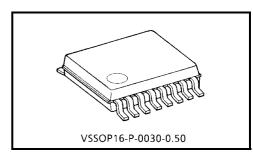
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC7MZ157FK

Low Voltage Quad 2-Channel Multiplexer with 5 V Tolerant Inputs and Outputs

The TC7MZ157FK is a high performance CMOS multiplexer.

Designed for use in 3.3 V systems, it achieves high speed operation while maintaining the CMOS low power dissipation.


The device is designed for low-voltage (3.3 V) VCC applications, but it could be used to interface to 5 V supply environment for inputs.

It consists of four 2-input digital multiplexers with common select and strobe inputs.

When the strobe input (\overline{ST}) is held "H" level, selection of data is inhibited and all the outputs become "L" level.

The SELECT decoding determines whether the A or B inputs get routed to their corresponding Y outputs.

All inputs are equipped with protection circuits against static discharge.

Weight: 0.02 g (typ.)

Features

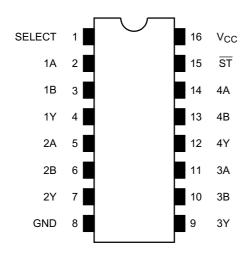
- Low voltage operation: $VCC = 2.0 \sim 3.6 \text{ V}$
- High speed operation: $t_{pd} = 5.8 \text{ ns (max)} (V_{CC} = 3.0 \sim 3.6 \text{ V})$
- Output current: $|I_{OH}|/I_{OL} = 24 \text{ mA (min)} (V_{CC} = 3.0 \text{ V})$
- Latch-up performance: ±500 mA
- Package: VSSOP16 (US16)
- Power down protection is provided on all inputs and outputs.
- Pin and function compatible with the 74 series (74AC/VHC/HC/F/ALS/LS etc.) 157 type.

000707EBA²

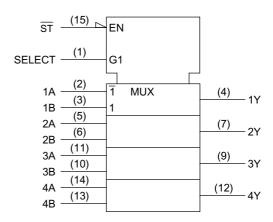
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

The products described in this document are subject to the foreign exchange and foreign trade laws.

• The information contained herein is subject to change without notice.


TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general
can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the
buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and
to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or
damage to property.

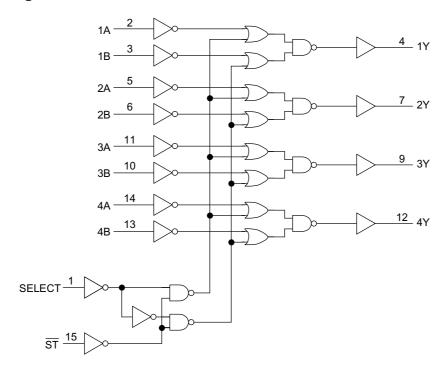
Guide for Semiconductor Devices," or "IOSHIBA Semiconductor Reliability Handbook" etc..


• The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

Pin Assignment (top view)

IEC Logic Symbol


Truth Table

	Outputs					
ST	ST Select A B			Y		
Н	Х	Х	Х	L		
L	L	L	Х	L		
L	L	Н	X	Н		
L	Н	Х	L	L		
L	Н	Х	Н	Н		

X: Don't care

System Diagram

Maximum Ratings

Characteristics	Symbol	Rating	Unit	
Supply voltage range	V _{CC}	-0.5~7.0	V	
DC input voltage	V _{IN}	-0.5~7.0	V	
DC output voltage	Vout	-0.5~7.0 (Note1)	V	
DC output voltage	٧٥٥١	-0.5~V _{CC} + 0.5 (Note2)	v	
Input diode current	I _{IK}	-50	mA	
Output diode current	I _{OK}	±50 (Note3)	mA	
DC output current	I _{OUT}	±50	mA	
Power dissipation	PD	180	mW	
DC V _{CC} /ground current	I _{CC} /I _{GND}	±100	mA	
Storage temperature T _{stg} –6		-65~150	°C	

Note1: $V_{CC} = 0 V$

Note2: High or low state. IOUT absolute maximum rating must be observed.

Note3: $V_{OUT} < GND, V_{OUT} > V_{CC}$

Recommended Operating Conditions

Characteristics	Characteristics Symbol Rating		Unit	
Supply voltage	Voc	2.0~3.6	V	
Supply voltage	V _{CC}	1.5~3.6 (Note4)	V	
Input voltage	V _{IN}	0~5.5	V	
Output voltage	V _{OUT}	0~5.5 (Note5)	V	
Output voltage		0~V _{CC} (Note6)	V	
Output current	I _{OH} /I _{OI}	±24 (Note7)	mA	
Output current	IOH/IOL	±12 (Note8)	ША	
Operating temperature	T _{opr}	-40~85	°C	
Input rise and fall time	dt/dv	0~10 (Note9)	ns/V	

Note4: Data retention only

Note5: $V_{CC} = 0 V$

Note6: High or low state Note7: $V_{CC} = 3.0 \sim 3.6 \text{ V}$ Note8: $V_{CC} = 2.7 \sim 3.0 \text{ V}$

Note9: $V_{IN} = 0.8 \sim 2.0 \text{ V}, V_{CC} = 3.0 \text{ V}$

Electrical Characteristics

DC Characteristics ($Ta = -40 \sim 85$ °C)

Characteristics Symbol		Test Condition			Min	Max	Unit	
			rest condition		IVIIII	IVIAX	Offic	
Input voltage	High level	V _{IH}				2.0	_	V
iliput voltage	Low level	V _{IL}				_	0.8	v
Output voltage Low level			I _{OH} = -100 μA	2.7~3.6	V _{CC} - 0.2	_		
	High level	igh level V _{OH}	V _{IN} = V _{IH} or V _{IL}	I _{OH} = -12 mA	2.7	2.2	_	V
				$I_{OH} = -18 \text{ mA}$	3.0	2.4	_	
				$I_{OH} = -24 \text{ mA}$	3.0	2.2	_	
			$I_{OL} = 100 \mu A$	2.7~3.6	_	0.2		
	I ow level	Low level V _{OL}	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OL} = 12 \text{ mA}$	2.7	_	0.4	
	LOW level			$I_{OL} = 16 \text{ mA}$	3.0	_	0.4	
				$I_{OL} = 24 \text{ mA}$	3.0	_	0.55	
Input leakage current I _{IN}		V _{IN} = 0~5.5 V		2.7~3.6	_	±5.0	μΑ	
Power off leakage current I_{OFF} $V_{IN}/V_{OUT} = 5.5 V$		0	_	10.0	μΑ			
Quiescent supply current		Icc	$V_{IN} = V_{CC}$ or GND		2.7~3.6	—	10.0	
		100	V _{IN} = 3.6~5.5 V		2.7~3.6	—	±10.0	μΑ
Increase in I_{CC} per input ΔI_{CC}		Δl _{CC}	$V_{IH} = V_{CC} - 0.6 V$		2.7~3.6		500	

AC Characteristics ($Ta = -40 \sim 85$ °C)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2	2.7	_	6.3	- ns
(A, B-Y)	t _{pHL}		3.3 ± 0.3	1.5	5.8	
Propagation delay time	t _{pLH}	Figure 1, Figure 2	2.7	_	8.0	
(SELECT-Y)	t _{pHL}		3.3 ± 0.3	1.5	7.0	ns
Propagation delay time	t _{pLH}	Figure 1, Figure 2	2.7	_	8.0	ns
(ST-Y)	t _{pHL}		3.3 ± 0.3	1.5	7.0	115
Output to output skew	t _{osLH}	(Note10)	2.7	_		ns
	t _{osHL}	(Note 10)	3.3 ± 0.3	_	1.0	20

Note10: This parameter is guaranteed by design.

 $(t_{OSLH} = |t_{pLHm} - t_{pLHn}|, t_{OSHL} = |t_{pHLm} - t_{pHLn}|)$

Dynamic Switching Characteristics

(Ta = 25°C, Input: $t_r = t_f = 2.5$ ns, $C_L = 50$ pF, $R_L = 500$ Ω)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
Quiet output maximum dynamic V _{OL}	V _{OLP}	$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	3.3	8.0	V
Quiet output minimum dynamic V _{OL}	V _{OLV}	$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	3.3	8.0	V

Capacitive Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
Input capacitance	C _{IN}	_	3.3	7	pF
Output capacitance	C _{OUT}	_	0	8	pF
Power dissipation capacitance	C _{PD}	f _{IN} = 10 MHz (Note1	3.3	25	pF

Note11: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

ICC (opr) = CPD·VCC·fIN + ICC

AC Test Circuit

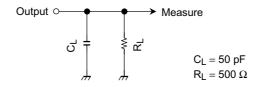


Figure 1

AC Waveform

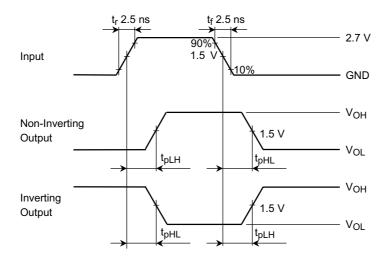
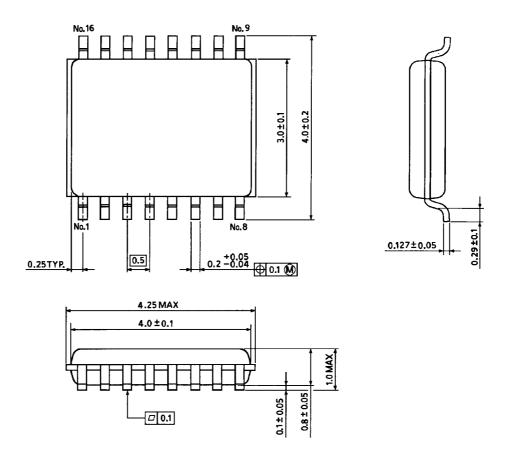



Figure 2 t_{pLH}, t_{pHL}

Package Dimensions

Weight: 0.02 g (typ.)