TA1231F,TA1231FN

UHF / VHF TUNER IC

The TA1231F and TA1231FN are TV tuner ICs which integrate on a single chip IF amp, a mixer / oscillator for VHF band and cable TV, together with a mixer / oscillator for UHF band. The package is an SSOP16-P-225A ($1-\mathrm{mm}$ pitch) or SSOP16-P-225B ($0.65-\mathrm{mm}$ pitch) optimal for surface mounting to help make tuners more compact.

FEATURES

- Supply voltage
: 9V
- VHF, CATV bands : MIX • OSC
- UHF band
: MIX • OSC
- Built-in IF amp
- IF unbalanced output

Note: These devices are easy to be damaged by high static voltage or electric fields.
In regards to this, please handle with care.

SSOP16-P-225-1.00A
TA1231FN

SSOP16-P-225-0.65B
Weight
SSOP16-P-225-1.00A : 0.14g (Typ.)
SSOP16-P-225-0.65B : 0.07g (Typ.)

[^0]
BLOCK DIAGRAM

TERMINAL FUNCTION

PIN No.	PIN NAME	FUNCTION		
1				
16			\quad VHF oscillator	VHF oscillator.
:---				
To prevent abnormal oscillation,				
connect a resistor between pin 16 and				
the external capacitor.				

PIN No.	PIN NAME	FUNCTION	INTERFACE
6	REG	Regulator output.	
$\begin{aligned} & 7 \\ & 8 \end{aligned}$	UHF input	UHF • RF input. Either apply balanced input to pins 7 and 8, or ground pin 7 to AC and apply input to pin 8.	
$\begin{gathered} 9 \\ 10 \end{gathered}$	VHF input	VHF-RF input. Normally ground pin 10 to AC using a capacitor and input to pin 9 .	
11	V_{CC}	VCC	-
12	IF output	IF output. Output impedance : 75Ω	
$\begin{aligned} & 13 \\ & 14 \end{aligned}$	MIX output	Mixer output. For turning, connect a tank circuit between pins 13 and 14.	
15	GND	GND	-

MAXIMUM RATINGS $\left(\mathbf{T a}=25^{\circ} \mathrm{C}\right)$

CHARACTERISTIC	SYMBOL	RATING	UNIT
Power Supply Voltage	V_{CC}	11	V
Power Dissipation	P_{D}	(Note 1)	mW
Operating Temperature	$\mathrm{T}_{\mathrm{opr}}$	$-20 \sim 75$	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\mathrm{stg}}$	$-55 \sim 150$	${ }^{\circ} \mathrm{C}$

Note 1: 641 mW for TA1231F
568 mW for TA1231FN
When using the device at above $\mathrm{Ta}=25^{\circ} \mathrm{C}$, decrease the power dissipation F-type by 5.2 mW and FN -type by 4.6 mW for each increase of $1^{\circ} \mathrm{C}$.
The above values are for the IC only. When using the device in an application, take the effect of heat dissipation into consideration.

RECOMMENDED OPERATING CONDITION

PIN No.	SYMBOL	MIN	TYP.	MAX	UNIT
11	VCC	8.1	9.0	9.9	V

ELECTRICAL CHARACTERISTICS

DC CHARACTERISTICS (Unless otherwise specified, $\mathrm{VCC}=9 \mathrm{~V}, \mathrm{Ta}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

CHARACTERISTIC		SYMBOL	TEST CIRCUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
Power Supply and Current for VHF		Icc-V	1	-	34	42	52	mA
Power Supply and Current for UHF		$\mathrm{ICC}-\mathrm{U}$		-	37	44	56	
Terminal Voltage (*1)	Pin 1 for V	V1-V	1	-	6.5	6.9	7.3	V
	Pin 1 for U	V1-U		-		9		
	Pin 2 for V	V2-V		-	3.3	3.7	4.1	
	Pin 2 for U	V2-U		-	2.9	3.3	3.7	
	Pin 3 for V	V3-V		-	3.7	4.3	4.8	
	Pin 3 for U	V3-U		-	2.1	2.5	2.9	
	Pin 4 for V	V4-V		-		0		
	Pin 4 for U	V4-U		-	2.1	2.5	2.9	
	Pin 5 for V	V5-V		-		0		
	Pin 5 for U	V5-U		-	2.9	3.3	3.7	
	Pin 6 for V	V6-V		-	5.8	6.1	6.4	
	Pin 6 for U	V6-U		-	5.8	6.1	6.4	
	Pin 7 for V	V7-V		-	2.7	3.1	3.5	
	Pin 7 for U	V7-U		-	2.4	2.8	3.2	
	Pin 8 for V	V8-V		-	2.7	3.1	3.5	
	Pin 8 for U	V8-U		-	2.4	2.8	3.2	

CHARACTERISTIC		SYMBOL	$\begin{aligned} & \hline \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \\ & \hline \end{aligned}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
Terminal Voltage (*1)	Pin 9 for V	V9-V	1	-	2.4	2.8	3.2	V
	Pin 9 for U	V9-U		-	2.7	3.1	3.5	
	Pin 10 for V	V10-V		-	2.4	2.8	3.2	
	Pin 10 for U	V10-U		-	2.7	3.1	3.5	
	Pin 12 for V	V12-V		-	4.7	5.1	5.5	
	Pin 12 for U	V12-U		-	4.7	5.1	5.5	
	Pin 13 for V	V13-V		-	6.8	7.2	7.6	
	Pin 13 for U	V13-U		-	6.6	7.0	7.4	
	Pin 14 for V	V14-V		-	6.8	7.2	7.6	
	Pin 14 for U	V14-U		-	6.6	7.0	7.4	
	Pin 16 for V	V16-V		-	2.1	2.5	2.9	
	Pin 16 for U	V16-U		-	2.5	2.9	3.3	
* 1 . upper lower	VHF mode UHF mode							

AC CHARACTERISTICS

No.	CHARACTERISTIC	SYMBOL	TEST CIRCUIT	TEST CONDITION (*2)		MIN	TYP.	MAX	UNIT
6	Switching On Drift	$\Delta \mathrm{fs}$	2	(Note 3)	VHF-L	-	-	± 350	kHz
					VHF-H	-	-	± 350	
					UHF	-	-	± 400	
7	1\% Cross Modulation	CM	2	(Note 4)	VHF-L	85.0	89.0	-	$\mathrm{dB} \mu \mathrm{V}$
					VHF-H	84.0	87.0	-	
					UHF	79.0	83.0	-	
8	Inter Modulation	IM3	2	(Note 5)	VHF-L	-65.0	-70.0	-	dBc
					VHF-H	-65.0	-70.0	-	
					UHF	-65.0	-70.0	-	
9	6-ch Beat	B_{6}	2	(Note 6)	VHF-L (6ch)	-50.0	-53.0		dBc
					VHF-H	-	-	-	
					UHF	-	-	-	
* 2 :	$\mathrm{fiF}^{\text {l }}$: $\quad 45.75[\mathrm{MHz}]$								
	VHF-L : $\mathrm{f}_{\text {RF }}=55.25[\mathrm{MHz}] \sim 127.25[\mathrm{MHz}]$								
	VHF-H : $\mathrm{f}_{\mathrm{RF}}=133.25[\mathrm{MHz}] \sim 367.25[\mathrm{MHz}]$								
	UHF : $\mathrm{f}_{\mathrm{RF}}=373.2$	~801.25							

TEST CONDITIONS

Note 1: Conversion Gain Shift
Measure conversion gain change when $\mathrm{VCC} \pm 10 \%$ with input level $=-50 \mathrm{dBmW}, \mathrm{VCC}=9 \mathrm{~V}$ as the reference.
Note 2: Frequency Shift
Measure frequency change when $\mathrm{VCC}_{\mathrm{C}} \pm 10 \%$ with input level $=-40 \mathrm{dBmW}, \mathrm{VCC}_{\mathrm{C}}=9 \mathrm{~V}$ as the reference.
Note 3: Switching On Drift
Measure frequency change up to 3 minutes with the frequency at 2 seconds after switching on, as the reference. (Input level : -30 dBmW)
Note 4: 1\% Cross Modulation

- $\quad \mathrm{fD}=\mathrm{fp} \mathrm{fD}$: Input level $=-30 \mathrm{dBmW}$
- $\mathrm{fUD}=\mathrm{fD}+12 \mathrm{MHz} \quad 100 \mathrm{kHz}, 30 \% \mathrm{AM}$.

Input the two signals above, and increase the fUD input level.
Measure the fUD input level when the suppression level reaches 56.5 dB .
(Averaging 10 times using a spectrum analyzer.)

Note 5: Inter Modulation

- $\mathrm{fD}=\mathrm{fp}$
- $\quad \mathrm{fUD}=\mathrm{fD}+1 \mathrm{MHz}$

Input the two signals above, and increase the input levels.
When the IF output level is -11 dBmW , measure the suppression level.
(Averaging 10 times using a spectrum analyzer.)

Note 6: 6-ch Beat

- $\quad \mathrm{fp}=83.25 \mathrm{MHz}$ (USA : 6ch)
- $\mathrm{f}_{\mathrm{S}}=87.75 \mathrm{MHz}$ (USA : 6ch)

Input the two signals above, and increase the input levels.
When the IF output level is -11 dBmW , measure the suppression level.
(Averaging 10 times using a spectrum analyzer.)

TEST CIRCUIT 1

DC CHARACTERISTICS

TEST CIRCUIT 2
AC CHARACTERISTICS

PACKAGE DIEMENSIONS

SSOP16-P-225-1.00A

Weight: 0.14 g (Typ.)

PACKAGE DIEMENSIONS

Weight: 0.07 g (Typ.)

[^0]: - TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
 - The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
 - The products described in this document are subject to the foreign exchange and foreign trade laws.
 - The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
 - The information contained herein is subject to change without notice.

