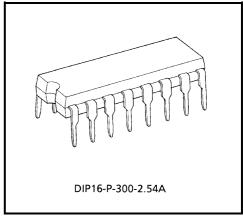
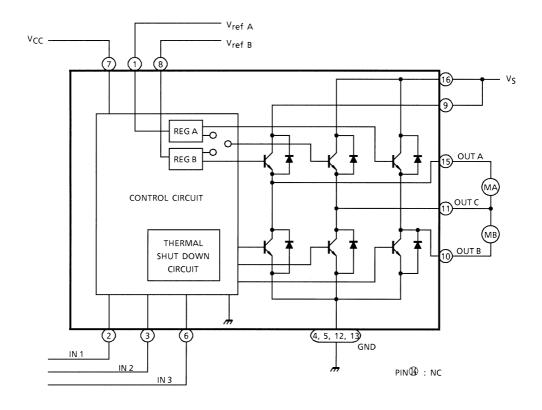
TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC


TA8400P

DUAL BRIDGE DRIVER

The TA8400P is Dual Bridge Driver designed especially for VCR cassette and tape loading motor drives.


FEATURES

- 4 modes available (CW / CCW / STOP / BRAKE)
- Output current up to 0.4 A (AVE.) and 1.0 A (PEAK)
- Wide range of operating voltage: VCC (opr.) = 4.5~18 V VS (opr.) = 0~22 V Vref (opr.) = 0~22 V
- Built—in thermal shutdown, over current protector and punch—through current restriction circuit.
- Hysteresis for all inputs.

Weight: 1.11 g (Typ.)

BLOCK DIAGRAM

PIN FUNCTION

PIN No.	SYMBOL	FUNCTIONAL DESCRIPTION		
1	V _{ref A}	Supply voltage terminal for control circuit		
2	IN 1	Logic input terminal		
3	IN 2	Logic input terminal		
4	GND	GND terminal		
5	GND	GND terminal		
6	IN 3	Logic input terminal		
7	V _{CC}	Supply voltage terminal for logic		
8	V _{ref B}	Supply voltage terminal for control circuit		
9	Vs	Supply voltage terminal for motor driver		
10	OUT B	Output terminal		
11	OUT C	Output terminal		
12	GND	GND terminal		
13	GND	GND terminal		
14	NC	Non connection		
15	OUT A	Output terminal		
16	V _S	Supply voltage terminal for motor driver		

TA8400P

FUNCTION

INPUT		OUTPUT			MODE			
IN 1	IN 2	IN 3	OUT C	OUT A	OUT B	MA	MB	
0	0	1/0	8	8	8	STOP	STOP	
1	0	0	Н	L	80	CW / CCW	STOP	
1	0	1	L	Н	80	CCW / CW	STOP	
0	1	0	Н	8	L	STOP	CW / CCW	
0	1	1	L	8	Н	STOP	CCW / CW	
1	1	1/0	L	L	L	BRAKE	BRAKE	

∞: High impedance

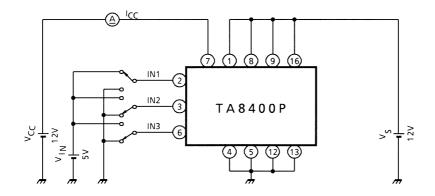
Note: Inputs are all low active type.

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC		SYMBOL	RATING	UNIT	
Supply Voltage		V _{CC}	25	V	
Motor Drive Voltage		Vs	25	V	
Reference Voltage		V _{ref}	25	V	
Output Current	PEAK	I _{O (PEAK)}	1.0 (Note 1)	А	
	AVE.	I _{O (AVE.)}	0.4		
Power Dissipation		P _D	1.4 (Note 2)	W	
Operating Temperature		T _{opr}	-30~75	°C	
Storage Temperature		T _{stg}	-55~150	°C	

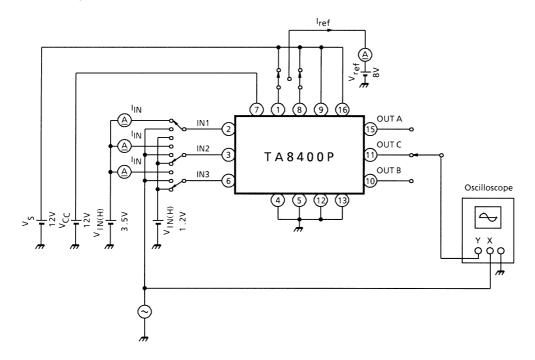
Note 1: Duty 1 / 10, 100 ms Note 2: No heat sink

3


ELECTRICAL CHARACTERISTICS

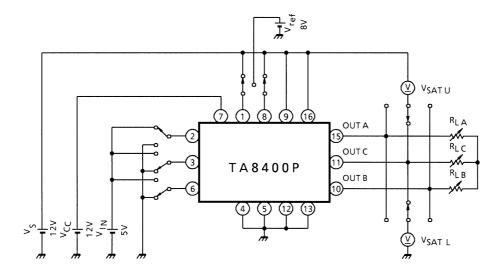
(Unless otherwise specified, $Ta = 25^{\circ}C$, $V_{CC} = 12 \text{ V}$, $V_{S} = 12 \text{ V}$)

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT	
Supply Current		I _{CC1}	1	Output open, CW / CCW mode	_	25	38		
		I _{CC2}	1	Output open, Brake mode	_	25	38	mA	
		I _{CC3}	1	Output open, Stop mode	_	10	20		
Input Voltage —	1 (High)	V _{IN 1}	2	$T_j = 25^{\circ}C$, pin (2), (3), (6)	3.5	_	5.5	V	
	2 (Low)	V _{IN 2}	2	$T_j = 25^{\circ}C$, pin (2), (3), (6)	GND	_	1.2		
Input Current		I _{IN}	2	V _{IN} = GND, source mode	6	12	60	μΑ	
Input Hysteresis Voltage		ΔV_{T}	2		_	0.7	_	V	
	Upper	V _{SAT U-1}	3	V _{ref} = V _S , I _O = 0.4 A	_	1.0	1.5		
	Lower	V _{SAT L-1}	3	V _{ref} = V _S , I _O = 0.4 A	_	0.3	_		
Saturation Voltage	Upper	V _{SAT U-2}	3	$V_{ref} = V_S$, $I_O = 1.0$ A, ON LOAD: 20 ms	_	2.0	2.5	V	
	Lower	V _{SAT L-2}	3	V _{ref} = V _S , I _O = 1.0 A, ON LOAD: 20 ms	_	0.8	1.3		
Output Voltage		V _{SAT U-1}	3	V _{ref} = 8 V, I _O = 0.4 A	8.2	8.8	9.3		
		V _{SAT U-2}	3	V _{ref} = 8 V, I _O = 1.0 A ON LOAD: 20 ms	8.1	8.6	9.2	V	
Output Transistor Leakage Current	Upper	ILU	_	V _S = 25 V	_	_	200		
	Lower	ILL	_	V _S = 25 V	_	_	200	μA	
Diode Forward Voltage	Upper	V _{FU}	4	I _F = 1.0 A	_	3.6	_	V	
	Lower	V _{FL}	4	I _F = 1.0 A	_	0.9	_		
Reference Current		I _{ref}	2	V _{ref} = 8 V, source mode	_	0.45	0.7	mA	
Thermal Shut Down Operating Temperature		T _{SD}	_	Тј	110	130	150	°C	


TEST CIRCUIT 1

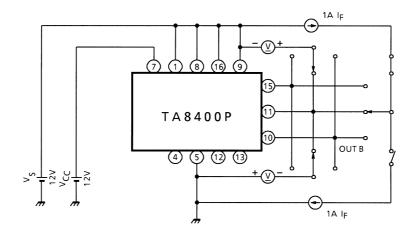
I_{CC1}, 2, 3

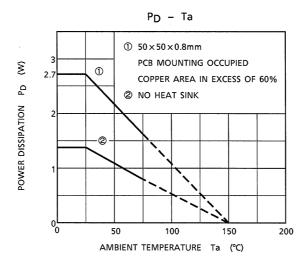
TEST CIRCUIT 2


V_{IN1, 2}, I_{IN}, Δ V_T, I_{ref}

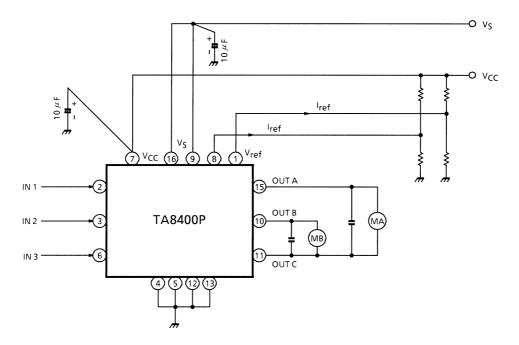
5

TEST CIRCUIT 3

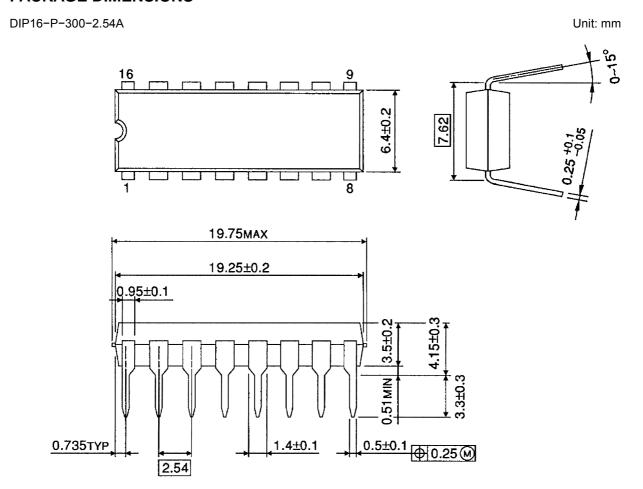

 $V_{SAT\,U-1,\,L-1,\,U-2,\,L-2,\,U-1',\,U-2'}$



Note: Calibrate I_{OUT} to 0.4 / 1.0A by R_{LA} , R_{LB} and R_{LC} .


TEST CIRCUIT 4

 $V_{F\,U,\,L}$


APPLICATION CIRCUIT

Pin (16) is required to connect to pin (9).

Note: Utmost care is necessary in the design of the output line, V_S and GND line since IC may be destroyed due to short–circuit between outputs, air contamination fault, or fault by improper grounding.

PACKAGE DIMENSIONS

Weight: 1.11 g (Typ.)

8 2001-06-13

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.