MX = 20 log (Vp31 / V100k)
													(7)	Set the picture quality control frequency to 4.2 MHz by setting the bus data.
													(8)	Measure amplitude (V100k) of the output of pin 37 (Y $_1$ OUT) as the SG frequency is 100 kHz, and the amplitude (Vp42) of the same as the SG frequency is 4.2 MHz.
														GS42MX = 20 log (Vp42 / V100k)

						COND							, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM			W MOD		l c			DRES				MEASURING METHOD
		S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	U4H	USH	0FH	10H	13H	14H	(1) In the condition of the Note Y ₁₄ , set the picture quality control bus data to minimum.
Y ₁₅	Picture Quality Control Minimum Characteristic	Α	С	А	В	А	00H	04H	80H	00H	ЗАН	Vari- able	
													GS25MN = 20 log (Vp25 / V100k) GS31MN = 20 log (Vp31 / V100k) GS42MN = 20 log (Vp42 / V100k)
													(1) In the condition of the Note Y_{14} , set the picture quality control bus data to center.
Y ₁₆	Picture Quality Control Center Characteristic	↑	↑	↑	1	1	20H	↑	↑	↑	1	1	(2) Perform the same measurement as the steps 3 through 8 of the Note Y ₁₄ to find respective gains as the picture quality control frequency is set to 2.5 MHz, 3.1 MHz and 4.2 MHz.
	Control Characteriotic												GS25CT = 20 log (Vp25 / V100k) GS31CT = 20 log (Vp31 / V100k) GS42CT = 20 log (Vp42 / V100k)
													(1) Set the bus data so that black expansion is off, picture quality control is off and DC transmission compensation is minimum.
Y ₁₇	Y Signal Gain	↑	↑	↑	1	1	↑	1	1	1	1	03H	(2) Input TG7 sine wave signal whose frequency is 100 kHz and video level is 0.5 V to pin 45 (Y ₁ IN) and pin 48 (Sync. IN). (Vyi100)
													(3) Measure amplitude of Y ₁ output at pin 37 (Vyout).
													Gy = 20 log (Vyout / Vyi100)
													(1) Set the bus data so that black expansion is off, picture quality control is off and DC transmission compensation is minimum.
	V.O. 15												(2) Input TG7 sine wave signal whose frequency is 6 MHz and video level is 0.5 V to pin 45 (Y ₁ IN) and pin 48 (Sync. IN). (Vyi6M)
Y ₁₈	Y Signal Frequency Characteristic	↑	↑	↑	1	1	1	1	1	1	1	↑	(3) Measure amplitude of Y ₁ output at pin 37 (Vyo6M).
													Gy6M = 20 log (Vyo6M / Vyi6M)
													(4) Find Gfy from the result of the Note Y ₁₇
													Gfy = Gy6M - Gy

					TEST	COND	ITION	(Unles	s othe	rwise s	specifie	ed : H,	RGE	3 V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM		S	W MOD		SI	JB-AD	DRES:	S & Bl	JS DA	TΑ		MEASURING METHOD	
		S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	04H	08H	0FH	10H	13H	14H		WEASONING WETHOD
													(1)	Set the bus data so that black expansion is off, picture quality control is off and DC transmission compensation is minimum.
Y ₁₉	Y Signal Maximum Input Range	Α	С	Α	В	Α	20H	04H	80H	00H	ЗАН	03H	(2)	Input TG7 sine wave signal whose frequency is 100 kHz to pin 45 (Y $_{\!1}$ IN) and pin 48 (Sync. IN).
													(3)	While increasing the amplitude Vyd of the signal in the video period, measure Vyd just before the waveform of Y_1 output (pin 37) is distorted.

CHROMA SECTION

NOTE	ITEM				TI		NDITION	V (Unles	s other	wise spe	cified : H	I, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	II LIVI	S ₂₆	S ₁	S ₃₁	S ₃₃		S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	MEASURING METHOD
C ₁	ACC Characteristic	ON	Α	В	В	В	Α	Α	Α	Α	В	 Activate the test mode (S26-ON, Sub Add 02; 01h). Set as follows: band pass filter Q = 2, f₀ = 600 kHz, crystal clock = conforming to European, Asian system. Set the gate to the normal status. Input 3N rainbow color bar signal to pin 42 (Chroma IN). When input signal to pin 42 is the same in the burst and chroma levels (10 mV_{p-p}), burst amplitude of B-Y output signal from pin 36 is expressed as eAT. When the level of input signal to pin 42 is 100 mV_{p-p} or 300 mV_{p-p}, burst amplitude of the B-Y output signal is expressed as F1T or F2T. The ratio between F1T and F2T is expressed as AT.

NOTE	ITEM				TE	ST COI	VDITION	V (Unles	s otherv	vise spe	cified : I	H, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S ₂₆	S ₁	S ₃₁	S ₃₃	SW M	S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	MEASURING METHOD
C ₂	Band Pass Filter Characteristic	ON	S ₁	В В	В В	S ₃₄	S ₃₉	B	A A	A A	851 B	 (1) Activate the test mode (S26-ON, Sub Add 02; 01h). (2) Set as follows: band pass filter Q = 2, crystal clock = conforming to 3.579 / 4.43 MHz, gate = normal status. (3) Input 3N composite sine wave signal (1 V_{p-p}) to pin 42 (Chroma IN). (4) Measure frequency characteristic of B-Y output of pin 36 and measure the peak frequency, too. (5) Changing f₀ to 0, 500, 600 and 700 by the bus control and measure peak frequencies respectively with different f₀. (6) For measuring frequency characteristic as f₀ is 4.43, use 4.43 MHz crystal clock. Measure the following items in the same manner. f₀ = 3.58 Peak of frequency Peak of frequency Peak of frequency Pin 36 Peak of frequency Pin 42 sine wave signal

NOTE	ITEM 4				TE			V (Unles	s otherv	vise spe	cified : F	, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S ₂₆	S ₁	S ₃₁	S ₃₃	SW N	S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	MEASURING METHOD
												(1) Activate the test mode (S26-ON, Sub Add 02; 01h).
												(2) Set as follows: band pass filter Q = 2, crystal clock = conforming to 3.579 / 4.43 MHz.
												(3) Set the gate to the normal status.
												(4) Input 3N composite sine wave signal (1 V _{p-p}) to pin 42 (Chroma IN).
	Band Pass Filter,	ON			_						_	(5) Measure frequency characteristic of B-Y output of pin 36, and measure peak frequency in the −3 dB band.
C ₃	−3 dB Band Characteristic	ON	A	В	В	В	Α	В	A	A	В	(6) Changing f ₀ to 0, 500, 600 and 700 by the bus control and measure peak frequencies in the −3 dB band respectively with different f ₀ .
												$f_{O} = 3.58$ $f_{O} = 4.43$
												Pin 36 Pin 36
												Pin 42 sine wave signal Pin 42 sine wave signal
												(1) Activate the test mode (S26-ON, Sub Add 02; 01h).
												(2) Set as follows: TV mode (f ₀ = 600), Crystal mode = conforming to 3.579 / 4.43 MHz, gate = normal status.
												(3) Input 3N composite sine wave signal (1 V _{p-p}) to pin 42 (Chroma IN).
	Band Pass Filter,											(4) Measure frequency characteristic of B-Y output of pin 36, and measure peak frequency in the −3 dB band.
C ₄	Q Characteristic Check	1	↑	1	1	1	1	1	1	1	1	(5) Changing f ₀ of the band pass filter to 0, 500, 600 and 700 by the bus control and measure peak frequencies in the −3 dB band respectively with different f ₀ .
												$f_{O} = 3.58$ $f_{O} = 4.43$
												Pin 36 3 dB Pin 36 3 dB
												Pin 42 sine wave signal Pin 42 sine wave signal

					TE			V (Unles	s otherv	vise spe	cified : I	H, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM			1 -	T =		10DE	_	_			MEASURING METHOD
		S ₂₆	S ₁	S ₃₁	S ₃₃	S ₃₄	S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	
												(1) Activate the test mode (S26-ON, Sub Add 02; 01h).
												(2) Set as follows: band pass filter Q = 2, crystal clock = conforming to 3.579 / 4.43 MHz, gate = normal status.
												(3) Input 3N composite sine wave signal (1 V _{p-p}) to pin 42 (Chroma IN).
												(4) Measure frequency characteristic of B-Y output of pin 36, and measure bottom frequency.
C ₅	1 / 2 f _o Trap Characteristic	ON	Α	В	В	В	Α	В	Α	Α	В	(5) Changing f ₀ to 0, 500, 600 and 700 by the bus control and measure bottom frequencies respectively with different f ₀ .
												$f_0 = 3.58$ $f_0 = 4.43$
												Pin 36 Bottom Pin 42 sine freq. wave signal Pin 36 Bottom Pin 42 sine freq. wave signal

					TE	EST CO	NDITION	V (Unles	s otherv	vise spe	cified : F	H, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S ₂₆	S ₁	S ₃₁	S ₃₃	SW N	ODE S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	MEASURING METHOD
											<u> </u>	(1) Activate the test mode (S26-ON, Sub Add 02; 08h).
												(2) Connect band pass filter (Q = 2), set crystal mode to conform to European, Asian system and set the gate to normal status.
												(3) Input 3N rainbow color bar signal (100 mVp-p) to pin 42 (Chroma IN).
C ₆	Tint Control Sharing Range	ON	Α	В	В	В	Α	Α	Α	Α	В	(4) Measure phase shift of B-Y color difference output of pin 36.
Ü	(f _o = 600 kHz)											(5) While shifting color phase (tint) from minimum to maximum by the bus control, measure phase change of B-Y color difference output of pin 36. On the condition that 6 bars in the center have the peak level (regarded as center of color phase), the side of 5 bars is regarded as positive direction while the side of 7 bars is regarded as negative direction when the 5 bars or the 7 bars are in the peak level. Based on this assumption, open angle toward the positive direction is expressed as Δθ ₁ and that toward the negative direction is
C ₇	Tint Control Variable Range (f ₀ = 600 kHz)	↑	↑	↑	†	†	1	†	↑	†	1	expressed as $\Delta\theta_2$ as viewed from the phase center. $\Delta\theta_1$ and $\Delta\theta_2$ show the tint control sharing range. (6) Variable range is expressed by sum of $\Delta\theta_1$ sharing range and $\Delta\theta_2$ sharing range. $\Delta\theta_T = \Delta\theta_1 + \Delta\theta_2$ (7) While shifting color phase from minimum to maximum with the bus control, measure phase shift of B-Y color difference output of pin 36. When center 6 bars have peak level, value of color phase bus step is expressed as θ_{Tin} .
C ₈	Tint Control Characteristic	1	1	î	î	1	1	1	1	1	1	 (8) While shifting color phase from minimum to maximum with the bus control, measure values of color phase bus step corresponding to 10% and 90% of absolutely variable phase shift of B-Y color difference output of pin 36. The range of color phase shifted by the bus control is expressed as While shifting color phase from minimum to maximum with the bus control, measure phase shift of B-Y color difference output of pin 36. When center 6 bars have peak level, value of color phase bus step is expressed as Δ_{Tin} (conforming to TV mode, f₀ = 600 kHz). (9) Input 4N rainbow color bar signal to pin 42 (Chroma IN), and perform the same measurement as the 3N signal.

MOTE					TE			N (Unles	s otherv	vise spe	cified : F	H, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S ₂₆	S ₁	S ₃₁	S ₃₃	SW N	S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	MEASURING METHOD
			·			Ĭ.	Ť				* ·	(1) Connect band pass filter (Q = 2), set to TV mode (f _o = 600 kHz) with X'tal clock conforming to European, Asian system.
												(2) Set the gate to normal status.
												(3) Input 3N CW signal of 100 mV _{p-p} to pin 42 of the chroma input terminal.
												(4) While changing frequency of the CW (continuous waveform) signal, measure its frequency when B-Y color difference signal of pin 36 is colored.
												(5) Input 4N CW (continuous waveform) 100 mV _{p-p} signal to pin 42 (Chroma IN).
C ₉	APC Lead-In Range	OFF ↓	Α	В	В	В	Α	A ↓	А	А	В	(6) While changing frequency of the CW signal, measure frequencies when B-Y color difference output of pin 36 is colored and discolored. Find difference between the measured frequency and f _c (4.433619 MHz) and express the differences as fPH and fPL, which show the APC lead-in range.
		ON						С				(7) Variable frequency of VCXO is used to cope with lead-in of 3.582 MHz / 3.575 MHz PAL system.
												(8) Activate the test mode (S26-ON, Sub Add 02; 02h).
												(9) Input nothing to pin 42 (Chroma IN).
												(10) While varying voltage of pin 30 (APC Filter), measure variable frequency of VCXO at pin 35 (R-Y OUT) while observing color and discoloring of R-Y color difference signal. Express difference between the high frequency (fH) and f ₀ center as 3.582HH, and difference between the low frequency (fL) and f ₀ center as 3.582HL. Perform the same measurement for the NP system (3.575 MHz PAL).
												(1) Activate the test mode (S26-ON, Sub Add 02; 02h).
												(2) Connect band pass filter as same as the Note C ₉ .
												(3) Change the X'tal mode properly to the system.
C ₁₀	APC Control Sensitivity	ON	↑	↑	1	↑	↑	С	1	1	↑	(4) Input nothing to pin 42 (Chroma IN).
	Sensitivity											(5) When V ₃₀ 's APC voltage ±50 mV is impressed to pin 30 (APC Filter) while its voltage is being varied, measure frequency change of pin 35 output signal as frH or frL and calculate sensitivity according to the following equation.
												b = (frH - frL) / 100

NOTE	ITEM				TE			V (Unles	s otherv	vise spe	cified : I	l, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S ₂₆	S ₁	S ₃₁	S ₃₃	_	NODE S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	MEASURING METHOD
				•								(1) Connect band pass filter (Q = 2) and set to TV mode (f ₀ = 600 kHz).
												(2) Set the crystal mode to conform to European, Asian system and set the gate to normal status.
												(3) Input 3N color signal having 200 mV _{p-p} burst to pin 42 (Chroma IN).
												(4) While attenuating chroma input signal, measure input burst amplitudes of the signal when B-Y color difference output of pin 36 is discolored and when the same signal is colored. Measured input burst amplitudes shall be expressed as 3N-VTK1 and 3N-VTC1 respectively (killer operation input level).
												(5) Killer operation input level in the condition that P / N killer sensitivity is set to LOW with the bus control is expressed as 3N-VTK2 or 3N-VTC2.
	Killer Operation											(6) Perform the same measurement as the above step 4 with different inputs of 4N, 4P, MP, NP color signals having 200 mV $_{p-p}$ burst to pin 42 (Chroma IN). (When measuring with MP / NP color signal, set the crystal system to conform to South American system.)
C ₁₁	Input Level	OFF	A	В	В	В	A	A	A	A	В	(7) Killer operation input level at that time is expressed as follows. Normal killer operation input level in the 4N system is expressed as 4N-VTK1, 4N-VTC1. Normal killer operation input level in the 4P system is expressed as 4P-VTK1, 4P-VTC1. Killer operation input level with low killer sensitivity is expressed as 4P-VTK2, 4P-VTC2 Normal killer operation input level in the MP system is expressed as MP-VTK2, MP-VTC2. Normal killer operation input level in the NP system is expressed as NP-VTK1, NP-VTC1. Killer operation input level with low killer sensitivity is expressed as NP-VTK2, NP-VTC2. [Reference] 3N system : 3.579545 MHz NTSC 4N system : 4.433619 MH z False NTSC 4P system : 4.433619 MHz PAL

NOTE	ITEM				TE	SW N		V (Unles	s otherv	vise spe	cified : I	I, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
INOTE	I I EIVI	S ₂₆	S ₁	S ₃₁	S ₃₃		S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	MEASURING METHOD
												(1) Activate the test mode (S26-ON, Sub Add 02; 08h).
												(2) Connect band pass filter (Q = 2), set to TV mode (f_0 = 600 kHz) with 0dB attenuation.
												(3) Set the crystal mode to conform to European, Asian system and set the gate to normal status.
C ₁₂	Color Difference	ON	A	В	В	В	Α	Α	A	A	В	(4) Input 3N, 4N and 4P rainbow color bar signals having 100 mV _{p-p} burst to pin 42 of the chroma input terminal one after another.
012	Output						Λ	,			5	(5) Measure amplitudes of color difference signals of pin 36 (B-Y) and pin 35 (R-Y) respectively, and express them as 3NeB-Y / R-Y, 4NeB-Y / R-Y and 4PeB-Y / R-Y respectively.
												(6) While inputting 4P 75% color bar signal (100 mV _{p-p} burst) to pin 42 of the chroma input terminal, measure amplitudes of color difference signals of pin 36 (B-Y OUT) and pin 35 (R-Y OUT) respectively. (Ratio of those amplitudes is expressed as 4Peb-y / r-y for checking color level of SECAM system.)
												(1) Activate the test mode (S26-ON, Sub Add 02; 08h).
												(2) Connect band pass filter (Q = 2), set to TV mode (f_0 = 600 kHz) with 0dB attenuation.
												(3) Set the crystal mode to conform to European, Asian system and set the gate to normal status.
C ₁₃	Demodulation Relative Amplitude	1	1	1	1	1	1	1	1	1	1	(4) Input 3N, 4N and 4P rainbow color bar signals having 100 mV _{p-p} burst to pin 42 of the chroma input terminal one after another.
												(5) Measure amplitudes of color difference signals of pin 36 (B-Y) and pin 35 (R-Y) respectively, and express ratio between the two amplitudes as 3NG R / B, 4NG R / B and 4PG R / B respectively. (Note) Relative amplitude of G-Y color difference signal shall be checked later in the Text section

NOTE	ITEM				TE	SW N		V (Unles	s other	vise spe	cified : I	I, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	TTEIVI	S ₂₆	S ₁	S ₃₁	S ₃₃	S ₃₄	S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	MEASURING METHOD
												(1) Activate the test mode (S26-ON, Sub Add 02; 08h).
												(2) Connect band pass filter (Q = 2), set to TV mode (f_0 = 600 kHz) with 0 dB attenuation.
												(3) Set the crystal mode to conform to European, Asian system and set the gate to normal status.
C ₁₄	Demodulation	ON	A	В	В	В	Α	Α	A	A	В	(4) Input 3N, 4N and 4P rainbow color bar signals having 100 mV $_{\rm p-p}$ burst to pin 42 of the chroma input terminal one after another.
014	Relative Phase						٨	^				(5) Measure phases of color difference signals of pin 36 (B-Y) and pin 35 (R-Y) respectively, and express them as $3N\theta R$ -B, $4N\theta R$ -B and $4P\theta R$ -B respectively.
												(6) For measuring with 3N and 4N color bar signals in NTSC system, set six bars of the B-Y color difference waveform to the peak level with the Tint control and measure its phase difference from phase of R-Y color difference signal of pin 35 (R-Y OUT). Note: Relative phase of G-Y color difference signal shall be checked later in the Text section
												(1) Activate the test mode (S26-ON, Sub Add 02; 08h).
												(2) Connect band pass filter (Q = 2), set to TV mode (f_0 = 600 kHz) with 0 dB attenuation.
												(3) Set the crystal mode to conform to European, Asian system.
C ₁₅	Demodulation Output Residual	1	+	1	^	^	↑	^	+	+	^	(4) Set the gate to normal status.
015	Carrier						ı			'		(5) Input 3N and 4N rainbow color bar signals having 100 mV $_{\rm p-p}$ burst to pin 42 of the chroma input terminal one after another.
												(6) Measure subcarrier leak of 3N and 4N color bar signals appearing in color difference signals of pin 36 (B-Y OUT) and pin 35 (R-Y OUT) respectively, and express those leaks as 3N-SCB / R and 4N-SCB / R.

					TE			V (Unles	s otherv	vise spe	cified : F	, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S ₂₆	S ₁	S ₃₁	S ₃₃	SW N	S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	MEASURING METHOD
		526		-31	- 33	534	039	342		045	951	(1) Activate the test mode (S26-ON, Sub Add 02; 08h).
												(2) Connect band pass filter (Q = 2), set to TV mode (f_0 = 600 kHz) with 0 dB attenuation.
	Demodulation			_	_							(3) Set the crystal mode to conform to European, Asian system and set the gate to normal status.
C ₁₆	Output Residual Higher Harmonic	ON	A	В	В	В	Α	А	A	A	В	(4) Input 3N and 4N rainbow color bar signals having 100 mV _{p-p} burst to pin 42 of the chroma input terminal one after another.
												(5) Measure higher harmonic ($2f_c = 7.16$ MHz or 8.87 MHz) of 3N and 4N color bar signals appearing in color difference signals of pin 36 (B-Y OUT) and pin 35 (R-Y OUT) respectively, and express them as 3N-HCB / R and 4N-HCB / R.
												(1) Activate the test mode (S26-ON, Sub Add 02; 08h).
												(2) Connect band pass filter (Q = 2) and set bus data for the TV mode (f ₀ = 600 kHz).
	Color Difference											(3) Set the X'tal clock mode to conform to European, Asian system and set the gate to normal status.
C ₁₇	Output ATT Check	1	1	1	1	1	1	1	1	1	1	(4) Input 3N rainbow color bar signal whose burst is 100 mV _{p-p} to pin 42 of the chroma input terminal.
												(5) Measure amplitude of color difference output signal of pin 36 (B-Y OUT) with 0 dB attenuation set by the bus control. Set the amplitude of the color difference output of pin 36 (B-Y OUT) to 0 dB, and measure amplitude of the same with different attenuation of -2 dB, -1 dB and +1 dB set by the bus control.

							TE	ST C	ONE	ITIO	N (U	nles	s oth	erwis	e sp	ecified : H, RGB V _{CC} = 9	9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S			_	ΓEST	MOI							RMA	L CC	NTROL MODE	
	112		_	02		Ь.		07H	Γ.	D-	ь.)H	Б.	ь.	OTHER CONDITION	MEASURING METHOD
		26	D5	D ₂	υ1	υ0	υ ₇	D ₄	DЗ	D5	υ4	DЗ	D2	υ1	υ0		
																	(1) Input nothing to pin 42.
C ₁₈	16.2 MHz Oscillation Frequency	ON	0	0	0	1	0	0	0	0	0	0	0	0	0	_	(2) Measure frequency of CW signal of pin 35 as fr, and find oscillation frequency by the following equation.)
																	$\Delta \text{foF} = (\text{fr} - 0.05 \text{ MHz}) \times 4$
C ₁₉	16.2 MHz Oscillation Start Voltage	ON	0	0	0	1	0	0	0	0	0	0	0	0	0	Impress pin 38 individually with separate power supply.	While raising voltage of pin 38, measure voltage when oscillation waveform appears at pin 40.
																	(1) Input nothing to pin 42.
	f _{sc} Free-Run																(2) Change setting of SUB (10H) D ₄ , D ₃ and D ₂ according to respective frequency modes, and measure frequency of CW signal of pin 35.
C ₂₀	Frequency	ON	0	0	0	1	0	0	0	0	V	ariab	ole	0	0	_	Detail of D ₄ , D ₃ and D ₂
																	3.58M = 1 : (001), 4.43M = 2 : (010)
																	M-PAL = 6 : (110), N-PAL = 7 : (111)
												0	1				(1) Input nothing to pin 42.
C ₂₁	f _{sc} Output Amplitude	OFF	0	0	0	0	0	0	0	0	0	↓ 1	0	0	0	_	(2) Change setting of SUB (10H) D ₄ , D ₃ and D ₂ according to respective frequency modes. Measure the amplitude of output signal of pin 27.

DEF SECTION

NOTE	ITEM		SUE	B-ADD	DRESS						TEST CONDITION ed: H, RGB V _{CC} =9V; V _{DD} , Fsc V _{DD} , Y / C V _{CC} =5V; Ta=25±3°C; BUS=preset value; pin 48 input video signal=50 system "×" in the data column represents preset value at power ON. MEASURING METHOD
DH1	H. Reference Frequency	Sub 02H	0	0	0	0	0	0	0	1	 (1) Supply 5 V to pin 26. (2) Set bus data as indicated on the left. (3) Measure the frequency of sync. output of pin 49.
DH2	H. Reference Oscillation Start Voltage	Sub 02H	0	0	0	0	0	0	0	1	In the test condition of the Note DH1, turning down the voltage supplied to pin 26 from 5 V, measure the voltage when oscillation of pin 49 stops.
DH3	H. Output Frequency 1	Sub 10H	×	0	×	×	×	×	0	1	(1) Set bus data as indicated on the left.(2) In the condition of the above step 1, measure frequency (TH1) at pin 4.
DH4	H. Output Frequency 2	Sub 10H	×	0	×	×	×	×	1	0	 Set the input video signal of pin 51 to the 60 system. Set bus data as indicated on the left. In the above-mentioned condition, measure frequency (TH2) at pin 4.
DH5	H. Output Duty 1	_	_	_	_	_	_	_	_	_	(1) Supply 4.5 V DC to pin 5 (or, make pin 5 open-circuited).(2) Measure duty of pin 4 output.
DH6	H. Output Duty 2	_	_	_	_	_	_	_	_	_	(1) Make a short circuit between pin 5 and ground.(2) Measure duty of pin 4 output.
DH7	H. Output Duty Switching Voltage	_	_	_	_	_	_	_	_	_	Supply 2 V DC to pin 5. While turning down the voltage from 2 V, measure voltage when the output duty ratio becomes 41 to 37%.
DH8	H. Output Voltage	_	_	_	_	_	_	_	_	_	Measure the low voltage and high voltage of pin 4 output whose waveform is shown below.
DH9	H. Output Oscillation Start Voltage	_	_	_	_	_	_	_	_	_	While raising H. V _{CC} (pin 3) from 0 V, measure voltage when pin 4 starts oscillation.

NOTE	ITEM		SUE	R-ADF	DES.		nless o			pecifie	TEST CONDITION ed: H, RGB V _{CC} =9V; V _{DD} , Fsc V _{DD} , Y / C V _{CC} =5V; Ta=25±3°C; BUS=preset value; pin 48 input video signal=50 system "×" in the data column represents preset value at power ON. MEASURING METHOD
			001	-700	I		100 0	11/1			
											(1) Supply 4.5 V DC to pin 5.
											(2) Input video signal to pin 48.
											(3) Set the width of pin 6 input pulse to 8 μs.
											(4) Measure φFBP shown in the figure below (φFBP).
											(5) Adjust the phase of pin 6 input pulse so that the center of pin 4's output pulse corresponds to the trailing edge of input sync. signal.
DH10	H. FBP Phase										(6) Set bus data as indicated on the left and measure the horizontal picture position with respective bus data settings (HSFTmax, HSFTmin).
											(7) Find HP difference between the conditions mentioned in the above step 6 (ΔHSFT).
DH11	H. Picture Position,										(8) Reset bus data to the preset value.
	Maximum										(9) While impressing 5 V DC to pin 5, measure HP.
											(10) While impressing 4 V DC to pin 5, measure HP.
DH12	H. Picture Position,		0	0	0	0	0	×	×	×	(11) Find difference between the two measurement results obtained in the preceding steps 9 and 10 (ΔHCC).
	Minimum	Sub 0BH									
DH13	H. Picture position Control Range		1	1	1	1	1	×	×	×	0.1 μ F 48 + H - Video signal
DH14	H. Distortion Correction Control Range										⑤
											(48) SYNC input
											6 Input
											4 Output

NOTE	ITEM						Ur	nless (otherw		pecifi	TEST CONDITION ed: H, RGB V _{CC} =9V; V _{DD} , Fsc V _{DD} , Y / C V _{CC} =5V; Ta=25±3°C; BUS=preset value; pin 48 input video signal=50 system) "x" in the data column represents preset value at power ON.
				SUE	3-ADD	RES	S & B	US DA	ATA		(INOLE	MEASURING METHOD
DH15	H. BLK Phase	Sub	02H	0	0	0	0	0	1	0	0	(1) In the condition of the steps 1 through 4 of the Note DH10, perform the following measurement.
												(2) Supply 5 V DC to pin 26.
												(3) Set bus data as indicated on the left.
DH16	H. BLK Width,											(4) Measure phase difference between pin 48 and pin 49 as shown below.
	Minimum			0	0	0	×	×	×	×	×	(5) Change the bus data as shown on the left and measure BLK width.
DH17	H. BLK Width, Maximum	Sub	16H	1	1	1	×	×	×	×	×	(48) SYNC input
												(49) Output → BLK
DH18	P / N-GP Start											(1) Supply 5 V to pin 26.
	Phase 1											(2) Set bus data as indicated on the left.
DH19	P / N-GP Start Phase 2			×	×	×	×	0	×	×	×	(3) With the respective bus data settings mentioned above, measure the phase and gate width as shown in the figure below.
DH20	P / N-GP Gate Width 1	Sub	0FH	×	×	×	×	1	×	×	×	
DH21	P / N-GP Gate Width 2											SPGP1, 2 PGPW
DH22	SECAM-GP Start											(1) Supply 5 V to pin 26.
	Phase 1											(2) Set bus data as indicated on the left.
DH23	SECAM-GP Start Phase 2			×	×	×	0	×	×	×	×	(3) With the respective bus data settings mentioned above, measure the phase and gate width as shown in the figure below.
DH24	SECAM-GP Gate Width 1	Sub	1FH	×	×	×	1	×	×	×	×	48 ————————————————————————————————————
DH25	SECAM-GP Gate Width 2											SSGP1, 2 SGPW

NOTE	ITEM		0115								TEST CONDITION ed: H, RGB V _{CC} =9V; V _{DD} , Fsc V _{DD} , Y / C V _{CC} =5V; Ta=25±3°C; BUS=preset value; pin 48 input video signal=50 system) "×" in the data column represents preset value at power ON.
-			SUE	3-ADL	DRES:	<u> </u>	US D	AIA	ı	1	MEASURING METHOD
											(1) Input such a signal as shown by "a" of the following figure to pin 48.
											(2) Set bus data as indicated in the first line of the left table.
DH26	Noise Detection										(3) Measure NLX when amplitude of pin 47 changes. → NL1
	Level 1										(4) Set bus data as indicated in the second line of the left table.
			0	0	×	×	×	×	×	×	(5) Measure NLX when amplitude of pin 47 changes. → NL2
DH27	Noise Detection										(6) Set bus data as indicated in the third line of the left table.
	Level 2		0	1	×	×	×	×	×	×	(7) Measure NLX when amplitude of pin 47 changes. → NL3
		Sub 1DH									(8) Set bus data as indicated in the fourth line of the left table.
DH28	Noise Detection		1	0	×	×	×	×	×	×	(9) Measure NLX when amplitude of pin 47 changes. → NL4
	Level 3		1	1	×	×	×	×	×	×	Sync \
DH29	Noise Detection										/ \
	Level 4										2 MHz AFC1 filter

NOTE	ITEM								vise s _l		TEST CONDITION ed: H, RGB V _{CC} =9V; V _{DD} , Fsc V _{DD} , Y / C V _{CC} =5V; Ta=25±3°C; BUS=preset value; pin 48 input video signal=50 system e) "×" in the data column represents preset value at power ON.
			SUE	3-ADD	RES	S & Bl	JS DA	ATA			MEASURING METHOD
DV1	AFC-MASK Start Phase	Sub 02H	0	0	0	0	0	0	0	1	 Supply 5 V DC to pin 26. Set bus data as indicated on the left and activate the test mode. Measure the AFC-MASK start phase (X) and AFC-MASK stop phase (Y) of pin 56. Set the Sub 16H as indicated on the left. Measure the VNFB start phase (Z) of pin 54
	AFC-MASK Stop Phase VNFB Phase	Sub 16H	×	×	×	×	×	0	0	0	48 \$6 X Y \$4
DV5	V. Output Maximum Phase V. Output Minimum Phase V. Output Phase Variable Range	Sub 16H	×	×	×	×	×	0	0	0	 (1) Input video signal to pin 48. (2) Measure both phases (Xmax, Xmin) of pin 49 and pin 54 with the respective bus data settings shown on the left. (3) Find difference between the two phases measured in the above step 2. Y = Xmax - Xmin (49) (54) (54) (54)

NOTE	ITEM					Ur	nless	otherv	vise s			TEST CONDITION RGB V _{CC} =9V; V _{DD} , Fsc V _{DD} , Y / C V _{CC} =5V; Ta=25±3°C; BUS=preset value; pin 48 input video signal=50 system n the data column represents preset value at power ON.
			SUE	3-ADD	RES:	S & B	US D	ATA				MEASURING METHOD
	50 System VBLK Start Phase 50 System VBLK Stop Phase	Sub 1CH Sub 04H	0 ×	1 0	×	×	×	×	×	×	(2)	Input such a video signal of the 50 system as shown in the figure to pin 48. Set bus data as indicated on the left. Measure the VBLK start phase (X) and VBLK stop phase (Y) of pin 12.
	60 System VBLK Start Phase 60 System VBLK Stop Phase	Sub 1CH Sub 04H	0 ×	1 0	×	×	×	×	×	×	(2)	Input such a video signal of the 60 system as shown in the figure to pin 48. Set bus data as indicated on the left. Measure the VBLK start phase (X) and VBLK stop phase (Y) of pin 12.
DV11	V. Lead-In Range 1	Sub 16H Sub 19H	×	×	×	×	×	0	0	0	(2) (3) (4) (4) (5) (6) (6)	Set bus data as indicated on the left. Input 262.5 H video signal to pin 48. Set a certain number of field lines in which signals of pin 48 and pin 54 completely synchronize with each other as shown in the figure below. Decrease the field lines in number and measure number of lines in which pin 48 and pin 54 signals do not synchronize with each other. Again set a certain number of field lines in which pin 48 and pin 54 signals synchronize with each other. Increase the field lines in number and measure number of lines in which pin 48 and pin 54 signals do not synchronize with each other.

NOTE	ITEM	(Note							vise s		TEST CONDITION ed: H, RGB V _{CC} =9V; V _{DD} , Fsc V _{DD} , Y / C V _{CC} =5V; Ta=25±3°C; BUS=preset value; pin 48 input video signal=50 system e) "×" in the data column represents preset value at power ON.
			SUE	3-ADE	RES:	S & BI	JS D/	ATA			MEASURING METHOD
DV12	V. Lead-In Range 2	Sub 16H Sub 19H	×	×	×	× ×	×	0	0 1	0 0	 Set bus data as indicated on the left. Input 262.5 H video signal to pin 48. Set a certain number of field lines in which signals of pin 48 and pin 54 completely synchronize with each other as shown in the figure below. Decrease the field lines in number and measure number of lines in which pin 48 and pin 54 signals do not synchronize with each other. Again set a certain number of field lines in which pin 48 and pin 54 signals synchronize with each other. Increase the field lines in number and measure number of lines in which pin 48 and pin 54 signals do not synchronize with each other
DV13	VBLK Start Phase (Note) : Only the 60 system is subject to evaluation.	Sub 1DH	×	×	0	0	0	0	0	0	(1) Set bus data as specified for the Sub 1DH in the left columns, and measure the value of X shown in the figure below. W-VBLK start phase : MAX, MIN 49 12

NOTE	ITEM	(Note)									TEST CONDITION ed: H, RGB V _{CC} =9V; V _{DD} , Fsc V _{DD} , Y / C V _{CC} =5V; Ta=25±3°C; BUS=preset value; pin 48 input video signal=50 system e) "x" in the data column represents preset value at power ON.
			SUE	3-ADE	RES	S & B	US D	ATA			MEASURING METHOD
DV14	VBLK Stop Phase (Note) : Only the 60 system is subject to evaluation.	Sub 1EH	×	0 1	0 1	0	0	0	0	0	(1) Set bus data as specified for the Sub 1EH in the left columns, and measure the value of Y shown in the figure below. W-VBLK stop phase : MAX, MIN 49 12

Deflection correction stage

			TEST CONDITIONS (DEF $V_{CC} = 9 \text{ V}$, Ta = 25 ± 3°C, BUS DATA = PO	WER-ON RESET)
NOTE	ITEM	SW MODE SW ₂₈	MEASUREMENT METHOD	
G ₁	Vertical Ramp Amplitude	А	Measure the amplitude of the vertical ramp wave on #49.	VP49 #49 waveform
G ₂	Vertical Amplification	Α	Set #53 and #54 to open. Set the subaddress (17) data to (80).	V _{H53}
G ₃	Vertical Amp Maximum Output Voltage	А	Connect #54 to an external power supply. When the voltage is varied from 4.0 V to 6.0 V, measure the vertical amplification on the #53 voltage. (G _V) (V _{H53}) (V _{L53})	#53 DC $\Delta V = G_V (dB)$ $20 \times log (\Delta V #53 / I)$
G ₄	Vertical Amp Minimum Output Voltage	Α	(V _{L53}
G ₅	Vertical Amp Maximum Output Current	А	Set #53 and #54 to open. Apply 7 V to #54 from an external source. Insert an ammeter between #53 and GND, and measure the current.	\$3
G ₆	Vertical NF Sawtooth Wave Amplitude	А	Measure the amplitude of the #54 waveform (vertical sawtooth waveform).	VP54 #54 waveform
G ₇	Vertical Amplitude Range	А	When the subaddress (17) data are set to (MIN) and (MAX), measure the amplitudes of the #54 V_{P54} (FC)· $V_{PH} = \pm \frac{V_{P54}(FC) - V_{P54}(00)}{V_{P54}(FC) + V_{P54}(00)} \times 100(\%)$	waveform (vertical sawtooth waveform) $V_{P54\;(00)}$ and

			TEST CONDITIONS (DEF V _{CC} = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET)
NOTE	ITEM	SW MODE SW ₂₈	MEASUREMENT METHOD
G ₈	Vertical Linearity Correction Maximum Value	A	Set the subaddress (19) data to (F8). Change the subaddress (1B) $D_7 \sim D_4$ so that the #51 parabola waveform is symmetrical. When the subaddress (1A) data are (80), measure the #54 waveform V_1 (80) and V_2 (80). Likewise, when the subaddress (0F) data are (00) and (F0), measure V_1 (00), V_2 (00), V_1 (F0), and V_2 (F0). $V_1 = \pm \frac{V_1(00) - V_1(F0) + V_2(F0) - V_2(00)}{2 \times (V_1(80) + V_2(80))}$ #51
G ₉	Vertical S Correction Maximum Value	Α	Set the subaddress (19) data to (F8). Change the subaddress (1B) $D_7 \sim D_4$ so that the #51 parabola waveform is symmetrical. When the subaddress (1A) data are (80), measure the amplitude of the #54 waveform V_{S54} (80). Likewise, when the subaddress (19) data are (87), measure the amplitude of the #54 waveform V_{S54} (87). $V_S = \pm \frac{V_{S54}(80) - V_{S54}(87)}{V_{S54}(80) + V_{S54}(87)} \times 100 (\%)$

			TEST CONDITIONS (DEF V_{CC} = 9 V, Ta = 25 ± 3°C, BUS DATA = PC	OWER-ON RESET)
NOTE	ITEM	SW MODE SW ₂₈	MEASUREMENT METHOD	
G ₁₀	Vertical NF Center Voltage	Α	Set the subaddress data (19) to (F8). Change the subaddress (1B) $D_7 \sim D_4$ so that the #51 parabola waveform is symmetrical. Measure the center voltage V_C of the #54 waveform.	V _C #25
G ₁₁	Vertical Amplitude EHT Correction	А	Set the subaddress (19) data to (F8). Change the subaddress (1B) $D_7 \sim D_4$ so that the #51 parabola waveform is symmetrical. Set the subaddress (1C) data to (40) and measure the amplitude of the #54 waveform V_{EHT} (40). Set the subaddress (1C) data to (47) and measure the amplitude of the #54 waveform V_{EHT} (47). $V_{EHT} = \frac{V_{EHT}(40) - V_{EHT}(47)}{V_{EHT}(40)} \times 100 (\%)$	VEHT
G ₁₂	EHT Dynamic Range	А	Set the subaddress data (19) to (F8). Change the subaddress (1B) $D_7 \sim D_4$ so that the #51 parabola waveform is symmetrical. Set the subaddress (1C) data to (47). Change #28 input voltage at $1 \sim 7$ V and measure the amplitude of the #54 waveform.	#54 Amplitude V _L V _H #28 Voltage

			TEST CONDITIONS (DEF V_{CC} = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET)
NOTE	ITEM	SW MODE SW ₂₈	MEASUREMENT METHOD
G ₁₃	E-W NF Maximum DC Value (Picture Width)	В	Set the subaddress (19) data to (F8). Change the subaddress (1B) D ₇ ~D ₄ so that the #22 parabola waveform is symmetrical. Set the subaddress (19) data to (80). Set the subaddress (18) data to (00) and measure the #51 voltage V _{L51} . Set the subaddress (18) data to (FE) and measure the #51 voltage V _{H51} .
G ₁₄	E-W NF Minimum DC Value (Picture Width)		V _{H51} ————————————————————————————————————
G ₁₅	E-W NF Parabola Maximum Value (Parabola)	В	Set the subaddress (18) data to (00) and the subaddress (19) data to (F8). Measure the amplitude of the #51 waveform (parabola waveform) V _{PB} . V _{PB} #51 waveform

			TEST CONDITIONS (DEF V_{CC} = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET)
NOTE	ITEM	SW MODE SW ₂₈	MEASUREMENT METHOD
G ₁₆	E-W NF Corner Correction (Corner)	В	Set the subaddress (19) data to (F8). Change the subaddress (1B) $D_7 \sim D_4$ so that the #51 parabola waveform is symmetrical. Set the subaddress (1B) $D_3 \sim D_0$ to (0) and measure the amplitude of the #51 waveform $V_{CR(0)}$. Likewise, when the subaddress (1B) data are set to (F), measure the #51 waveform amplitude $V_{CR(F)}$. $V_{CR(F)}$.
G ₁₇	Parabola Symmetry Correction	А	Set the subaddress (1B) data to (08) and measure the vertical NF center voltage of the #54 waveform $V_{C (00)}$. Likewise, when the subaddress (1B) data are set to (F8), measure the #54 waveform $V_{C (FC)}$. $V_{TR} = \pm \frac{V_{C (00)} - V_{C (FC)}}{2 \times V_{P54}} \times 100 (\%)$
G ₁₈	E-W Parabola EHT Value	_	Set the subaddress (19) data to (F8). Change the subaddress (1B) $D_7 \sim D_4$ so that the #51 parabola waveform is symmetrical. Set the subaddress data (1C) to (40). While suppling 1.0 V to pin 28, measure amplitude V_{EH} (1) at pin 51. While suppling 7.0 V to pin 28, measure amplitude V_{EH} (7) at pin 51. $V_{EH} = \frac{V_{EH}(7) - V_{EH}(1)}{V_{EH}(7)} \times 100$ (%)

			TEST CONDITIONS (DEF V_{CC} = 9 V, Ta = 25 ± 3°C, BUS DATA = POWE	ER-ON RESET)
NOTE	ITEM	SW MODE SW ₂₈	MEASUREMENT METHOD	
G ₁₉	E-W DC EHT Value	Α	Set the subaddress (19) data to (F8). Change the subaddress (1B) $D_7 \sim D_4$ so that the #51 parabol Set the subaddress (1C) data to (40) and measure amplitude V_{EH} (40) at pin 51. Set the subaddress (1C) data to (78) and measure amplitude V_{EH} (78) at pin 51. $V_{EH2} = V_{EH}$ (78) $-V_{EH}$ (40) (V)	a waveform is symmetrical.
G ₂₀	E-W Amp Maximum Output Current	А	Connect an ammeter between #52 and GND. Measure the current.	\$2
G ₂₁	AGC Operating Current 1	А	Measure the #2 waveform peak value. (V_{AGC0}) Set the subaddress (0F) D_0 to (1) and repeat the measurement. (V_{AGC1}) $I_{AGC0} = V_X \div 200 \; (\mu A)$	2 TP2 Ω Ω Ω
G ₂₂	AGC Operating Current 2	А	(lagc1)	(TP26 waveform)
G ₂₃	Vertical Guard Voltage	Α	Set #54 to open. Connect an external power supply to #54. Decrease the voltage from 5 V. When	full blanking is applied to #14, measure the voltage.
G ₂₄	V NFB Pin Input Current	А	Connect a 9-V V $_{CC}$ via a 100-k Ω resistor to #54. Measure the sink current on #54 according to the voltage difference of the 100-k Ω resistance. I $_{54}$ = V / 100 k Ω	9 100 kΩ

1H DL SECTION

			TEST	CONDIT	TION (U	nless otherwise specified : H, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value ; pin3 = 9V ; pin8 · 38 · 41 = 5V)		
NOTE	ITEM	SW MODE		ADDRE DATA		MEASURING METHOD		
		S26	07H	0FH	11H			
H ₁	1HDL Dynamic Range Direct	ON	94H	_	_	 (1) Input waveform 1 to pin 33 (B-Yin), and measure VNBD, that pin 36 (B-Yout) is saturated input level. (2) Measure VNRD of R-Y input in the same way as VNBD. 		
						H.BLK		
	1HDL Dynamic Range		0011			(1) Input waveform 1 to pin 33 (B-Yin), and measure VPBD, that pin 36 (B-Yout) is saturated input level.		
H ₂	Delay	Î	8CH	_	_	(2) Measure VPRD of R-Y input in the same way as VPBD.		
	1HDL Dynamic					(1) Input waveform 1 to pin 33 (B-Yin), and measure VSBD, that pin 36 (B-Yout) is saturated input level.		
Н3	Range,Direct + Delay	1	A4H	_	_	(2) Measure VNRD of R-Y input in the same way as VSBD.		
	Fraguenay					(1) In the same measuring as H ₁ , set waveform 1 to 0.3 V _{p-p} and f = 100 kHz. Measure VB100, that is pin 36 (B-Yout) level. And set waveform 1 to f = 700 kHz. Measure VB700, that is pin 36 (B-Yout) level.		
H ₄	Frequency Characteristic, Direct	1	94H	_	_	GHB1 = 20 log (VB700 / VB100)		
						(2) Measure GHR1 of R-Y out in the same way as GHB1.		
	Frequency					(1) In the same measuring as H ₁ , set waveform 1 to 0.3 V _{p-p} and f = 100 kHz. Measure VB100, that is pin 36 (B-Yout) level. And set waveform 1 to f = 700 kHz. Measure VB700, that is pin 36 (B-Yout) level.		
H ₅	Characteristic, Delay	1	8CH	_	_	GHB2 = 20 log (VB700 / VB100)		
						(2) Measure GHR2 of R-Y out in the same way as GHB2.		
						(1) In the same measuring as H ₁ , set waveform 1 to 0.7 V _{p-p} . Measure VByt1, that is pin 36 (B-Yout) level.		
H ₆	AC Gain Direct	↑	94H	_	_	GBY ₁ = 20 log (VByt1 / 0.7)		
						(2) Measure GRY1 of R-Y out in the same way as GBY1.		
						(1) In the same measuring as H ₁ , set waveform 1 to 0.7 V _{p-p} . Measure VByt2, that is pin 36 (B-Yout) level.		
H ₇	AC Gain Delay	↑	8CH	_	_	$GBY_2 = 20 \log (VByt2 / 0.7)$		
						(2) Measure GRY2 of R-Y out in the same way as GBY2.		

MEASURING METHOD picture period. picture period. picture period. surre the time deference BDt of pin 36 (B-Yout). sure the time Waveform2
picture period. sure the time deference BDt of pin 36 (B-Yout). sure the time
picture period. sure the time deference BDt of pin 36 (B-Yout). sure the time
picture period. sure the time deference BDt of pin 36 (B-Yout). sure the time
picture period. sure the time deference BDt of pin 36 (B-Yout). sure the time
isure the time deference BDt of pin 36 (B-Yout).
ssure the time
Output BDt :
H.BLK
ne pin 36 DC voltage, that is BDC1.
ne pin 35 DC voltage, that is RDC1.
ne pin 36 DC voltage, that is BDC2.
ne pin 35 DC voltage, that is RDC2.
ne pin 36 DC voltage, that is BDC3.
ne pin 35 DC voltage, that is RDC3.
DC1, Romin = RDC2 - RDC1, Romax = RDC3 - RDC1
: 100 kHz, to pin 33. Measure pin 36 output level, that is VBNC.
pin 26 output loval, that in VIDNO
pin 36 output level, that is VRNC.
16 16 16 16 16 16 16 16 16 16 16 16 16 1

TEXT SECTION

				TES	T CON	NDITIC	N (Un	less ot	herwis	e spec	cified :	H, RG	B V _{CC}	= 9V ;	V _{DD} ,	Fsc V	DD, Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	Saa	S ₂₂	S ₃₁		N MOI S ₃₄		l —	I —	Ι_	00H	JB-AD 02H		S & BU	JS DA	TA 	MEASURING METHOD
T ₁	Y Color Difference Clamping Voltage	В	В	В	В	В	А	_	_	_	FFH	00H	_	_	_	_	 Short circuit pin 31 (Y IN), pin 34 (R-Y IN) and pin 33 (B-Y IN) in AC coupling. Input 0.3 V synchronizing signal to pin 48 (Sync IN). Measure voltage at pin 31, pin 34 and pin 33 (Vcp31, Vcp34, Vcp33).
T ₂	Contrast Control Characteristic	1	1	1	1	↑	↑	_			FFH 80H 00H	00Н				_	 (1) Input TG7 sine wave signal whose frequency is 100 kHz and video amplitude is 0.7 V to pin31 (Y IN). (2) Input 0.3 V Synchronizing Signal to pin 48 (Sync IN). (3) Connect both pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. (4) Set bus data so that Y sub contrast and drive are set at each center value and color is minimum. (5) Varying data on contrast from maximum (FF) to minimum (00), measure maximum and minimum amplitudes of respective outputs of pin 14 (R OUT), pin 13 (G OUT) and pin 12 (B OUT) in video period, and read values of bus data at the same time. Also, measure the respective amplitudes with the bus data set to the center value (80) (Vc12mx, Vc12mn, D12c80) (Vc13mx, Vc13mn, D13c80) (Vc14mx, Vc14mn, D14c80) (6) Find ratio between amplitude with maximum unicolor and that with minimum unicolor in conversion into decibel (ΔV13ct).
Т3	AC Gain	1	1	1	1	1	1	_	_	_	_	_	_	_	_	_	In the test condition of Note T ₂ , find output / input gain (double) with maximum contrast. G = Vc13mx / 0.7 V

				TE				Jnless	otherv	vise sp							V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM		-	-		N MOI						UB-AD	DRES	S & BL	JS DA	IA	MEASURING METHOD
		S ₂₁	S ₂₂	S ₃₁	S_{33}	S ₃₄	S ₅₁	_	_		00H	02H	_		_		··· <u>·</u> ······
																	(1) Input TG7 sine wave signal whose frequency is 6 MHz and video amplitude is 0.7 V to pin 31 (Y IN).
																	(2) Input 0.3 V synchronizing signal to pin 48 (Sync IN).
																	(3) Connect both pin 21 (Digital Ys) and pin 22 (Analog Ys) to groun
T ₄	Frequency Characteristic	В	В	В	В	В	Α	_	_	_	FFH	00H	_	_	_	_	(4) Set bus data so that contrast is maximum, Y sub contrast and dri are set at each center value and color is minimum.
																	(5) Measure amplitude of pin 13 signal (G OUT) and find the output input gain (double) (G6M).
																	(6) From the results of the above step 5 and the Note T ₃ , find the frequency characteristic.
																	Gf = 20 log (G6M / G)

TB1245N

				TE				Jnless	otherw	ise sp							: V _{DD}	, Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	_		-		N MOE				1		JB-AD						MEASURING METHOD
		S ₂₁	S_{22}	S ₃₁	S_{33}	S ₃₄	S ₅₁	S ₄₂	_	_	00H	02H	05H	1CH	08H	1DH	1	
																	(1)	Connect both pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.
																	(2)	Input TG7 sine wave signal whose frequency is 100 kHz and video amplitude is 0.7 V to pin 31 (Y IN).
																	(3)	Input 0.3 V synchronizing signal to pin 48 (Sync IN).
T ₅	Y Sub-Contrast Control Characteristic	В	В	В	В	В	А	_	_	_	FFH	00H	1FH 00H	_	_	_	(4)	Set bus data so that contrast is maximum, drive is set at center value and color is minimum.
																	(5)	Set bus data on Y sub contrast at maximum (FF) and measure amplitude (Vscmx) of pin 14 output (R OUT). Then, set data on Y sub contrast at minimum (00), measure the same (Vscmn).
																	(6)	From the results of the above step 5, find ratio between Vscmx and Vscmn in conversion into decibel ($\Delta V scnt). \\$
																	(1)	Set bus data so that contrast is maximum, Y sub contrast and drive are at each center value.
Т6	Y ₂ Input Level	↑	1	1	↑	↑	1	_	_	_	1	_	_	80H	44H	3FH	(2)	Input 0.3 V synchronizing signal to pin 48 while inputting TG7 sine wave signal whose frequency is 100 kHz to pin 31 (TY IN).
																	(3)	While increasing the amplitude of the sine wave signal, measure video amplitude of signal 1 just before R output of pin 14 is distorted. (Vy2d)

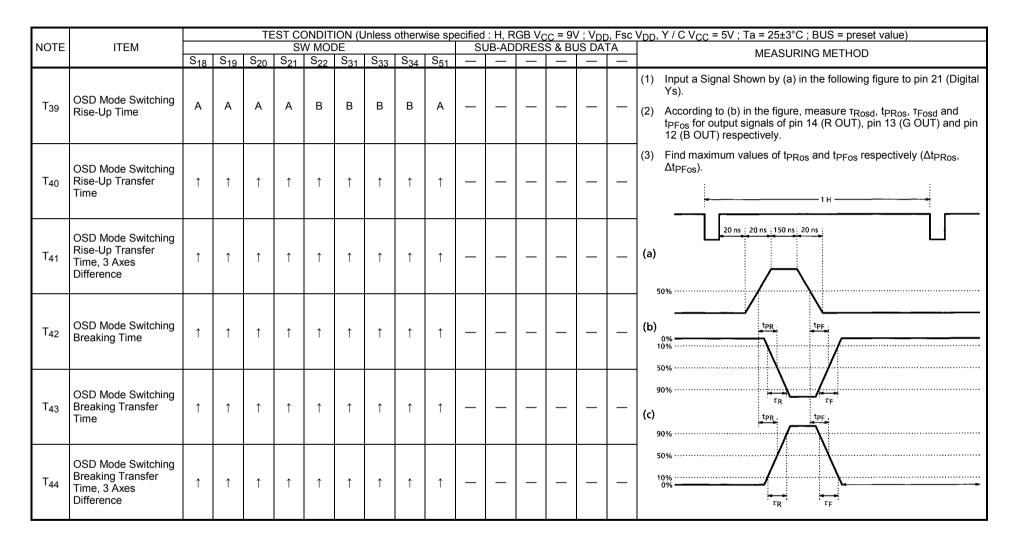
NOTE	ITEM			TE		TIDNC IOM W		Jnless	otherv	vise sp			GB V _C				V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	I I EIVI	S ₂₁	S ₂₂	S ₃₁		S ₃₄		S ₄₂	l —	_	00H		05H				MEASURING METHOD
T ₇	Unicolor Control Characteristic	В	В	В	В	В	A	_	_	_	FFH 80H 00H	_	_	80H	_	3FH	 Input 0.3 V synchronizing signal to pin 48 (Sync IN). Input 100 kHz, 0.3 V_{p-p} sine wave signal to both pin 33 (B-Y IN) and pin 34 (R-Y IN). Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data so that drive is at center value, Y mute is on and color limiter is OFF. While changing bus data on unicolor from maximum (FF) to minimum (00), measure maximum
T ₈	Relative Amplitude (NTSC)	↑	1	Α	Α	Α	1	А	_	_	FFH	_	_	1	_	1	While inputting rainbow color bar signal (3.58 MHz for NTSC) to pin 42 and 0.3 V synchronizing signal to pin 48 so that video amplitude of pin 33 is 0.38 V _{p-p} , find the relative amplitude. (Mnr-b = Vu14mx / Vu12mx, Mng-b = Vu13mx / Vu12mx)
T ₉	Relative Phase (NTSC)	1	1	1	1	1	1	1	_	_	1	_	_	1	_	1	 In the test condition of the Note T₈, adjust bus data on tint so that output of pin 12 (B OUT) has the peak level in the 6th bar. Regarding the phase of pin 12 (B OUT) as a reference phase, find comparative phase differences of pin 14 (R OUT) and pin 13 (G OUT) from the reference phase respectively (θnr-b, θng-b).

				TE				Jnless	otherv	vise sp							V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM					N WOE				I _		JB-AD 02H				TA	MEASURING METHOD
T ₁₀	Relative Amplitude (PAL)	S ₂₁	S ₂₂	A	A	S ₃₄	A	A	_	_	FFH	—		3FH	_	_	While inputting rainbow color bar signal (4.43 MHz for PAL) to pin 42 and 0.3 V synchronizing signal to pin 48 so that video amplitude of pin 33 is 0.38 Vp-p, find the relative amplitude. (Mpr-b = Vu14mx / Vu12mx, Mpg-b = Vu13mx / Vu12mx)
T ₁₁	Relative Phase (PAL)	1	↑	↑	↑	1	1	↑	1	_	1	1	ı	1	_	_	 In the test condition of the Note T₁₀, adjust bus data on tint so that output of pin 12 (B OUT) has the peak level in the 6th bar. Regarding the phase of pin 12 (B OUT) as a reference phase, find comparative phase differences of pin 14 (R OUT) and pin 13 (G OUT) from the reference phase respectively (θpr-b, θpg-b).
T ₁₂	Color Control Characteristic	1	1	В	В	В	1	_	_	_	1	FFH	1	_	_	_	 Input 0.3 V synchronizing signal to pin 48 (Sync IN). Input 100 kHz, 0.1 V_{p-p} sine wave signal to both pin 33 (B-Y IN) and pin 34 (R-Y IN). Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data so that unicolor is maximum, drive is at center value and Y mute is on. Measure amplitude of pin 12 (B OUT) as bus data on color is set maximum (FF). (Vcmx) Read bus data when output level of pin 12 is 10%, 50% and 90% of Vcmx respectively (Dc10, Dc50, Dc90).
T ₁₃	Color Control Characteristic, Residual Color	1	1	1	1	1	1	_	-	_	1	00Н	1	_	_	_	 (7) From results of the above step 6, calculate number of steps from Dc10 to Dc90 (Δcol) and that from 00 to Dc50 (ecol). (8) Measure respective amplitudes of pin 12 (B OUT), pin 13 (G OUT) and pin 14 (R OUT) with color data set at minimum, and regard the results as color residuals (ecb, ecg, ecr).

				TE	EST C	TIDNC	ION (L	Jnless	otherv	vise sp	ecified	: H, R	GB V _C	_C = 9\	/ ; V _{DI}	o, Fsc	V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM					N MOI							DRES			TA	MEASURING METHOD
		S ₂₁	S ₂₂	S ₃₁	S_{33}	S ₃₄	S ₅₁	S ₄₂	_		00H	02H	1CH	1DH	_	_	MEXICOLATION METITOD
																	(1) Input rainbow color bar signal (3.58 MHz for NTSC or 4.43 MHz for PAL) to pin 42 (C IN) and 0.3 V synchronizing signal to pin 48 (Sync IN).
																	(2) Connect pin 36 (B-Y OUT) and pin 33 (B-Y IN), pin 35 (R-Y OUT) and pin 34 (R-Y IN) in AC coupling respectively.
T ₁₄	Chroma Input Range	В	В	Α	Α	Α	Α	Α	_	_	FFH	88H	80H	3FH	_	_	(3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.
																	(4) Set bus data so that unicolor is maximum, drive and color are set at each center value (80) and mute is on.
																	(5) While increasing amplitude of chroma signal input to pin 42, measure amplitude just before any of pin 12 (B OUT), pin 13 (G OUT) and pin 14 (R OUT) output signals is distorted (Vcr).

				TE				Jnless	otherv	vise sp							V_{DD} , Y / C V_{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	S ₂₁	C	C		V MOE S ₃₄			ı	_		JB-AD 05H		S & BU	JS DA	TA 	MEASURING METHOD
T ₁₅	Brightness Control Characteristic	9 <u>21</u> B	S ₂₂	B	В	B	951 A	_	_	_	FFH 00H	10H	_	_	_	_	 Short circuit pin 31 (Y IN), pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling. Input 0.3 V synchronizing signal to pin 48 (Sync IN). Set bus data so that R, G, B cut off data are set at center value.
T ₁₆	Brightness Center Voltage	↑	1	1	1	1	1	_	_	_	80H	1	_	_	_	_	 (4) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. (5) While changing bus data on brightness from maximum to minimum, measure video voltage of pin 13 (G OUT) to find maximum and minimum voltages (max : Vbrmx, min : Vbrmn). (6) With bus data on brightness set at center value, measure video voltage of pin 13 (G OUT) (Vbcnt).
T ₁₇	Brightness Data Sensitivity	1	1	1	1	1	1	_	_	_	_	_	_	_	_	_	(7) On the conditon that bus data with which Vbrmx is obtained in measurement of the above step 5 is Dbrmx and bus data with which Vbrmn is obtained in measurement of the above step 5 is Dbrmn, calculate sensitivity of brightness data (ΔVbrt). ΔVbrt = (Vbrmxg - Vbrmng) / (Dbrmxg - Dbrmng)
T ₁₈	RGB Output Voltage Axes Difference	1	1	1	↑	↑	1	_	_	_	_	_	_	_	_	_	 (1) In the same manner as the Note T₁₆, measure video voltage of pin 12 (B OUT) with bus data on brightness set at center value. (2) Find maximum axes difference in the brightness center voltage.
T ₁₉	White Peak Limit Level	1	1	1	1	1	1	_	_	_	00Н	1FH	_	_	_	_	 (1) Set bus data so that contrast and Y sub contrast are maximum and brightness is minimum. (2) Input TG7 sine wave signal whose frequency is 100 kHz and amplitude in video period is 0.9 V to pin 31 (Y IN). (3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. (4) While turning on / off WPL with bus, measure video amplitude of pin 14 (R OUT) with WPL being activated (Vwpl).

				TE	ST CC	DNDIT	ION (L	Jnless	otherv	vise sp	ecified	: H, R	GB V _C	CC = 9\	√; V _{DE}	, Fsc	: V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	_	<u> </u>	I 0		N MOI		1		ı				S & BL			MEASURING METHOD
T ₂₀	Cutoff Control Characteristic	S ₂₁	S ₂₂	S ₃₁	В	S ₃₄	S ₅₁	_	_	_	80H			FFH 00H	FFH	_	 Short circuit pin 31 (Y IN), pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling. Input 0.3 V synchronizing signal to pin 48 (Sync IN). Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.
T ₂₁	Cutoff Center Level	1	1	1	1	1	1	_	_	_	1	1	80H	80H	80H	_	 (4) Set bus data on brightness at center value. (5) While changing data on cutoff from maximum to minimum, measure video voltage of pin 13 (G OUT) to find maximum and minimum values (max : Vcomx, min : Vcomn). (6) Set cutoff data at center value and measure video voltage of pin 13 (G OUT) (Vcoct).
T ₂₂	Cutoff Variable Range	<u> </u>	1	1	↑	↑	1	_	_	_	-	-	_	_	_	_	 On the condition that bus data with which Vcomx is obtained in measurement of the above step 5 is Dcomx and bus data with which Vcomn is obtained in the same is Dcomn, calculate number of steps (ΔDcut). ΔDcut = Dcomx - Dcomn
T ₂₃	Drive Variable Range	1	1	1	1	1	1	_	_	_	FFH 00H		80H	80H	80H	_	 Short circuit pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling. Input a stepping signal whose amplitude in video period is 0.3 V to pin 31 (Y IN). Input 0.3 V synchronizing signal to pin 48 (Sync IN). Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data so that contrast is maximum and Y sub contrast is minimum. While changing drive data from minimum to maximum, measure video amplitude of pin 13 (G OUT) to find maximum and minimum values (max: Vdrmx, min: Vdrmn). Set drive data at center value and measure video amplitude of pin 13 (G OUT) (Vdrct). Calculate amplitude ratio of the measured value to the maximum and minimum amplitudes measured in the above step 6 respectively (DR+, DR-).

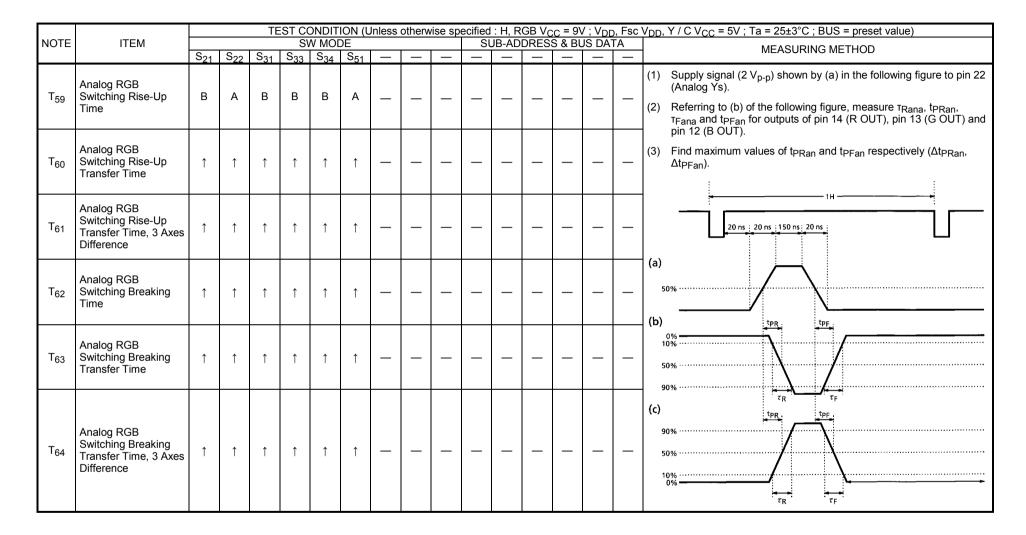

				TE	ST CO	TIDNC	ION (L	Jnless	otherw	vise sp	ecified	l : H, R	GB V ₀	CC = 9\	√; V _{D[}	, Fsc	V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	S ₂₁	S ₂₂	S ₃₁		N MOI		S ₄₅	S ₃₀	S ₄₄		ЈВ-АD	DRES	S & BI	JS DA	I A —	MEASURING METHOD
		- 21	- 22	-31	- 33	- 34	-31	- 43	- 39								(1) Short circuit pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling.
																	(2) Input such the step-up signal as shown below to pin 45 (Y IN) and pin 48 (Sync IN).
																	(3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.
																	(4) Set bus data so that contrast is maximum and DC transmission correction factor is minimum.
T ₂₄	DC Regeneration	В	В	Α	В	В	Α	В	Α	Α	_	_	_	_	_	_	(5) Adjust data on Y sub contrast so that video amplitude of pin 13 (G OUT) is 2.5 V.
																	(6) While varying APL of the step-up signal from 10% to 90%, measure change in voltage at the point A.
																	Variable APL Point A.
																	(1) Short circuit pin 31 (Y IN), pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling.
																	(2) Input synchronizing signal of 0.3 V in amplitude to pin 48 (Sync IN).
																	(3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.
T ₂₅	RGB Output S / N Ratio	1	1	В	1	↑	1	—	_	_	_	_	_	_	_	_	(4) Set bus data on contrast at maximum.
																	(5) Set bus data on Y sub contrast at center value.
																	(6) Measure video noise level of pin 13 (G OUT) with oscilloscope (no).
																	SNo = −20 log (2.5 / (1 / 5) × no)

				TE				Jnless	otherw	vise sp							V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	S ₂₁	S ₂₂	S ₃₁		N MOE S ₃₄		_		Ι_		JB-AD 05H					MEASURING METHOD
T ₂₆	Blanking Pulse Output Level	В	В	В	В	В	A	_	_	_		10H			80H		 Input synchronizing signal of 0.3 V in amplitude to pin 48 (Sync IN). Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data so that blanking is on. Measure voltage of pin 13 (G OUT) in V. blanking period (Vy). Measure voltage of pin 13 (G OUT) in H. blanking period (Vh).
T ₂₇	Blanking Pulse Delay Time	1	↑	1	↑	1	1	_	-	_	↑	↑	1	1	1	1	In the setting condition of the Note T ₂₆ , find "t _{don} " and "t _{doff} " (see figure below) between the signal impressed to pin 6 (BFP IN) and output signal of pin 13 (G OUT). Signal impressed to pin 6 Pin 13 output signal
T ₂₈	RGB Min. Output Level	1	1	1	↑	1	1	_	_	_	00Н	1	1	00Н	00Н	00Н	 Short circuit pin 31 (Y IN), pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling. Input synchronizing signal of 0.3 V in amplitude to pin 48 (Sync IN). Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data so that brightness and RGB cutoff are minimum. Measure video voltage of pin 13 (G OUT) (Vmn).
T ₂₉	RGB Max. Output Level	1	1	1	1	1	↑	_	_	_	80H	1fH	44H	80H	80H	80H	 Short circuit pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling. Input stepping signal to pin 31 (Y IN) and synchronizing signal of 0.3 V in amplitude to pin 48 (Sync IN). Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data so that contrast and Y sub contrast are maximum. While increasing amplitude of the stepping signal, measure maximum output level just before video signal of pin 13 (G OUT) is distorted (Vmn).

NOTE	17514			TE				Jnless	otherw	ise sp							V_{DD}	, Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	S19	S ₁₀	San		W MOI S ₂₂		S22	S ₃₄	S ₅₁		JB-AD 04H		— —	JS DA	I A		MEASURING METHOD
		- 10	- 19	-20	-21	-22	-31	- 33	- 34	-31							(1)	Input stepping signal whose amplitude is 0.3 V in video period to pin 31 (Y IN) and pin 48 (Sync IN).
T ₃₀	Halftone Ys Level	В	В	В	Α	В	В	В	В	Α	00H	40H	_	-	_	_	(2)	Set bus data so that blanking is off and halftone is −3 dB in on status.
																	(3)	Connect power supply to pin 21 (Digital Ys). While impressing 0 V to it, measure amplitude and pedestal level of pin 13 (G OUT) in video period (Vm13, Vp13).
T ₃₁	Halftone Gain	↑	↑	↑	1	1	1	↑	↑	↑	01H	1	_	_	_	_	(4)	Raising supply voltage to pin 21 gradually from 0 V, measure level (Vtht1) of pin 21 when amplitude of pin 13 output signal changes. At the same time, measure amplitude and pedestal level of pin 13 in video period after the pin 13 output signal changed in amplitude. (Vm13b, Vp13b)
																	(5)	Set bus data so that halftone is −6 dB in on status, and perform the
																		same measurement as the above step 4 to find gain of −6 dB halftone and variation of pedestal level (G6th13).
T ₃₂	Text ON Ys, Low	↑	↑	1	1	↑	1	↑	1	↑	1	1	_		_	_		G6th13 = 20 log (Vm13b / Vm13)
132	Level	1	1	1			1	1		1	'						(6)	Raising supply voltage to pin 21 further from Vtht1, measure level (Vtx1) of pin 21 when output signal of pin 13 (G OUT) changes in amplitude and DC level of pin 13 after the change of its output (Vtx13).
	Text / OSD Output.																(7)	From results of the above steps 3 and 6, calculate low level of the output in the text mode.
T ₃₃	Low Level	1	1	1	1	1	1	1	1	1	1	1	_	_	_	_		Vtxl13 = Vtx13 - Vp13
																	(8)	Raising supply voltage to pin 21 by 3 V from that in the above step 6, confirm that there is no change in output level of pin 13.

				TE	ST CC	DNDIT	ION (L	Jnless	otherw	ise sp	ecified	: H, R	GB V _C	CC = 9\	√ ; V _{D[}	o, Fsc	V_{DD}	, Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	840	8.0	S		N MOI		S ₃₃	S			JB-AD 04H		S & BL	JS DA	TA I	1	MEASURING METHOD
T ₃₄	Text RGB Output, High Level	A	A	A	A A	В	В	В	A	_		40H		_	_	_	(1) (2) (3)	pin 31 (Y IN) and pin 48 (Sync IN). Set bus data so that blanking and halftone are off.
																	(5)	V. Raising supply voltage to pin 21 gradually from 0 V, measure video
T ₃₅	OSD Ys ON, Low Level	↑	1	1	↑	↑	1	1	↑	_	1	↑	_	_	_	_	(6)	level of pin 21 after output signal of pin 13 changed (Vlx13). From measurement results of the above steps 3 and 5, calculate high level in the text mode. Vmt13 = Vtx13 - Vpt13
																	(7)	Raising supply voltage to pin 21 further from that in the step 5, measure level (Vtost) of pin 21 when the level of pin 13 output
																		signal changes from that in the step 5 to -6 dB as halftone data is set to ON (the 6th step of Notes T_{30} to T_{34}).
T ₃₆	OSD RGB Output, High Level	↑	↑	1	↑	↑	1	↑	↑	_	1	↑	_	_	_	_	(8)	In the condition of the above step 7, raise voltage impressed to pin 19 to 3 V and measure output voltage of pin 13 (Vos13).
																	(9)	output in the OSD mode.
																		Vmos13 = Vos13 - Vpt13

				TE				Jnless	otherw	ise sp							V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM					N WOI					SI	JB-AD	DRES	S & Bl	<u>JS DA</u>	TA	MEASURING METHOD
		S ₁₈	S ₁₉	S ₂₀	S ₂₁	S ₂₂	S ₃₁	S_{33}	S ₃₄	S ₅₁	_	_	_	_	_	_	
																	(1) Connect power supply to pin 21 (Digital Ys) and impress 1.5 V to it.
T ₃₇	Text Input Threshold Level	Α	А	Α	А	В	В	В	В	Α	_	_	-	_	_	_	(2) Connect power supply to pin 19 (Digital G IN). While raising supply voltage gradually from 0 V, measure supply voltage when output signal of pin 13 (G OUT) changes (Vtxt).
																	(3) Raising the supply voltage to pin 19 furthermore to 4 V, confirm that there is no change in the output signal of pin 13 (G OUT).
																	(1) Connect power supply to pin 21 (Digital Ys) and impress 2.5 V to it.
T ₃₈	OSD Input Threshold Level	↑	1	1	1	1	1	↑	1	↑	_	_	_	_	_	_	(2) Connect power supply to pin 19 (Digital G IN). While raising supply voltage gradually from 0 V, measure supply voltage when output signal of pin 13 (G OUT) changes (Vosd).
																	(3) Raising the supply voltage to pin 19 furthermore to 4 V, confirm that there is no change in the output signal of pin 13 (G OUT).



				TE	ST C	DNDIT	ION (L	Jnless	oth <u>er</u> w	ise sp	ecified	: H, R	GB V	CC = 9\	V ; V _{DI}	, Fsc	V_{DD} , Y / C V_{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM				SV	V MOI	DE				SI	JB-AD	DRES	S & Bl	JS DA	TA	MEASURING METHOD
		S ₁₈	S ₁₉	S ₂₀	S ₂₁	S ₂₂	S ₃₁	S ₃₃	S ₃₄	S ₅₁	_	_	_	_	_	_	
																	(1) Supply pin 21 (Digital Ys) with 2.5 V.
T ₄₅	OSD Hi DC Switching Rise-Up Time	Α	Α	А	Α	В	В	В	В	Α	_	_	_	_	_	_	(2) Input 5 V _{p-p} signal shown by (a) in the figure to pin 18 (Digital R IN).
	·																(3) Referring to (b) of the following figure, measure T _{Rosh} , t _{PRoh} , T _{Fosh} and t _{PFoh} for output signal of pin 14 (R OUT).
	OSD Hi DC Switching																(4) Input 5 V _{p-p} signal shown by (a) in the figure to pin 19 (Digital G IN).
T ₄₆	Rise-Up Transfer Time	↑	1	1	1	↑	↑	1	↑	1	_	_	_	_	-	_	(5) Perform the same measurement as the above step 3 for pin 13 output (G OUT) referring to (b) of the following figure.
																	(6) Input 5 V _{p-p} signal shown by (a) in the figure to pin 20 (Digital B IN).
_	OSD Hi DC Switching Rise-Up Transfer					4			A								(7) Perform the same measurement as the above step 3 for pin 12 output (B OUT) referring to (b) of the following figure.
T ₄₇	Time, 3 Axes Difference	1	1	1	↑	↑	↑	↑	↑	1	_	_	_	_	_	_	(8) Find maximum axes differences in t_{PRoh} and t_{PFoh} among the three outputs (Δt_{PRoh} , Δt_{PFoh}).
T ₄₈	OSD Hi DC Switching Breaking Time	1	1	1	↑	↑	↑	↑	↑	1	_	_	_	_	_	_	20 ns : 20 ns : 150 ns : 20 ns
	2.009																(a)
																	50%
T ₄₉	OSD Hi DC Switching Breaking Transfer	↑	↑	1	↑	↑	↑	↑	↑	↑	_	_	_	_	_	_	/
149	Time	'		l		ı	'	l	ı								
																	(b) <u>tpr.</u> <u>tpr.</u>
	OSD Hi DC Switching																50%
T ₅₀	Breaking Transfer Time, 3 Axes Difference	1	1	1	↑	1	↑	1	↑	1	_	_	_	_	_	_	10%
																	$\overline{\tau_{R}}$, $\overline{\tau_{F}}$

to pin 23 (Analog R IN). (5) While changing data on RGB contrast from maximum (FF) to minimum (00), measure maximum and minimum amplitudes of 14 (R OUT) in video period. At the same time, measure video amplitude of pin 14 when the bus data is set at the center value (80). (Vc14mx, Vc14mn, D14c80) (6) In the same manner as the above steps 4 and 5, measure output signal of pin 13 with input of the same external power supply to 24 (Analog G IN), and measure output signal of pin 12 with input the same power supply to pin 25 (Analog B IN). (Vc12mx, Vc12m) D12c80). (7) Find amplitude ratio between signal with maximum unicolor data and signal with minimum unicolor data in conversion into decibe (ΔV13ct).	NOTE	ITEM			SI	SV	W MO	DE		S	IID AF	NDDEC	0 0 01				
T51 RGB Contrast Control Characteristic B A B B B A — — 80H — — — 00H (1) Input 0.3 V synchronizing signal to pin 48 (Sync IN). (2) Supply 5 V of external supply voltage to pin 22 (Analog Ys). (3) Set bus data on drive at center value. (4) Input TG7 sine wave signal (f = 100 kHz, video amplitude = 0.5 to pin 23 (Analog R IN). (5) While changing data on RGB contrast from maximum (FF) to minimum (00), measure maximum and minimum amplitudes of 14 (R OUT) in video period. At the same time, measure video amplitude of pin 14 when the bus data is set at the center value (80). (Vc14mx, Vc14mn, D14c80) (6) In the same manner as the above steps 4 and 5, measure outpy is signal of pin 13 with input of the same external power supply to 24 (Analog G IN), and measure output signal of pin 12 with input he same power supply to pin 25 (Analog B IN). (Vc12mx, Vc12n D12c80). (7) Find amplitude ratio between signal with maximum unicolor data and signal with minimum unicolor data in conversion into decibe (AV13ct). RGB output			Saa	Sad	Saa	Saa	Sau	Sca				_		JS DA	ΓΑ 	-	MEASURING METHOD
Vcmn Vcmn)/2										FFH 80H		_				(2) (3) (4) (5)	Input 0.3 V synchronizing signal to pin 48 (Sync IN). Supply 5 V of external supply voltage to pin 22 (Analog Ys). Set bus data on drive at center value. Input TG7 sine wave signal (f = 100 kHz, video amplitude = 0.5 V) to pin 23 (Analog R IN). While changing data on RGB contrast from maximum (FF) to minimum (00), measure maximum and minimum amplitudes of pin 14 (R OUT) in video period. At the same time, measure video amplitude of pin 14 when the bus data is set at the center value (80). (Vc14mx, Vc14mn, D14c80) In the same manner as the above steps 4 and 5, measure output signal of pin 13 with input of the same external power supply to pin 24 (Analog G IN), and measure output signal of pin 12 with input of the same power supply to pin 25 (Analog B IN). (Vc12mx, Vc12mn, D12c80). Find amplitude ratio between signal with maximum unicolor data and signal with minimum unicolor data in conversion into decibel (ΔV13ct).

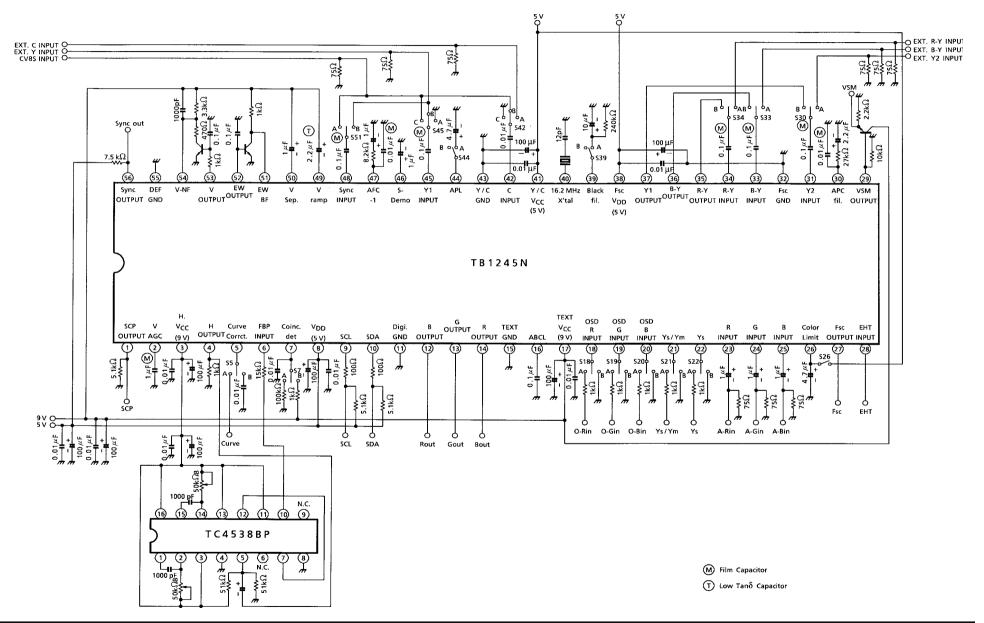
				TE	ST C	ONDIT	ION (L	Jnless	otherw	ise sp	ecified	: H, R	GB V	CC = 9\	/ ; V _{DC}	, Fsc	V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM				SI	w Moi	DE				SI	JB-AD	DRES	S & Bl	JS DA	TA	MEASURING METHOD
		S ₂₁	S ₂₂	S ₃₁	S_{33}	S ₃₄	S ₅₁	_	_	_	06H	_	_	_	_	_	WEAGONING WE ITIOD
T ₅₂	Analog RGB AC Gain	В	А	В	В	В	А	_	_	_	_	_	_	_	_	_	In the setting condition of the Note T ₅₂ , calculate output / input gain (double) with contrast data being set maximum. G = Vc13mx / 0.5 V
																	(1) Input 0.3 V synchronizing signal to pin 48 (Sync IN).
																	(2) Supply 5 V of external supply voltage to pin 22 (Analog Ys).
																	(3) Input TG7 sine wave signal (f = 100 kHz, video amplitude = 0.5 V) to pin 24 (Analog G IN).
T ₅₃	Analog RGB Frequency	↑	1	↑	↑	↑	↑	_	_	_	FFH	_	_	_	_	_	(4) Set bus data so that contrast is maximum and drive is set at center value.
	Characteristic																(5) Measure video amplitude of pin 13 (G OUT) and calculate output / input gain (double) (G6M).
																	(6) From measurement results of the above step 5 and the preceding Note 53, find frequency characteristic.
																	Gf = 20 log (G6M / G)

				TE				Inless	otherv	vise sp	ecified	: H, R	GB Vo	CC = 9\	V ; V _{DI}	o, Fsc	V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	S ₂₁	S22	S ₃₁		W MOI S ₃₄		_	T —	_		JB-AD 06H		S & BI —	US DA I —	TA 	MEASURING METHOD
		- 21	- 22	- 51	- 55	- 37	- 01										(1) Input 0.3 V synchronizing signal to pin 48 (Sync IN).
																	(2) Supply 5 V of external supply voltage to pin 22 (Analog Ys).
T ₅₄	Analog RGB Dynamic	В	A	В	В	В	Α	_	_	_	_	00H	_	_	_	_	(3) Set bus data so that contrast is minimum and drive is set at cent value.
34	Range																(4) While inputting stepping signal to pin 24 (Analog G IN), increase video amplitude gradually from 0.
																	(5) Measure video amplitude of pin 24 when video voltage of pin 13 OUT) does not change.
	DOD D : 14										FFH						(1) Short circuit pin 31 (Y IN), pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling.
T ₅₅	RGB Brightness Control Characteristic	↑	1	↑	↑	1	1	_	_	_	00H	_	_	_		_	(2) Input 0.3 V synchronizing signal to pin 48 (Sync IN).
											0011						(3) Set bus data on RGB cutoff at center value.
																	(4) Supply 5 V of external supply voltage to pin 22 (Analog Ys).
T ₅₆	RGB Brightness Center Voltage	↑	1	1	1	↑	1	_	_	_	80H	_	_	_	_	_	(5) While changing data brightness from maximum to minimum, measure maximum and minimum voltages of pin 13 (G OUT) in video period. (max: Vbrmx, min: Vbrmn)
																	(6) Set bus data on brightness at center value and measure video voltage of pin 13 (G OUT) (Vbcnt).
T ₅₇	RGB Brightness Data Sensitivity	↑	1	1	1	1	1	_	_	_	_	_	_	_	_	_	(7) On the condition that bus data with which Vbrmx is obtained in measurement of the above step 5 is Dbrmx and bus data with which Vbrmn is obtained in measurement of the above step 5 is Dbrmn, calculate sensitivity of brightness data (ΔVbrt).
																	$\Delta Vbrt = (Vbrmx - Vbrmn) / (Dbrmx - Dbrmn)$
																	(1) Input TG7 sine wave signal (f = 100 kHz, video amplitude = 0.3 to pin 23 (Analog R IN).
T ₅₈	Analog RGB Mode ON Voltage	↑	1	1	1	↑	1	_	_	_	80H	_	_	_	_	_	(2) Supply 5 V of external supply voltage to pin 22 (Analog Ys) and raise the voltage gradually from 0 V.
																	(3) Measure voltage at pin 22 when signal 1 is output from pin 14 (ROUT) (Vanath).

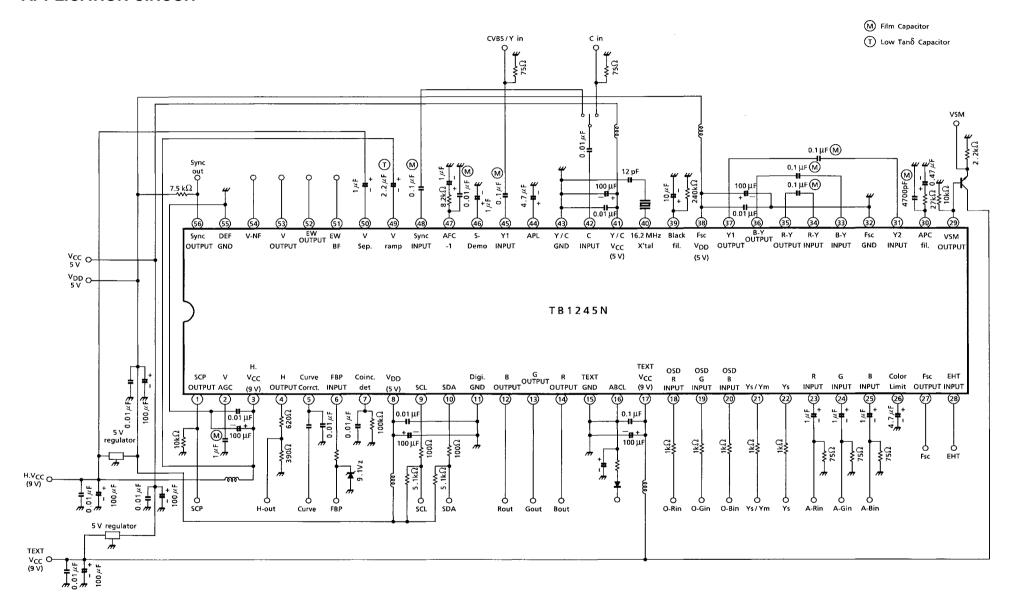
				TE	ST C	TIDNC	ION (L	Inless	otherv	vise sp	ecified	: H, R	GB V _C	CC = 9\	/ ; V _{D[}	, Fsc	V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	S ₂₁	S ₂₂	S ₂₁		W MOI	DE S ₅₁	l		I —	SI —	JB-AD	DRES —	S & BL 	JS DA	TA 	MEASURING METHOD
T ₆₅	Analog RGB Hi Switching Rise-Up Time	В	Α	В	В	В	A	_	_	_	_	_	_	_	_	_	 Supply 2 V to pin 22 (Analog Ys). Input 0.5 V_{p-p} signal shown by (a) in the following figure to pin 23 (Analog R IN). Referring to (b) of the following figure, measure T_{Ranh}, t_{PRah}, T_{Fanh} and t_{PFah} for output of pin 14 (R OUT).
T ₆₆	Analog RGB Hi Switching Rise-Up Transfer Time	1	1	1	1	1	1	_	-	_	_	_	_	_	_	_	 (4) Input 0.5 V_{p-p} signal shown by (a) in the following figure to pin 24 (Analog G IN). (5) Referring to (b) of the following figure, perform the same measurement as the above step 3 for output of pin 13 (G OUT). (6) Input 0.5 V_{p-p} signal shown by (a) in the following figure to pin 25 (Analog B IN).
T ₆₇	Analog RGB Hi Switching Rise-Up Transfer Time, 3 Axes Difference	↑	1	↑	↑	↑	1	_	-	_	_	_	_	_	_	_	 (7) Referring to (b) of the following figure, perform the same measurement as the above step 3 for output of pin 12 (B OUT). (8) Find maximum axes difference in t_{PRoh} and t_{PFoh} among the three outputs (Δt_{PRah}, Δt_{PFah}).
T ₆₈	Analog RGB Hi Switching Breaking Time	1	1	1	1	1	1	_	1	_	_	_	_	_	_	_	1H 20 ns : 20 ns : 150 ns : 20 ns :
T ₆₉	Analog RGB Hi Switching Breaking Transfer Time	1	1	1	1	1	1	_	1	_	_	_	_	_	_	_	50%
T ₇₀	Analog RGB Hi Switching Breaking Transfer Time, 3 Axes Difference	↑	1	↑	↑	1	1	_	1	_	_	_	_	_	_	_	90% 50% 10% 0%

				TE				Inless	otherv	vise sp							: V _{DE}	, Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	S21	S ₂₂	S21		N MOI	DE S ₅₁	I _	_	I —	SI —	JB-AD I —	DRES —	S & BI 	JS DA	TA 	4	MEASURING METHOD
		321	322	931	-33	- 34	331										(1)	Input TG7 sine wave signal (f = 4 MHz, video amplitude = 0.5 V) to pin 31 (Y ₂ IN).
																	(2)	Short circuit pin 25 (Analog G IN) in AC coupling.
																	(3)	Input 0.3 V synchronizing signal to pin 48 (Sync IN).
																	(4)	Set bus data so that contrast is maximum, Y sub contrast and drive are set at center value.
T ₇₁	TV-Analog RGB Crosstalk	В	Α	В	В	В	Α	_	_	_	_	_	_	_	_		(5)	Supply pin 22 (Analog Ys) with 0 V of external power supply.
	Ciossiaik																(6)	Measure video voltage of output signal of pin 13 (G OUT) (Vtg).
																	(7)	Supply pin 22 (Analog Ys) with 2 V of external power supply.
																	(8)	Measure video voltage of output signal of pin 13 (G OUT) (Vana).
																	(9)	From measurement results of the above steps 5 and 7, calculate crosstalk from TV to analog RGB.
																		Crtva = 20 log (Vana / Vtv)
																	(1)	Short circuit pin 31 (Y_2 IN), pin 34 (R-Y IN) and pin 33 (B-Y IN) in AC coupling.
																	(2)	Input 0.3 V synchronizing signal to pin 48 (Sync IN).
																	(3)	Set bus data so that contrast is maximum and drive is set at center value.
																	(4)	Input TG7 sine wave signal (f = 4 MHz, video amplitude = 0.5 V) to pin 24 (Analog G IN).
T ₇₂	Analog RGB-TV Crosstalk	1	1	1	1	1	1	_	_	_	_	_	_	_	_	_	(5)	Supply pin 22 (Analog Ys) with 0 V of external power supply.
																	(6)	Measure video voltage of output signal of pin 13 (G OUT) (Vant).
																	(7)	Supply pin 22 (Analog Ys) with 2 V of external power supply.
																	(8)	Measure video voltage of output signal of pin 13 (G OUT) (Vtan).
																	(9)	From measurement results of the above steps 6 and 8, calculate crosstalk from analog RGB to TV.
																		Crant = 20 log (Vant / Vtan)

				TE	ST C	TIDNC	ION (L	Jnless	otherv	vise sp							VDE	, Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	S ₂₁	S ₂₂	S ₃₁		N MOI S ₃₄			1	Ι		JB-AD 15H		S & BI	US DA	TA		MEASURING METHOD
T ₇₃	ABL Point Characteristic	B	В В	В	В В	В	A	_	_	_	FFH	10H 90H F0H	_	_	_	_		
T ₇₄	ACL Characteristic	↑	1	1	1	1	1	_	_	_	_	_	_	_	_	_	(1) (2) (3) (4) (5) (6)	Measure video amplitude at pin 12. (Vacl1) Measure DC voltage at pin 16 (ABCL). Supply pin 16 with a voltage that the voltage measured in the above step 4 minus 2 V.
T ₇₅	ABL Gain Characteristic	1	1	1	1	1	1	_	_	_	FFH	00H 10H 1CH	_	_	_	_	(2) (3) (4) (5)	Set bus data on brightness at maximum and measure video DC voltage at pin 12 (Vmax). Measure voltage at pin 16 which is being supplied with the voltage measured in the step 5 of the preceding Note 75.

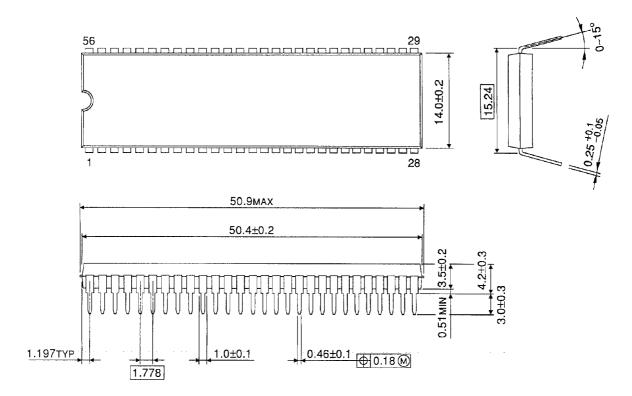

SECAM SECTION

							TE	ST C	OND	OITI	N (Ur	nless	othe	rwise	spe	cified	l : H,	RGE	3 V _{CC}) = 9 ¹	V ; V	DD, F	sc V _D	D, Y /	C V _{CC} = {	5V ; Ta = 25±3°C)
NOTE	ITEM	S			: TE	ST N			0511	1				JS:	NOR	MAL	CON	ITRO	DL M							MEAGURING METUOR
		26		2H	Da		7H Dc	D ₄	0FH	D ₇	Dr	D₄	10H	Da	D₄	Dο	D ₇	De	D ₅		1FH		D ₁	Dη		MEASURING METHOD
S ₁	Bell Monitor Output Amplitude	ON	0	1		0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	bai (2) Me	put 200 mV _{p-p} (R-Y ID), 75% chroma color ir signal (SECAM system) to pin 42. easure amplitude of R-Y ID output of pin 36 ebmo.
S ₂	Bell Filter f _o	1	1	1	1	1	1	↑	↑	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	froi out ana gai	hile supplying 20 mV _{p-p} CW sweep signal om network analyzer to pin 42 and monitoring atput signal of pin 36 with the network nalyzer, measure frequency having maximum in as foBEL of the bell frequency naracteristic.
																										nd difference between foBEL and 4.286 MHz foB-C.
																										ne same procedure as the steps 1 and 2 of e Note S ₂ .
S ₃	Bell Filter f _o Variable Range	1	1	1	1	1	1	1	↑	1	1	1	1	1	1	1	1	1	1	1	1	1	Vari- able		(IF	easure foBEL in different condition that SUB $_{\rm F}$) $_{\rm D_1D_0}$ = (00) or (11), and find difference of ach measurement result from 4.286 MHz as B-L or foB-H.
																									(1) The S ₂	ne same procedure as the step 1 of the Note
S ₄	Bell Filter Q	1	1	1	1	1	1	↑	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	net	hile monitoring output signal of pin 36 with stwork analyzer, measure Q of bell frequency aracteristic as QBEL.
																										QBEL = (QMAX -3 dB band width) / FoBEL
S ₅	Color Difference Output Amplitude	OFF	_	_	_	_	_	-	0	1	1	1	1	1		1	1	1	1	1	1	1	1	1	(1) Inp	put 200 mV _{p-p} (R-Y ID), 75% chroma color ir signal (SECAM system) to pin 42.
 S ₆	Color Difference	1	_	_	_		_		^	1	1	↑	1	1	↑	↑	1	1	1	1	1	1	1	1		easure color difference levels VRS and VBS th signals of pin 35 and pin 36.
-0	Relative Amplitude	'							_	'	'	'	'	'	'	'	'	'	'	'	'	'		'	(3) Ca	alculate relative amplitude from VRS / VBS.


									ONDI	TION	l (Un	less	othe	wise	spec	cified	: H,	RGB	Vcc	; = 9\	√ ; V _I	od, F	sc V	DD, \	/ / C V	' _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S			: TES				OFI					S : N	ORM	AL C	TNO	ROL	MO.							MEACHDING METHOD
		26	_	2H D ₂	D ₂	07 D7		Dα	0FH D ₄	D ₇	D ₅	Dα	10H D ₃	D2	D ₁	Dη	D ₇	De	D ₅		FH D ₃	D2	D ₁	Dη	_	MEASURING METHOD
				-5	- 2	-,	-5					-4	-5			-0		-0	-5		- 5	-2		- 0	(1)	The same procedure as the steps 1 and 2 of the Note S ₅ .
S ₇	Color Difference Attenuation Quantity	OFF	_	_	_	_	_	_	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1		In the condition that SUB (IF) D_6 = 1, measure amplitudes of color difference signals of pin 35 and pin 36 as VRSA and VBSA respectively, and find SATTR and SATTB from measurement results.
																										SATTR = 20 log (VRSA / VRS),
																										SATTB = 20 log (VBSA / VBS)
																										The same procedure as the steps 1 and 2 of the Note S_5 .
																									(2)	Input non-modulated 200 V_{p-p} (R-Y) chroma signal to pin 42.
S ₈	Color Difference S / N Ratio	↑	_	_	_	_	_	_	↑	1	1	1	1	1	1	1	1	0	1	1	↑	1	1	1		Measure noise amplitude nR and nB (mV $_{p-p}$) appearing in color difference signals of pin 35 and pin 36 respectively.
																									(4)	Find S / N ratio by the following equation.
																										SNB - S = $20 \log (2\sqrt{2} \times VBS / nB \times 10E - 3)$ SNR - S = $20 \log (2\sqrt{2} \times VRS / nR \times 10E - 3)$
																									(1)	The same procedure as the step 1 of the Note S_5 .
																									, ,	Measure and calculate amplitude of black bar levels in output waveforms of pin 35 and pin 36 as shown below.
	Lincority								•									•								LinB = V [cyan] / V [red]
S ₉	Linearity	I		_				_	↑	1	↑	1	1	↑	1	1	1	1					1			Maximum positive / negative amplitudes in respective axes
																										LinR = V [yellow] / V [blue]

							TE	ST C	ONDI	TION	ا (Un	less	othe	rwise	spe	cified	: H,	RGB	Vcc	; = 9\	/ ; V[D, F	sc V	DD, Y	/ C V _{CC} = 5	V ; Ta = 25±3°	C)
NOTE	ITEM	S			: TE		IODE			1			BU	S : N	ORN	IAL C	TNO	ROL	. MO	DE							
		26		2H	D ₂	07		D4	0FH D ₄	D-	Dr	D،	10H		D₄	Dο	D-	Dc	Dr		-H	Do	D₄	Dο		MEASURII	NG METHOD
		20	D4	D3	D2	Dγ	D5	D4	<u>D4</u>	Dγ	D5	D4	D3	D2	Di	D0	Dγ	D ₆	D5	D4	D3	D2	Di	D ₀	(1) The sa	me procedure	as the step 1 of the Note S ₅ .
S ₁₀	Rising-Fall Time (Standard	OFF	_	_		_	_	_	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	to find		eforms of pin 35 and pin 36 ween the two points shown in
	De-Emphasis)																										Magenta 90%
S ₁₁	Rising-Fall Time (Wide-Band	↑	_	_		_	_	_	↑	1	1	1	1	1	↑	1	1	↑	1	1	1	↑	1	1	(3) In the c	10% Green	t_{rfB} , t_{rfR} SUB (IF) D ₅ = 1, perform the
	De-Emphasis)																								same r	measurement a	as the above step 2. are expressed as t _{rfBW} and
	Killer Operation Input Level																								(1) Input 2 signal	200 mV _{p-p} (R-Y (SECAM syste	'ID) standard 75% color bar m) to pin 42.
S ₁₂	(Standard Setting)	1			_	_	_	_	↑	1	1	1	1	1	1	Î	Î	Î	Î	1	1	1	1	1	ID sign	ate the input si nal level at pin 4 K and eSC.	gnal to pin 42. Measure R-Y 42 that turns on / off the killer
S ₁₃	Killer Operation Input Level (VID ON)	1	_	_	_	_	_	_	↑	1	1	1	1	1	1	1	1	↑	0	1	1	↑	1	1	same r	measurement as the measure	SUB (IF) D ₃ = 1, perform the as the above step 2 and ment results as eSFK and
S ₁₄	Killer Operation Input Level (Low Sensitivity, VID OFF)	↑	_	_	_	_	_	_	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	perforn step 2	n the same me	SUB (IF) $D_3 = 0$, $D_2 = 1$, assurement as the above se measurement results as

TEST CIRCUIT



APPLICATION CIRCUIT

PACKAGE DIMENSIONS

SDIP56-P-600-1.78 Unit: mm

Weight: 5.55 g (Typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.