TOSHIBA TLP561G

TOSHIBA PHOTOCOUPLER GaAs IRED & PHOTO-TRIAC

TLP561G

TRIAC DRIVER

PROGRAMMABLE CONTROLLERS

AC-OUTPUT MODULE

SOLID STATE RELAY

The TOSHIBA TLP561G consists of a zero voltage crossing turn-on photo-triac optically coupled to a gallium arsenide infrared emitting diode in a six lead plastic DIP package.

• Peak Off-State Voltage : 400V (MIN.)

• On-State Current : 100mA (MAX.)

• Isolation Voltage : 2500V_{rms} (MIN.)

• UL Recognized : File No. E67349

Isolation Operating Voltage : 2500V_{ac} or 300V_{dc} for Isolation

Groupe C^{*1}

• Trigger LED Current

CLASSI- FICATION*	TRIGGER LED	MARKING OF CLASSIFICATION	
	$V_{\mathrm{T}}=6V$,		
	MIN.	MAX.	02210021101111011
(IFT5)	_	5	T5
(IFT7)	_	7	T5, T7
Standard	_	10	T5, T7, Blank

*Ex. (IFT5); TLP561G (IFT5)

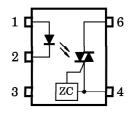
(Note) Application type name for certification test, please use standard product type name, i.e.

TLP561G (IFT5) : TLP561G

*1 : According to VDE0110, table 4.

Unit in mm

11-7A9


Weight: 0.39g

TOSHIBA

 2.54 ± 0.25

PIN CONFIGURATION (TOP VIEW)

11-7A9

1: ANODE

2: CATHODE

3 : N.C.

4: TERMINAL 1

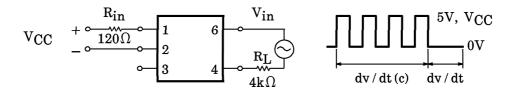
6: TERMINAL 2

MAXIMUM RATINGS (Ta = 25°C)

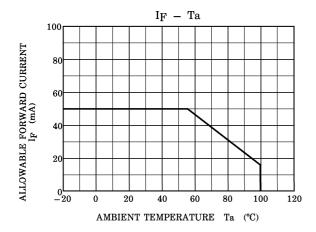
CHARACTERISTIC			SYMBOL	RATING	UNIT	
Forward Current			$I_{\mathbf{F}}$	50	mA	
LED	Forward Current Derating (Ta≥53	∆I _F /°C	-0.7	mA/°C		
	Peak Forward Current (100 µs puls	I_{FP}	1	A		
	Reverse Voltage		$V_{\mathbf{R}}$	5	V	
	Junction Temperature	Тј	125	°C		
	Off-State Output Terminal Voltage	$V_{ m DRM}$	400	V		
R	On-State RMS Current	$Ta = 25^{\circ}C$	Im (Darg)	100	mA	
$_{ m T0}$		$Ta = 70^{\circ}C$	IT (RMS)	50		
DETECTOR	On-State Current Derating (Ta≥25	$\Delta I_{\mathrm{T}}/^{\circ}\mathrm{C}$	-1.1	mA/°C		
ΕT	Peak On-State Current (100 µs puls	I_{TP}	2	Α		
D	Peak Nonrepetitive Surge Current (Pw=10ms, DC=10%)	I_{TSM}	1.2	A		
	Junction Temperature	T_{j}	115	°C		
Storage Temperature Range			$ m T_{stg}$	-55~125	°C	
Operating Temperature Range			$T_{ m opr}$	-40~100	$^{\circ}\mathrm{C}$	
Lead Soldering Temperature (10s)			T_{sol}	260	$^{\circ}\mathrm{C}$	
Isol	Isolation Voltage (AC, 1 min., R.H.≤60%)			2500	V _{rms}	

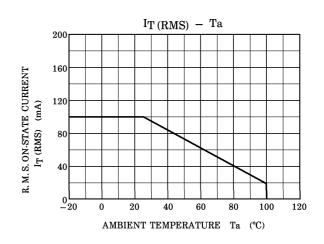
RECOMMENDED OPERATING CONDITIONS

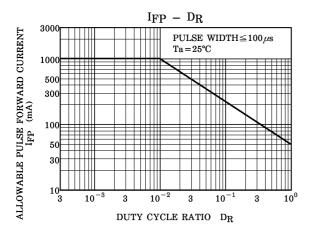
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	v_{AC}		1	120	Vac
Forward Current	${ m I_F}$	15	20	25	mA
Peak On-State Current	I_{TP}	_	1	1	Α
Operating Temperature	$\mathrm{T}_{\mathrm{opr}}$	-25	1	85	°C

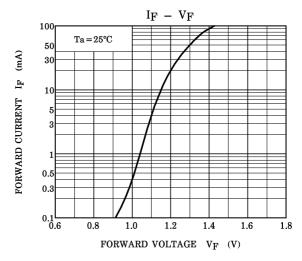

INDIVIDUAL ELECTRICAL CHARACTERISTICS (Ta = 25°C)

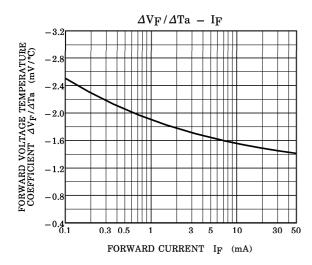
CHARACTERISTIC		SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
	Forward Voltage	$ m V_{f F}$	$I_{ m F}\!=\!10{ m mA}$	1.0	1.15	1.3	V
LED	Reverse Current	$I_{\mathbf{R}}$	$V_R = 5V$	_	_	10	μ A
	Capacitance	C_{T}	V=0, f=1MHz		30		pF
DETECTOR	Peak Off-State Current	${ m I}_{ m DRM}$	$V_{ m DRM} = 400 V$	_	10	100	nA
	Peak On-State Voltage	$ m V_{TM}$	$I_{TM} = 100 mA$	_	1.7	3.0	V
	Holding Current	${ m I_H}$	_	_	0.6	_	mA
	Critical Rate of Rise of Off-State Voltage	dv / dt	$ m V_{in}\!=\!120V_{rms}$, Ta=85°C (Fig.1)	200	500	_	V/μs
	Critical Rate of Rise of Commutating Voltage	dv / dt (c)	$V_{in} = 30V_{rms}$, $I_{T} = 15mA$ (Fig.1)		0.2	_	V/μs

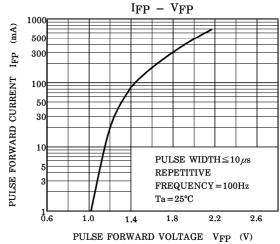

COUPLED ELECTRICAL CHARACTERISTICS (Ta = 25°C)

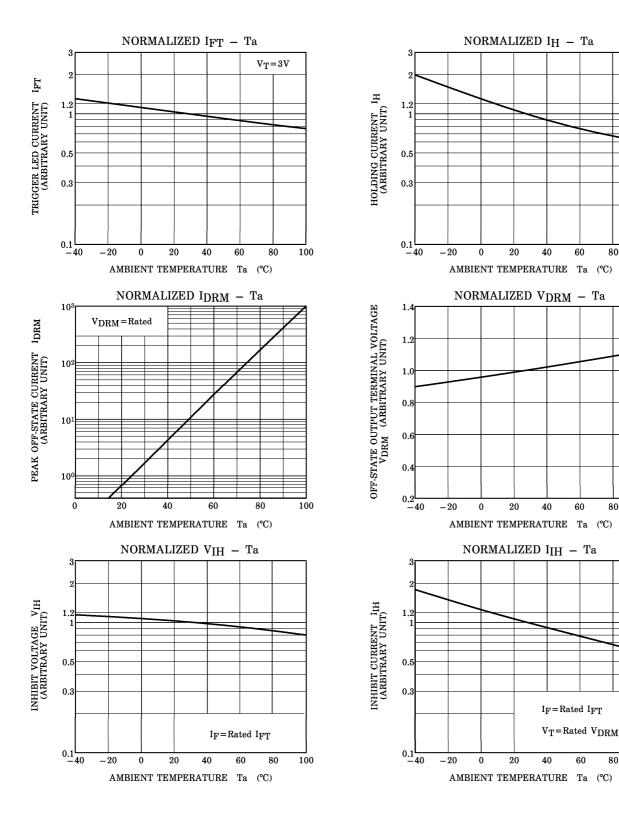

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Trigger LED Current	I_{FT}	$V_T=3V$, $R_L=100\Omega$	_	5	10	mA
Inhibit Voltage	$ m v_{IH}$	I _F =Rated I _F T			40	V
Leakage in Inhibited State	$I_{ m IH}$	I_F =Rated I_{FT} V_T =Rated V_{DRM}	_	100	300	μ A
Capacitance (Input to Output)	c_{S}	V _S =0, f=1MHz	_	0.8	_	pF
Isolation Resistance	$R_{\mathbf{S}}$	$V_S = 500V$	5×10^{10}	10^{14}		Ω
	BV_{S}	AC, 1 minute	2500	_		$V_{\rm rms}$
Isolation Voltage		AC, 1 second, in oil	_	5000		
		DC, 1 minute, in oil	_	5000		v_{dc}


 $Fig.1: dv/dt\ TEST\ CIRCUIT$




3 2001-06-01





4 2001-06-01

100

100

5 2001-06-01

RESTRICTIONS ON PRODUCT USE

000707EBC

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- ◆ The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.